Properties

Label 1232.4.a.y.1.2
Level $1232$
Weight $4$
Character 1232.1
Self dual yes
Analytic conductor $72.690$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,4,Mod(1,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.6903531271\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 42x^{3} + 18x^{2} + 368x + 352 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.18888\) of defining polynomial
Character \(\chi\) \(=\) 1232.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.48496 q^{3} +7.60736 q^{5} -7.00000 q^{7} +15.0547 q^{9} -11.0000 q^{11} +0.174238 q^{13} -49.3335 q^{15} +128.863 q^{17} -141.685 q^{19} +45.3947 q^{21} +133.369 q^{23} -67.1280 q^{25} +77.4647 q^{27} -177.002 q^{29} -48.2757 q^{31} +71.3346 q^{33} -53.2515 q^{35} +161.625 q^{37} -1.12993 q^{39} -195.689 q^{41} +488.447 q^{43} +114.527 q^{45} +171.705 q^{47} +49.0000 q^{49} -835.671 q^{51} -431.477 q^{53} -83.6810 q^{55} +918.821 q^{57} -194.176 q^{59} +585.008 q^{61} -105.383 q^{63} +1.32549 q^{65} -155.905 q^{67} -864.891 q^{69} +374.994 q^{71} +210.419 q^{73} +435.323 q^{75} +77.0000 q^{77} +7.00618 q^{79} -908.833 q^{81} +93.6417 q^{83} +980.307 q^{85} +1147.85 q^{87} -307.119 q^{89} -1.21967 q^{91} +313.066 q^{93} -1077.85 q^{95} +965.991 q^{97} -165.602 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{3} - 24 q^{5} - 35 q^{7} + 63 q^{9} - 55 q^{11} - 50 q^{13} + 146 q^{15} + 222 q^{17} - 160 q^{19} + 14 q^{21} - 54 q^{23} + 125 q^{25} - 110 q^{27} + 14 q^{29} + 34 q^{31} + 22 q^{33} + 168 q^{35}+ \cdots - 693 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.48496 −1.24803 −0.624016 0.781412i \(-0.714500\pi\)
−0.624016 + 0.781412i \(0.714500\pi\)
\(4\) 0 0
\(5\) 7.60736 0.680423 0.340212 0.940349i \(-0.389501\pi\)
0.340212 + 0.940349i \(0.389501\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 15.0547 0.557582
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 0.174238 0.00371730 0.00185865 0.999998i \(-0.499408\pi\)
0.00185865 + 0.999998i \(0.499408\pi\)
\(14\) 0 0
\(15\) −49.3335 −0.849190
\(16\) 0 0
\(17\) 128.863 1.83846 0.919231 0.393719i \(-0.128812\pi\)
0.919231 + 0.393719i \(0.128812\pi\)
\(18\) 0 0
\(19\) −141.685 −1.71078 −0.855388 0.517988i \(-0.826681\pi\)
−0.855388 + 0.517988i \(0.826681\pi\)
\(20\) 0 0
\(21\) 45.3947 0.471712
\(22\) 0 0
\(23\) 133.369 1.20910 0.604550 0.796567i \(-0.293353\pi\)
0.604550 + 0.796567i \(0.293353\pi\)
\(24\) 0 0
\(25\) −67.1280 −0.537024
\(26\) 0 0
\(27\) 77.4647 0.552151
\(28\) 0 0
\(29\) −177.002 −1.13340 −0.566698 0.823925i \(-0.691779\pi\)
−0.566698 + 0.823925i \(0.691779\pi\)
\(30\) 0 0
\(31\) −48.2757 −0.279696 −0.139848 0.990173i \(-0.544661\pi\)
−0.139848 + 0.990173i \(0.544661\pi\)
\(32\) 0 0
\(33\) 71.3346 0.376296
\(34\) 0 0
\(35\) −53.2515 −0.257176
\(36\) 0 0
\(37\) 161.625 0.718136 0.359068 0.933311i \(-0.383095\pi\)
0.359068 + 0.933311i \(0.383095\pi\)
\(38\) 0 0
\(39\) −1.12993 −0.00463931
\(40\) 0 0
\(41\) −195.689 −0.745402 −0.372701 0.927952i \(-0.621568\pi\)
−0.372701 + 0.927952i \(0.621568\pi\)
\(42\) 0 0
\(43\) 488.447 1.73227 0.866133 0.499814i \(-0.166598\pi\)
0.866133 + 0.499814i \(0.166598\pi\)
\(44\) 0 0
\(45\) 114.527 0.379392
\(46\) 0 0
\(47\) 171.705 0.532889 0.266444 0.963850i \(-0.414151\pi\)
0.266444 + 0.963850i \(0.414151\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −835.671 −2.29446
\(52\) 0 0
\(53\) −431.477 −1.11826 −0.559131 0.829079i \(-0.688865\pi\)
−0.559131 + 0.829079i \(0.688865\pi\)
\(54\) 0 0
\(55\) −83.6810 −0.205155
\(56\) 0 0
\(57\) 918.821 2.13510
\(58\) 0 0
\(59\) −194.176 −0.428468 −0.214234 0.976782i \(-0.568725\pi\)
−0.214234 + 0.976782i \(0.568725\pi\)
\(60\) 0 0
\(61\) 585.008 1.22791 0.613955 0.789341i \(-0.289577\pi\)
0.613955 + 0.789341i \(0.289577\pi\)
\(62\) 0 0
\(63\) −105.383 −0.210746
\(64\) 0 0
\(65\) 1.32549 0.00252934
\(66\) 0 0
\(67\) −155.905 −0.284281 −0.142140 0.989847i \(-0.545398\pi\)
−0.142140 + 0.989847i \(0.545398\pi\)
\(68\) 0 0
\(69\) −864.891 −1.50899
\(70\) 0 0
\(71\) 374.994 0.626811 0.313405 0.949619i \(-0.398530\pi\)
0.313405 + 0.949619i \(0.398530\pi\)
\(72\) 0 0
\(73\) 210.419 0.337365 0.168683 0.985670i \(-0.446049\pi\)
0.168683 + 0.985670i \(0.446049\pi\)
\(74\) 0 0
\(75\) 435.323 0.670223
\(76\) 0 0
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) 7.00618 0.00997793 0.00498897 0.999988i \(-0.498412\pi\)
0.00498897 + 0.999988i \(0.498412\pi\)
\(80\) 0 0
\(81\) −908.833 −1.24668
\(82\) 0 0
\(83\) 93.6417 0.123837 0.0619187 0.998081i \(-0.480278\pi\)
0.0619187 + 0.998081i \(0.480278\pi\)
\(84\) 0 0
\(85\) 980.307 1.25093
\(86\) 0 0
\(87\) 1147.85 1.41451
\(88\) 0 0
\(89\) −307.119 −0.365781 −0.182891 0.983133i \(-0.558545\pi\)
−0.182891 + 0.983133i \(0.558545\pi\)
\(90\) 0 0
\(91\) −1.21967 −0.00140501
\(92\) 0 0
\(93\) 313.066 0.349069
\(94\) 0 0
\(95\) −1077.85 −1.16405
\(96\) 0 0
\(97\) 965.991 1.01115 0.505575 0.862783i \(-0.331280\pi\)
0.505575 + 0.862783i \(0.331280\pi\)
\(98\) 0 0
\(99\) −165.602 −0.168117
\(100\) 0 0
\(101\) −577.986 −0.569424 −0.284712 0.958613i \(-0.591898\pi\)
−0.284712 + 0.958613i \(0.591898\pi\)
\(102\) 0 0
\(103\) −133.232 −0.127453 −0.0637267 0.997967i \(-0.520299\pi\)
−0.0637267 + 0.997967i \(0.520299\pi\)
\(104\) 0 0
\(105\) 345.334 0.320963
\(106\) 0 0
\(107\) −8.33627 −0.00753175 −0.00376587 0.999993i \(-0.501199\pi\)
−0.00376587 + 0.999993i \(0.501199\pi\)
\(108\) 0 0
\(109\) −317.052 −0.278606 −0.139303 0.990250i \(-0.544486\pi\)
−0.139303 + 0.990250i \(0.544486\pi\)
\(110\) 0 0
\(111\) −1048.13 −0.896256
\(112\) 0 0
\(113\) −2170.00 −1.80652 −0.903260 0.429093i \(-0.858833\pi\)
−0.903260 + 0.429093i \(0.858833\pi\)
\(114\) 0 0
\(115\) 1014.58 0.822700
\(116\) 0 0
\(117\) 2.62310 0.00207270
\(118\) 0 0
\(119\) −902.040 −0.694873
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 1269.03 0.930285
\(124\) 0 0
\(125\) −1461.59 −1.04583
\(126\) 0 0
\(127\) −1301.24 −0.909184 −0.454592 0.890700i \(-0.650215\pi\)
−0.454592 + 0.890700i \(0.650215\pi\)
\(128\) 0 0
\(129\) −3167.56 −2.16192
\(130\) 0 0
\(131\) −2522.22 −1.68220 −0.841098 0.540883i \(-0.818090\pi\)
−0.841098 + 0.540883i \(0.818090\pi\)
\(132\) 0 0
\(133\) 991.794 0.646612
\(134\) 0 0
\(135\) 589.302 0.375696
\(136\) 0 0
\(137\) 2574.70 1.60563 0.802815 0.596228i \(-0.203334\pi\)
0.802815 + 0.596228i \(0.203334\pi\)
\(138\) 0 0
\(139\) 2741.49 1.67288 0.836438 0.548061i \(-0.184634\pi\)
0.836438 + 0.548061i \(0.184634\pi\)
\(140\) 0 0
\(141\) −1113.50 −0.665062
\(142\) 0 0
\(143\) −1.91662 −0.00112081
\(144\) 0 0
\(145\) −1346.52 −0.771189
\(146\) 0 0
\(147\) −317.763 −0.178290
\(148\) 0 0
\(149\) −1021.98 −0.561907 −0.280954 0.959721i \(-0.590651\pi\)
−0.280954 + 0.959721i \(0.590651\pi\)
\(150\) 0 0
\(151\) −1016.40 −0.547769 −0.273885 0.961763i \(-0.588309\pi\)
−0.273885 + 0.961763i \(0.588309\pi\)
\(152\) 0 0
\(153\) 1940.00 1.02509
\(154\) 0 0
\(155\) −367.251 −0.190312
\(156\) 0 0
\(157\) −1580.49 −0.803422 −0.401711 0.915767i \(-0.631584\pi\)
−0.401711 + 0.915767i \(0.631584\pi\)
\(158\) 0 0
\(159\) 2798.11 1.39563
\(160\) 0 0
\(161\) −933.581 −0.456997
\(162\) 0 0
\(163\) −768.358 −0.369218 −0.184609 0.982812i \(-0.559102\pi\)
−0.184609 + 0.982812i \(0.559102\pi\)
\(164\) 0 0
\(165\) 542.668 0.256040
\(166\) 0 0
\(167\) −3092.73 −1.43307 −0.716534 0.697552i \(-0.754273\pi\)
−0.716534 + 0.697552i \(0.754273\pi\)
\(168\) 0 0
\(169\) −2196.97 −0.999986
\(170\) 0 0
\(171\) −2133.03 −0.953898
\(172\) 0 0
\(173\) −1327.46 −0.583380 −0.291690 0.956513i \(-0.594218\pi\)
−0.291690 + 0.956513i \(0.594218\pi\)
\(174\) 0 0
\(175\) 469.896 0.202976
\(176\) 0 0
\(177\) 1259.23 0.534741
\(178\) 0 0
\(179\) −3141.37 −1.31171 −0.655857 0.754885i \(-0.727693\pi\)
−0.655857 + 0.754885i \(0.727693\pi\)
\(180\) 0 0
\(181\) −3683.36 −1.51261 −0.756303 0.654221i \(-0.772997\pi\)
−0.756303 + 0.654221i \(0.772997\pi\)
\(182\) 0 0
\(183\) −3793.75 −1.53247
\(184\) 0 0
\(185\) 1229.54 0.488636
\(186\) 0 0
\(187\) −1417.49 −0.554317
\(188\) 0 0
\(189\) −542.253 −0.208694
\(190\) 0 0
\(191\) 2862.38 1.08437 0.542185 0.840259i \(-0.317597\pi\)
0.542185 + 0.840259i \(0.317597\pi\)
\(192\) 0 0
\(193\) 2023.91 0.754839 0.377420 0.926042i \(-0.376811\pi\)
0.377420 + 0.926042i \(0.376811\pi\)
\(194\) 0 0
\(195\) −8.59576 −0.00315669
\(196\) 0 0
\(197\) −4767.82 −1.72433 −0.862165 0.506628i \(-0.830892\pi\)
−0.862165 + 0.506628i \(0.830892\pi\)
\(198\) 0 0
\(199\) −3546.72 −1.26342 −0.631709 0.775205i \(-0.717646\pi\)
−0.631709 + 0.775205i \(0.717646\pi\)
\(200\) 0 0
\(201\) 1011.04 0.354791
\(202\) 0 0
\(203\) 1239.02 0.428384
\(204\) 0 0
\(205\) −1488.68 −0.507189
\(206\) 0 0
\(207\) 2007.83 0.674173
\(208\) 0 0
\(209\) 1558.53 0.515818
\(210\) 0 0
\(211\) −1453.49 −0.474230 −0.237115 0.971482i \(-0.576202\pi\)
−0.237115 + 0.971482i \(0.576202\pi\)
\(212\) 0 0
\(213\) −2431.82 −0.782279
\(214\) 0 0
\(215\) 3715.79 1.17867
\(216\) 0 0
\(217\) 337.930 0.105715
\(218\) 0 0
\(219\) −1364.56 −0.421042
\(220\) 0 0
\(221\) 22.4528 0.00683411
\(222\) 0 0
\(223\) −6440.10 −1.93391 −0.966953 0.254955i \(-0.917939\pi\)
−0.966953 + 0.254955i \(0.917939\pi\)
\(224\) 0 0
\(225\) −1010.59 −0.299435
\(226\) 0 0
\(227\) 1313.21 0.383970 0.191985 0.981398i \(-0.438508\pi\)
0.191985 + 0.981398i \(0.438508\pi\)
\(228\) 0 0
\(229\) −3780.00 −1.09078 −0.545392 0.838181i \(-0.683619\pi\)
−0.545392 + 0.838181i \(0.683619\pi\)
\(230\) 0 0
\(231\) −499.342 −0.142226
\(232\) 0 0
\(233\) 2322.65 0.653055 0.326527 0.945188i \(-0.394121\pi\)
0.326527 + 0.945188i \(0.394121\pi\)
\(234\) 0 0
\(235\) 1306.22 0.362590
\(236\) 0 0
\(237\) −45.4348 −0.0124528
\(238\) 0 0
\(239\) −2204.79 −0.596718 −0.298359 0.954454i \(-0.596439\pi\)
−0.298359 + 0.954454i \(0.596439\pi\)
\(240\) 0 0
\(241\) −4610.39 −1.23229 −0.616144 0.787634i \(-0.711306\pi\)
−0.616144 + 0.787634i \(0.711306\pi\)
\(242\) 0 0
\(243\) 3802.20 1.00375
\(244\) 0 0
\(245\) 372.761 0.0972033
\(246\) 0 0
\(247\) −24.6869 −0.00635946
\(248\) 0 0
\(249\) −607.263 −0.154553
\(250\) 0 0
\(251\) −4981.12 −1.25261 −0.626306 0.779577i \(-0.715434\pi\)
−0.626306 + 0.779577i \(0.715434\pi\)
\(252\) 0 0
\(253\) −1467.06 −0.364557
\(254\) 0 0
\(255\) −6357.25 −1.56120
\(256\) 0 0
\(257\) 2726.08 0.661665 0.330833 0.943689i \(-0.392670\pi\)
0.330833 + 0.943689i \(0.392670\pi\)
\(258\) 0 0
\(259\) −1131.38 −0.271430
\(260\) 0 0
\(261\) −2664.72 −0.631962
\(262\) 0 0
\(263\) 4228.84 0.991489 0.495744 0.868468i \(-0.334895\pi\)
0.495744 + 0.868468i \(0.334895\pi\)
\(264\) 0 0
\(265\) −3282.40 −0.760892
\(266\) 0 0
\(267\) 1991.65 0.456507
\(268\) 0 0
\(269\) −2396.04 −0.543081 −0.271541 0.962427i \(-0.587533\pi\)
−0.271541 + 0.962427i \(0.587533\pi\)
\(270\) 0 0
\(271\) 2461.68 0.551795 0.275897 0.961187i \(-0.411025\pi\)
0.275897 + 0.961187i \(0.411025\pi\)
\(272\) 0 0
\(273\) 7.90948 0.00175349
\(274\) 0 0
\(275\) 738.408 0.161919
\(276\) 0 0
\(277\) 5890.54 1.27772 0.638860 0.769323i \(-0.279406\pi\)
0.638860 + 0.769323i \(0.279406\pi\)
\(278\) 0 0
\(279\) −726.777 −0.155953
\(280\) 0 0
\(281\) −1964.26 −0.417004 −0.208502 0.978022i \(-0.566859\pi\)
−0.208502 + 0.978022i \(0.566859\pi\)
\(282\) 0 0
\(283\) −8513.60 −1.78827 −0.894136 0.447796i \(-0.852209\pi\)
−0.894136 + 0.447796i \(0.852209\pi\)
\(284\) 0 0
\(285\) 6989.80 1.45277
\(286\) 0 0
\(287\) 1369.82 0.281735
\(288\) 0 0
\(289\) 11692.6 2.37994
\(290\) 0 0
\(291\) −6264.42 −1.26195
\(292\) 0 0
\(293\) 5219.58 1.04072 0.520360 0.853947i \(-0.325798\pi\)
0.520360 + 0.853947i \(0.325798\pi\)
\(294\) 0 0
\(295\) −1477.17 −0.291539
\(296\) 0 0
\(297\) −852.111 −0.166480
\(298\) 0 0
\(299\) 23.2379 0.00449459
\(300\) 0 0
\(301\) −3419.13 −0.654735
\(302\) 0 0
\(303\) 3748.22 0.710659
\(304\) 0 0
\(305\) 4450.37 0.835499
\(306\) 0 0
\(307\) −2887.29 −0.536764 −0.268382 0.963313i \(-0.586489\pi\)
−0.268382 + 0.963313i \(0.586489\pi\)
\(308\) 0 0
\(309\) 864.001 0.159066
\(310\) 0 0
\(311\) 5876.90 1.07154 0.535769 0.844364i \(-0.320022\pi\)
0.535769 + 0.844364i \(0.320022\pi\)
\(312\) 0 0
\(313\) −7683.14 −1.38747 −0.693733 0.720233i \(-0.744035\pi\)
−0.693733 + 0.720233i \(0.744035\pi\)
\(314\) 0 0
\(315\) −801.687 −0.143397
\(316\) 0 0
\(317\) −9642.33 −1.70841 −0.854207 0.519933i \(-0.825957\pi\)
−0.854207 + 0.519933i \(0.825957\pi\)
\(318\) 0 0
\(319\) 1947.03 0.341732
\(320\) 0 0
\(321\) 54.0604 0.00939986
\(322\) 0 0
\(323\) −18257.9 −3.14519
\(324\) 0 0
\(325\) −11.6962 −0.00199628
\(326\) 0 0
\(327\) 2056.07 0.347710
\(328\) 0 0
\(329\) −1201.94 −0.201413
\(330\) 0 0
\(331\) 2069.87 0.343717 0.171859 0.985122i \(-0.445023\pi\)
0.171859 + 0.985122i \(0.445023\pi\)
\(332\) 0 0
\(333\) 2433.22 0.400420
\(334\) 0 0
\(335\) −1186.03 −0.193431
\(336\) 0 0
\(337\) 7547.59 1.22001 0.610005 0.792397i \(-0.291167\pi\)
0.610005 + 0.792397i \(0.291167\pi\)
\(338\) 0 0
\(339\) 14072.4 2.25459
\(340\) 0 0
\(341\) 531.033 0.0843315
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −6579.54 −1.02675
\(346\) 0 0
\(347\) 6353.22 0.982877 0.491439 0.870912i \(-0.336471\pi\)
0.491439 + 0.870912i \(0.336471\pi\)
\(348\) 0 0
\(349\) −1352.47 −0.207439 −0.103719 0.994607i \(-0.533074\pi\)
−0.103719 + 0.994607i \(0.533074\pi\)
\(350\) 0 0
\(351\) 13.4973 0.00205251
\(352\) 0 0
\(353\) 4203.80 0.633840 0.316920 0.948452i \(-0.397351\pi\)
0.316920 + 0.948452i \(0.397351\pi\)
\(354\) 0 0
\(355\) 2852.71 0.426497
\(356\) 0 0
\(357\) 5849.70 0.867223
\(358\) 0 0
\(359\) 11100.7 1.63195 0.815976 0.578086i \(-0.196200\pi\)
0.815976 + 0.578086i \(0.196200\pi\)
\(360\) 0 0
\(361\) 13215.6 1.92675
\(362\) 0 0
\(363\) −784.680 −0.113457
\(364\) 0 0
\(365\) 1600.73 0.229551
\(366\) 0 0
\(367\) 4963.35 0.705953 0.352977 0.935632i \(-0.385170\pi\)
0.352977 + 0.935632i \(0.385170\pi\)
\(368\) 0 0
\(369\) −2946.04 −0.415623
\(370\) 0 0
\(371\) 3020.34 0.422663
\(372\) 0 0
\(373\) −8882.54 −1.23303 −0.616515 0.787343i \(-0.711456\pi\)
−0.616515 + 0.787343i \(0.711456\pi\)
\(374\) 0 0
\(375\) 9478.34 1.30522
\(376\) 0 0
\(377\) −30.8405 −0.00421317
\(378\) 0 0
\(379\) 1218.83 0.165190 0.0825952 0.996583i \(-0.473679\pi\)
0.0825952 + 0.996583i \(0.473679\pi\)
\(380\) 0 0
\(381\) 8438.49 1.13469
\(382\) 0 0
\(383\) −112.614 −0.0150243 −0.00751214 0.999972i \(-0.502391\pi\)
−0.00751214 + 0.999972i \(0.502391\pi\)
\(384\) 0 0
\(385\) 585.767 0.0775414
\(386\) 0 0
\(387\) 7353.43 0.965880
\(388\) 0 0
\(389\) 12656.2 1.64961 0.824804 0.565419i \(-0.191286\pi\)
0.824804 + 0.565419i \(0.191286\pi\)
\(390\) 0 0
\(391\) 17186.3 2.22288
\(392\) 0 0
\(393\) 16356.5 2.09943
\(394\) 0 0
\(395\) 53.2985 0.00678922
\(396\) 0 0
\(397\) 3707.14 0.468655 0.234327 0.972158i \(-0.424711\pi\)
0.234327 + 0.972158i \(0.424711\pi\)
\(398\) 0 0
\(399\) −6431.74 −0.806992
\(400\) 0 0
\(401\) 5671.06 0.706232 0.353116 0.935579i \(-0.385122\pi\)
0.353116 + 0.935579i \(0.385122\pi\)
\(402\) 0 0
\(403\) −8.41146 −0.00103971
\(404\) 0 0
\(405\) −6913.82 −0.848273
\(406\) 0 0
\(407\) −1777.88 −0.216526
\(408\) 0 0
\(409\) 260.465 0.0314894 0.0157447 0.999876i \(-0.494988\pi\)
0.0157447 + 0.999876i \(0.494988\pi\)
\(410\) 0 0
\(411\) −16696.8 −2.00388
\(412\) 0 0
\(413\) 1359.23 0.161946
\(414\) 0 0
\(415\) 712.366 0.0842619
\(416\) 0 0
\(417\) −17778.4 −2.08780
\(418\) 0 0
\(419\) −4153.96 −0.484330 −0.242165 0.970235i \(-0.577858\pi\)
−0.242165 + 0.970235i \(0.577858\pi\)
\(420\) 0 0
\(421\) 4240.11 0.490856 0.245428 0.969415i \(-0.421072\pi\)
0.245428 + 0.969415i \(0.421072\pi\)
\(422\) 0 0
\(423\) 2584.97 0.297129
\(424\) 0 0
\(425\) −8650.31 −0.987298
\(426\) 0 0
\(427\) −4095.05 −0.464107
\(428\) 0 0
\(429\) 12.4292 0.00139880
\(430\) 0 0
\(431\) −1012.17 −0.113119 −0.0565595 0.998399i \(-0.518013\pi\)
−0.0565595 + 0.998399i \(0.518013\pi\)
\(432\) 0 0
\(433\) 1604.50 0.178077 0.0890386 0.996028i \(-0.471621\pi\)
0.0890386 + 0.996028i \(0.471621\pi\)
\(434\) 0 0
\(435\) 8732.13 0.962469
\(436\) 0 0
\(437\) −18896.3 −2.06850
\(438\) 0 0
\(439\) −10671.6 −1.16020 −0.580099 0.814546i \(-0.696986\pi\)
−0.580099 + 0.814546i \(0.696986\pi\)
\(440\) 0 0
\(441\) 737.681 0.0796546
\(442\) 0 0
\(443\) −2193.74 −0.235277 −0.117638 0.993056i \(-0.537532\pi\)
−0.117638 + 0.993056i \(0.537532\pi\)
\(444\) 0 0
\(445\) −2336.37 −0.248886
\(446\) 0 0
\(447\) 6627.52 0.701278
\(448\) 0 0
\(449\) −7070.36 −0.743143 −0.371571 0.928404i \(-0.621181\pi\)
−0.371571 + 0.928404i \(0.621181\pi\)
\(450\) 0 0
\(451\) 2152.58 0.224747
\(452\) 0 0
\(453\) 6591.29 0.683633
\(454\) 0 0
\(455\) −9.27844 −0.000956000 0
\(456\) 0 0
\(457\) 16245.8 1.66290 0.831451 0.555599i \(-0.187511\pi\)
0.831451 + 0.555599i \(0.187511\pi\)
\(458\) 0 0
\(459\) 9982.32 1.01511
\(460\) 0 0
\(461\) −5235.18 −0.528908 −0.264454 0.964398i \(-0.585192\pi\)
−0.264454 + 0.964398i \(0.585192\pi\)
\(462\) 0 0
\(463\) 11093.9 1.11355 0.556777 0.830662i \(-0.312038\pi\)
0.556777 + 0.830662i \(0.312038\pi\)
\(464\) 0 0
\(465\) 2381.61 0.237515
\(466\) 0 0
\(467\) 7813.14 0.774195 0.387097 0.922039i \(-0.373478\pi\)
0.387097 + 0.922039i \(0.373478\pi\)
\(468\) 0 0
\(469\) 1091.33 0.107448
\(470\) 0 0
\(471\) 10249.4 1.00270
\(472\) 0 0
\(473\) −5372.91 −0.522298
\(474\) 0 0
\(475\) 9511.02 0.918728
\(476\) 0 0
\(477\) −6495.76 −0.623523
\(478\) 0 0
\(479\) −5298.54 −0.505420 −0.252710 0.967542i \(-0.581322\pi\)
−0.252710 + 0.967542i \(0.581322\pi\)
\(480\) 0 0
\(481\) 28.1612 0.00266953
\(482\) 0 0
\(483\) 6054.23 0.570346
\(484\) 0 0
\(485\) 7348.65 0.688010
\(486\) 0 0
\(487\) −5580.89 −0.519290 −0.259645 0.965704i \(-0.583606\pi\)
−0.259645 + 0.965704i \(0.583606\pi\)
\(488\) 0 0
\(489\) 4982.77 0.460795
\(490\) 0 0
\(491\) −16718.8 −1.53668 −0.768341 0.640041i \(-0.778917\pi\)
−0.768341 + 0.640041i \(0.778917\pi\)
\(492\) 0 0
\(493\) −22809.0 −2.08371
\(494\) 0 0
\(495\) −1259.79 −0.114391
\(496\) 0 0
\(497\) −2624.96 −0.236912
\(498\) 0 0
\(499\) −19594.4 −1.75784 −0.878922 0.476965i \(-0.841737\pi\)
−0.878922 + 0.476965i \(0.841737\pi\)
\(500\) 0 0
\(501\) 20056.2 1.78851
\(502\) 0 0
\(503\) −9008.04 −0.798506 −0.399253 0.916841i \(-0.630731\pi\)
−0.399253 + 0.916841i \(0.630731\pi\)
\(504\) 0 0
\(505\) −4396.95 −0.387449
\(506\) 0 0
\(507\) 14247.3 1.24801
\(508\) 0 0
\(509\) −3379.88 −0.294324 −0.147162 0.989112i \(-0.547014\pi\)
−0.147162 + 0.989112i \(0.547014\pi\)
\(510\) 0 0
\(511\) −1472.93 −0.127512
\(512\) 0 0
\(513\) −10975.6 −0.944606
\(514\) 0 0
\(515\) −1013.54 −0.0867222
\(516\) 0 0
\(517\) −1888.76 −0.160672
\(518\) 0 0
\(519\) 8608.51 0.728076
\(520\) 0 0
\(521\) −736.886 −0.0619646 −0.0309823 0.999520i \(-0.509864\pi\)
−0.0309823 + 0.999520i \(0.509864\pi\)
\(522\) 0 0
\(523\) −9541.00 −0.797703 −0.398852 0.917015i \(-0.630591\pi\)
−0.398852 + 0.917015i \(0.630591\pi\)
\(524\) 0 0
\(525\) −3047.26 −0.253320
\(526\) 0 0
\(527\) −6220.95 −0.514210
\(528\) 0 0
\(529\) 5620.20 0.461922
\(530\) 0 0
\(531\) −2923.27 −0.238906
\(532\) 0 0
\(533\) −34.0964 −0.00277088
\(534\) 0 0
\(535\) −63.4170 −0.00512478
\(536\) 0 0
\(537\) 20371.7 1.63706
\(538\) 0 0
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 16721.0 1.32882 0.664411 0.747368i \(-0.268683\pi\)
0.664411 + 0.747368i \(0.268683\pi\)
\(542\) 0 0
\(543\) 23886.4 1.88778
\(544\) 0 0
\(545\) −2411.93 −0.189570
\(546\) 0 0
\(547\) −8958.59 −0.700259 −0.350129 0.936701i \(-0.613862\pi\)
−0.350129 + 0.936701i \(0.613862\pi\)
\(548\) 0 0
\(549\) 8807.13 0.684661
\(550\) 0 0
\(551\) 25078.5 1.93899
\(552\) 0 0
\(553\) −49.0432 −0.00377130
\(554\) 0 0
\(555\) −7973.53 −0.609834
\(556\) 0 0
\(557\) −14329.6 −1.09006 −0.545031 0.838416i \(-0.683482\pi\)
−0.545031 + 0.838416i \(0.683482\pi\)
\(558\) 0 0
\(559\) 85.1059 0.00643935
\(560\) 0 0
\(561\) 9192.38 0.691805
\(562\) 0 0
\(563\) −15791.2 −1.18209 −0.591047 0.806637i \(-0.701285\pi\)
−0.591047 + 0.806637i \(0.701285\pi\)
\(564\) 0 0
\(565\) −16508.0 −1.22920
\(566\) 0 0
\(567\) 6361.83 0.471202
\(568\) 0 0
\(569\) −13996.4 −1.03121 −0.515605 0.856826i \(-0.672433\pi\)
−0.515605 + 0.856826i \(0.672433\pi\)
\(570\) 0 0
\(571\) 6642.54 0.486833 0.243417 0.969922i \(-0.421732\pi\)
0.243417 + 0.969922i \(0.421732\pi\)
\(572\) 0 0
\(573\) −18562.4 −1.35333
\(574\) 0 0
\(575\) −8952.78 −0.649316
\(576\) 0 0
\(577\) −85.5448 −0.00617206 −0.00308603 0.999995i \(-0.500982\pi\)
−0.00308603 + 0.999995i \(0.500982\pi\)
\(578\) 0 0
\(579\) −13125.0 −0.942063
\(580\) 0 0
\(581\) −655.492 −0.0468062
\(582\) 0 0
\(583\) 4746.25 0.337169
\(584\) 0 0
\(585\) 19.9549 0.00141031
\(586\) 0 0
\(587\) −11205.0 −0.787869 −0.393934 0.919139i \(-0.628886\pi\)
−0.393934 + 0.919139i \(0.628886\pi\)
\(588\) 0 0
\(589\) 6839.93 0.478497
\(590\) 0 0
\(591\) 30919.1 2.15202
\(592\) 0 0
\(593\) 11664.6 0.807773 0.403886 0.914809i \(-0.367659\pi\)
0.403886 + 0.914809i \(0.367659\pi\)
\(594\) 0 0
\(595\) −6862.15 −0.472808
\(596\) 0 0
\(597\) 23000.3 1.57679
\(598\) 0 0
\(599\) 20545.1 1.40142 0.700711 0.713445i \(-0.252866\pi\)
0.700711 + 0.713445i \(0.252866\pi\)
\(600\) 0 0
\(601\) 3885.01 0.263682 0.131841 0.991271i \(-0.457911\pi\)
0.131841 + 0.991271i \(0.457911\pi\)
\(602\) 0 0
\(603\) −2347.11 −0.158510
\(604\) 0 0
\(605\) 920.491 0.0618567
\(606\) 0 0
\(607\) −8439.80 −0.564351 −0.282175 0.959363i \(-0.591056\pi\)
−0.282175 + 0.959363i \(0.591056\pi\)
\(608\) 0 0
\(609\) −8034.97 −0.534636
\(610\) 0 0
\(611\) 29.9175 0.00198091
\(612\) 0 0
\(613\) 17997.8 1.18584 0.592922 0.805260i \(-0.297974\pi\)
0.592922 + 0.805260i \(0.297974\pi\)
\(614\) 0 0
\(615\) 9654.01 0.632987
\(616\) 0 0
\(617\) −26336.6 −1.71843 −0.859214 0.511616i \(-0.829047\pi\)
−0.859214 + 0.511616i \(0.829047\pi\)
\(618\) 0 0
\(619\) −27875.5 −1.81003 −0.905016 0.425376i \(-0.860142\pi\)
−0.905016 + 0.425376i \(0.860142\pi\)
\(620\) 0 0
\(621\) 10331.4 0.667606
\(622\) 0 0
\(623\) 2149.83 0.138252
\(624\) 0 0
\(625\) −2727.83 −0.174581
\(626\) 0 0
\(627\) −10107.0 −0.643757
\(628\) 0 0
\(629\) 20827.5 1.32027
\(630\) 0 0
\(631\) −8242.15 −0.519992 −0.259996 0.965610i \(-0.583721\pi\)
−0.259996 + 0.965610i \(0.583721\pi\)
\(632\) 0 0
\(633\) 9425.84 0.591854
\(634\) 0 0
\(635\) −9899.00 −0.618630
\(636\) 0 0
\(637\) 8.53766 0.000531043 0
\(638\) 0 0
\(639\) 5645.43 0.349499
\(640\) 0 0
\(641\) −7001.97 −0.431453 −0.215726 0.976454i \(-0.569212\pi\)
−0.215726 + 0.976454i \(0.569212\pi\)
\(642\) 0 0
\(643\) −2473.25 −0.151688 −0.0758442 0.997120i \(-0.524165\pi\)
−0.0758442 + 0.997120i \(0.524165\pi\)
\(644\) 0 0
\(645\) −24096.8 −1.47102
\(646\) 0 0
\(647\) −9153.21 −0.556182 −0.278091 0.960555i \(-0.589702\pi\)
−0.278091 + 0.960555i \(0.589702\pi\)
\(648\) 0 0
\(649\) 2135.94 0.129188
\(650\) 0 0
\(651\) −2191.46 −0.131936
\(652\) 0 0
\(653\) 725.254 0.0434630 0.0217315 0.999764i \(-0.493082\pi\)
0.0217315 + 0.999764i \(0.493082\pi\)
\(654\) 0 0
\(655\) −19187.5 −1.14461
\(656\) 0 0
\(657\) 3167.80 0.188109
\(658\) 0 0
\(659\) −14332.9 −0.847242 −0.423621 0.905840i \(-0.639241\pi\)
−0.423621 + 0.905840i \(0.639241\pi\)
\(660\) 0 0
\(661\) 26773.3 1.57543 0.787715 0.616040i \(-0.211264\pi\)
0.787715 + 0.616040i \(0.211264\pi\)
\(662\) 0 0
\(663\) −145.606 −0.00852919
\(664\) 0 0
\(665\) 7544.94 0.439970
\(666\) 0 0
\(667\) −23606.6 −1.37039
\(668\) 0 0
\(669\) 41763.8 2.41358
\(670\) 0 0
\(671\) −6435.08 −0.370229
\(672\) 0 0
\(673\) −25423.9 −1.45619 −0.728096 0.685475i \(-0.759595\pi\)
−0.728096 + 0.685475i \(0.759595\pi\)
\(674\) 0 0
\(675\) −5200.05 −0.296519
\(676\) 0 0
\(677\) 9287.48 0.527248 0.263624 0.964625i \(-0.415082\pi\)
0.263624 + 0.964625i \(0.415082\pi\)
\(678\) 0 0
\(679\) −6761.94 −0.382179
\(680\) 0 0
\(681\) −8516.15 −0.479206
\(682\) 0 0
\(683\) 31888.8 1.78652 0.893258 0.449544i \(-0.148414\pi\)
0.893258 + 0.449544i \(0.148414\pi\)
\(684\) 0 0
\(685\) 19586.7 1.09251
\(686\) 0 0
\(687\) 24513.2 1.36133
\(688\) 0 0
\(689\) −75.1796 −0.00415692
\(690\) 0 0
\(691\) 18650.3 1.02676 0.513379 0.858162i \(-0.328394\pi\)
0.513379 + 0.858162i \(0.328394\pi\)
\(692\) 0 0
\(693\) 1159.21 0.0635424
\(694\) 0 0
\(695\) 20855.5 1.13826
\(696\) 0 0
\(697\) −25217.0 −1.37039
\(698\) 0 0
\(699\) −15062.3 −0.815033
\(700\) 0 0
\(701\) 8566.01 0.461532 0.230766 0.973009i \(-0.425877\pi\)
0.230766 + 0.973009i \(0.425877\pi\)
\(702\) 0 0
\(703\) −22899.8 −1.22857
\(704\) 0 0
\(705\) −8470.81 −0.452524
\(706\) 0 0
\(707\) 4045.90 0.215222
\(708\) 0 0
\(709\) 680.116 0.0360258 0.0180129 0.999838i \(-0.494266\pi\)
0.0180129 + 0.999838i \(0.494266\pi\)
\(710\) 0 0
\(711\) 105.476 0.00556352
\(712\) 0 0
\(713\) −6438.47 −0.338180
\(714\) 0 0
\(715\) −14.5804 −0.000762624 0
\(716\) 0 0
\(717\) 14297.9 0.744723
\(718\) 0 0
\(719\) −12557.6 −0.651346 −0.325673 0.945482i \(-0.605591\pi\)
−0.325673 + 0.945482i \(0.605591\pi\)
\(720\) 0 0
\(721\) 932.621 0.0481728
\(722\) 0 0
\(723\) 29898.2 1.53793
\(724\) 0 0
\(725\) 11881.8 0.608661
\(726\) 0 0
\(727\) −22253.6 −1.13527 −0.567635 0.823281i \(-0.692141\pi\)
−0.567635 + 0.823281i \(0.692141\pi\)
\(728\) 0 0
\(729\) −118.633 −0.00602716
\(730\) 0 0
\(731\) 62942.6 3.18470
\(732\) 0 0
\(733\) 6852.72 0.345308 0.172654 0.984982i \(-0.444766\pi\)
0.172654 + 0.984982i \(0.444766\pi\)
\(734\) 0 0
\(735\) −2417.34 −0.121313
\(736\) 0 0
\(737\) 1714.95 0.0857139
\(738\) 0 0
\(739\) 9133.20 0.454628 0.227314 0.973821i \(-0.427006\pi\)
0.227314 + 0.973821i \(0.427006\pi\)
\(740\) 0 0
\(741\) 160.093 0.00793681
\(742\) 0 0
\(743\) 33458.7 1.65206 0.826031 0.563624i \(-0.190593\pi\)
0.826031 + 0.563624i \(0.190593\pi\)
\(744\) 0 0
\(745\) −7774.60 −0.382335
\(746\) 0 0
\(747\) 1409.75 0.0690496
\(748\) 0 0
\(749\) 58.3539 0.00284673
\(750\) 0 0
\(751\) 37530.0 1.82355 0.911776 0.410688i \(-0.134711\pi\)
0.911776 + 0.410688i \(0.134711\pi\)
\(752\) 0 0
\(753\) 32302.4 1.56330
\(754\) 0 0
\(755\) −7732.10 −0.372715
\(756\) 0 0
\(757\) 32174.8 1.54480 0.772399 0.635138i \(-0.219057\pi\)
0.772399 + 0.635138i \(0.219057\pi\)
\(758\) 0 0
\(759\) 9513.80 0.454979
\(760\) 0 0
\(761\) 4457.43 0.212328 0.106164 0.994349i \(-0.466143\pi\)
0.106164 + 0.994349i \(0.466143\pi\)
\(762\) 0 0
\(763\) 2219.37 0.105303
\(764\) 0 0
\(765\) 14758.2 0.697497
\(766\) 0 0
\(767\) −33.8329 −0.00159274
\(768\) 0 0
\(769\) −38329.0 −1.79737 −0.898687 0.438591i \(-0.855478\pi\)
−0.898687 + 0.438591i \(0.855478\pi\)
\(770\) 0 0
\(771\) −17678.5 −0.825779
\(772\) 0 0
\(773\) −9529.23 −0.443393 −0.221696 0.975116i \(-0.571159\pi\)
−0.221696 + 0.975116i \(0.571159\pi\)
\(774\) 0 0
\(775\) 3240.65 0.150203
\(776\) 0 0
\(777\) 7336.94 0.338753
\(778\) 0 0
\(779\) 27726.1 1.27521
\(780\) 0 0
\(781\) −4124.93 −0.188991
\(782\) 0 0
\(783\) −13711.4 −0.625806
\(784\) 0 0
\(785\) −12023.4 −0.546667
\(786\) 0 0
\(787\) −29705.1 −1.34545 −0.672726 0.739892i \(-0.734877\pi\)
−0.672726 + 0.739892i \(0.734877\pi\)
\(788\) 0 0
\(789\) −27423.9 −1.23741
\(790\) 0 0
\(791\) 15190.0 0.682801
\(792\) 0 0
\(793\) 101.931 0.00456451
\(794\) 0 0
\(795\) 21286.2 0.949617
\(796\) 0 0
\(797\) 8596.99 0.382084 0.191042 0.981582i \(-0.438813\pi\)
0.191042 + 0.981582i \(0.438813\pi\)
\(798\) 0 0
\(799\) 22126.4 0.979695
\(800\) 0 0
\(801\) −4623.59 −0.203953
\(802\) 0 0
\(803\) −2314.61 −0.101719
\(804\) 0 0
\(805\) −7102.09 −0.310951
\(806\) 0 0
\(807\) 15538.2 0.677783
\(808\) 0 0
\(809\) 16630.2 0.722727 0.361364 0.932425i \(-0.382311\pi\)
0.361364 + 0.932425i \(0.382311\pi\)
\(810\) 0 0
\(811\) −18584.2 −0.804660 −0.402330 0.915495i \(-0.631799\pi\)
−0.402330 + 0.915495i \(0.631799\pi\)
\(812\) 0 0
\(813\) −15963.9 −0.688657
\(814\) 0 0
\(815\) −5845.18 −0.251224
\(816\) 0 0
\(817\) −69205.5 −2.96352
\(818\) 0 0
\(819\) −18.3617 −0.000783407 0
\(820\) 0 0
\(821\) −4088.88 −0.173816 −0.0869079 0.996216i \(-0.527699\pi\)
−0.0869079 + 0.996216i \(0.527699\pi\)
\(822\) 0 0
\(823\) 12830.0 0.543410 0.271705 0.962381i \(-0.412413\pi\)
0.271705 + 0.962381i \(0.412413\pi\)
\(824\) 0 0
\(825\) −4788.55 −0.202080
\(826\) 0 0
\(827\) 13768.7 0.578942 0.289471 0.957187i \(-0.406521\pi\)
0.289471 + 0.957187i \(0.406521\pi\)
\(828\) 0 0
\(829\) −10907.8 −0.456987 −0.228494 0.973545i \(-0.573380\pi\)
−0.228494 + 0.973545i \(0.573380\pi\)
\(830\) 0 0
\(831\) −38199.9 −1.59463
\(832\) 0 0
\(833\) 6314.28 0.262637
\(834\) 0 0
\(835\) −23527.5 −0.975093
\(836\) 0 0
\(837\) −3739.66 −0.154434
\(838\) 0 0
\(839\) 27174.8 1.11821 0.559105 0.829097i \(-0.311145\pi\)
0.559105 + 0.829097i \(0.311145\pi\)
\(840\) 0 0
\(841\) 6940.81 0.284588
\(842\) 0 0
\(843\) 12738.2 0.520434
\(844\) 0 0
\(845\) −16713.1 −0.680414
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 0 0
\(849\) 55210.3 2.23182
\(850\) 0 0
\(851\) 21555.7 0.868298
\(852\) 0 0
\(853\) −33975.1 −1.36376 −0.681878 0.731466i \(-0.738837\pi\)
−0.681878 + 0.731466i \(0.738837\pi\)
\(854\) 0 0
\(855\) −16226.7 −0.649054
\(856\) 0 0
\(857\) 20423.7 0.814073 0.407037 0.913412i \(-0.366562\pi\)
0.407037 + 0.913412i \(0.366562\pi\)
\(858\) 0 0
\(859\) 36704.2 1.45789 0.728947 0.684570i \(-0.240010\pi\)
0.728947 + 0.684570i \(0.240010\pi\)
\(860\) 0 0
\(861\) −8883.24 −0.351615
\(862\) 0 0
\(863\) −26222.8 −1.03434 −0.517170 0.855883i \(-0.673015\pi\)
−0.517170 + 0.855883i \(0.673015\pi\)
\(864\) 0 0
\(865\) −10098.5 −0.396945
\(866\) 0 0
\(867\) −75826.4 −2.97024
\(868\) 0 0
\(869\) −77.0680 −0.00300846
\(870\) 0 0
\(871\) −27.1645 −0.00105676
\(872\) 0 0
\(873\) 14542.7 0.563799
\(874\) 0 0
\(875\) 10231.1 0.395285
\(876\) 0 0
\(877\) 44950.8 1.73076 0.865382 0.501113i \(-0.167076\pi\)
0.865382 + 0.501113i \(0.167076\pi\)
\(878\) 0 0
\(879\) −33848.8 −1.29885
\(880\) 0 0
\(881\) 3896.87 0.149023 0.0745113 0.997220i \(-0.476260\pi\)
0.0745113 + 0.997220i \(0.476260\pi\)
\(882\) 0 0
\(883\) −6257.41 −0.238481 −0.119240 0.992865i \(-0.538046\pi\)
−0.119240 + 0.992865i \(0.538046\pi\)
\(884\) 0 0
\(885\) 9579.38 0.363850
\(886\) 0 0
\(887\) −40626.2 −1.53787 −0.768937 0.639324i \(-0.779214\pi\)
−0.768937 + 0.639324i \(0.779214\pi\)
\(888\) 0 0
\(889\) 9108.68 0.343639
\(890\) 0 0
\(891\) 9997.16 0.375889
\(892\) 0 0
\(893\) −24328.0 −0.911653
\(894\) 0 0
\(895\) −23897.5 −0.892521
\(896\) 0 0
\(897\) −150.697 −0.00560938
\(898\) 0 0
\(899\) 8544.91 0.317006
\(900\) 0 0
\(901\) −55601.4 −2.05588
\(902\) 0 0
\(903\) 22172.9 0.817129
\(904\) 0 0
\(905\) −28020.6 −1.02921
\(906\) 0 0
\(907\) −42366.9 −1.55101 −0.775506 0.631340i \(-0.782505\pi\)
−0.775506 + 0.631340i \(0.782505\pi\)
\(908\) 0 0
\(909\) −8701.42 −0.317501
\(910\) 0 0
\(911\) −26231.4 −0.953992 −0.476996 0.878906i \(-0.658274\pi\)
−0.476996 + 0.878906i \(0.658274\pi\)
\(912\) 0 0
\(913\) −1030.06 −0.0373384
\(914\) 0 0
\(915\) −28860.5 −1.04273
\(916\) 0 0
\(917\) 17655.6 0.635810
\(918\) 0 0
\(919\) −2542.24 −0.0912522 −0.0456261 0.998959i \(-0.514528\pi\)
−0.0456261 + 0.998959i \(0.514528\pi\)
\(920\) 0 0
\(921\) 18724.0 0.669898
\(922\) 0 0
\(923\) 65.3381 0.00233004
\(924\) 0 0
\(925\) −10849.6 −0.385656
\(926\) 0 0
\(927\) −2005.76 −0.0710657
\(928\) 0 0
\(929\) −20097.8 −0.709782 −0.354891 0.934908i \(-0.615482\pi\)
−0.354891 + 0.934908i \(0.615482\pi\)
\(930\) 0 0
\(931\) −6942.56 −0.244396
\(932\) 0 0
\(933\) −38111.5 −1.33731
\(934\) 0 0
\(935\) −10783.4 −0.377170
\(936\) 0 0
\(937\) −202.788 −0.00707023 −0.00353511 0.999994i \(-0.501125\pi\)
−0.00353511 + 0.999994i \(0.501125\pi\)
\(938\) 0 0
\(939\) 49824.9 1.73160
\(940\) 0 0
\(941\) 12419.1 0.430235 0.215118 0.976588i \(-0.430987\pi\)
0.215118 + 0.976588i \(0.430987\pi\)
\(942\) 0 0
\(943\) −26098.8 −0.901265
\(944\) 0 0
\(945\) −4125.11 −0.142000
\(946\) 0 0
\(947\) −369.282 −0.0126717 −0.00633583 0.999980i \(-0.502017\pi\)
−0.00633583 + 0.999980i \(0.502017\pi\)
\(948\) 0 0
\(949\) 36.6629 0.00125409
\(950\) 0 0
\(951\) 62530.1 2.13215
\(952\) 0 0
\(953\) 25994.1 0.883558 0.441779 0.897124i \(-0.354348\pi\)
0.441779 + 0.897124i \(0.354348\pi\)
\(954\) 0 0
\(955\) 21775.2 0.737830
\(956\) 0 0
\(957\) −12626.4 −0.426492
\(958\) 0 0
\(959\) −18022.9 −0.606871
\(960\) 0 0
\(961\) −27460.5 −0.921770
\(962\) 0 0
\(963\) −125.500 −0.00419957
\(964\) 0 0
\(965\) 15396.6 0.513610
\(966\) 0 0
\(967\) 53830.0 1.79013 0.895065 0.445937i \(-0.147129\pi\)
0.895065 + 0.445937i \(0.147129\pi\)
\(968\) 0 0
\(969\) 118402. 3.92530
\(970\) 0 0
\(971\) 1349.54 0.0446022 0.0223011 0.999751i \(-0.492901\pi\)
0.0223011 + 0.999751i \(0.492901\pi\)
\(972\) 0 0
\(973\) −19190.4 −0.632288
\(974\) 0 0
\(975\) 75.8497 0.00249142
\(976\) 0 0
\(977\) 6611.71 0.216507 0.108253 0.994123i \(-0.465474\pi\)
0.108253 + 0.994123i \(0.465474\pi\)
\(978\) 0 0
\(979\) 3378.31 0.110287
\(980\) 0 0
\(981\) −4773.13 −0.155346
\(982\) 0 0
\(983\) −40595.9 −1.31720 −0.658601 0.752493i \(-0.728851\pi\)
−0.658601 + 0.752493i \(0.728851\pi\)
\(984\) 0 0
\(985\) −36270.5 −1.17327
\(986\) 0 0
\(987\) 7794.51 0.251370
\(988\) 0 0
\(989\) 65143.5 2.09448
\(990\) 0 0
\(991\) 48877.7 1.56675 0.783376 0.621548i \(-0.213496\pi\)
0.783376 + 0.621548i \(0.213496\pi\)
\(992\) 0 0
\(993\) −13423.0 −0.428970
\(994\) 0 0
\(995\) −26981.2 −0.859660
\(996\) 0 0
\(997\) 13127.4 0.417000 0.208500 0.978022i \(-0.433142\pi\)
0.208500 + 0.978022i \(0.433142\pi\)
\(998\) 0 0
\(999\) 12520.2 0.396520
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.4.a.y.1.2 5
4.3 odd 2 77.4.a.e.1.2 5
12.11 even 2 693.4.a.o.1.4 5
20.19 odd 2 1925.4.a.r.1.4 5
28.27 even 2 539.4.a.h.1.2 5
44.43 even 2 847.4.a.f.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.e.1.2 5 4.3 odd 2
539.4.a.h.1.2 5 28.27 even 2
693.4.a.o.1.4 5 12.11 even 2
847.4.a.f.1.4 5 44.43 even 2
1232.4.a.y.1.2 5 1.1 even 1 trivial
1925.4.a.r.1.4 5 20.19 odd 2