Properties

Label 1232.4.a.w.1.1
Level $1232$
Weight $4$
Character 1232.1
Self dual yes
Analytic conductor $72.690$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,4,Mod(1,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.6903531271\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.509800.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 5x + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.11082\) of defining polynomial
Character \(\chi\) \(=\) 1232.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.17115 q^{3} -10.0822 q^{5} +7.00000 q^{7} -0.259212 q^{9} +O(q^{10})\) \(q-5.17115 q^{3} -10.0822 q^{5} +7.00000 q^{7} -0.259212 q^{9} -11.0000 q^{11} -84.5724 q^{13} +52.1367 q^{15} -38.2525 q^{17} +127.283 q^{19} -36.1980 q^{21} -140.378 q^{23} -23.3486 q^{25} +140.961 q^{27} -116.806 q^{29} -338.709 q^{31} +56.8826 q^{33} -70.5756 q^{35} -75.3416 q^{37} +437.337 q^{39} -22.4446 q^{41} -181.844 q^{43} +2.61343 q^{45} -300.530 q^{47} +49.0000 q^{49} +197.810 q^{51} -31.8596 q^{53} +110.905 q^{55} -658.201 q^{57} +68.3030 q^{59} -145.315 q^{61} -1.81448 q^{63} +852.679 q^{65} +668.020 q^{67} +725.916 q^{69} -727.608 q^{71} -416.982 q^{73} +120.739 q^{75} -77.0000 q^{77} -458.805 q^{79} -721.934 q^{81} -355.737 q^{83} +385.671 q^{85} +604.022 q^{87} -1245.97 q^{89} -592.007 q^{91} +1751.51 q^{93} -1283.30 q^{95} -935.338 q^{97} +2.85133 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{3} - 18 q^{5} + 28 q^{7} + 66 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 12 q^{3} - 18 q^{5} + 28 q^{7} + 66 q^{9} - 44 q^{11} - 134 q^{13} + 62 q^{15} - 74 q^{17} + 164 q^{19} + 84 q^{21} - 194 q^{23} + 38 q^{25} + 510 q^{27} - 108 q^{29} + 412 q^{31} - 132 q^{33} - 126 q^{35} + 286 q^{37} + 256 q^{39} - 18 q^{41} + 496 q^{43} + 580 q^{45} - 62 q^{47} + 196 q^{49} + 508 q^{51} - 828 q^{53} + 198 q^{55} + 700 q^{57} + 1224 q^{59} - 350 q^{61} + 462 q^{63} - 396 q^{65} + 1498 q^{67} - 386 q^{69} - 2326 q^{71} - 1630 q^{73} + 1362 q^{75} - 308 q^{77} + 1020 q^{79} + 1128 q^{81} + 1920 q^{83} + 2008 q^{85} - 1640 q^{87} + 1550 q^{89} - 938 q^{91} + 6046 q^{93} - 2332 q^{95} - 2202 q^{97} - 726 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.17115 −0.995188 −0.497594 0.867410i \(-0.665783\pi\)
−0.497594 + 0.867410i \(0.665783\pi\)
\(4\) 0 0
\(5\) −10.0822 −0.901782 −0.450891 0.892579i \(-0.648894\pi\)
−0.450891 + 0.892579i \(0.648894\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) −0.259212 −0.00960043
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −84.5724 −1.80432 −0.902161 0.431400i \(-0.858020\pi\)
−0.902161 + 0.431400i \(0.858020\pi\)
\(14\) 0 0
\(15\) 52.1367 0.897443
\(16\) 0 0
\(17\) −38.2525 −0.545741 −0.272871 0.962051i \(-0.587973\pi\)
−0.272871 + 0.962051i \(0.587973\pi\)
\(18\) 0 0
\(19\) 127.283 1.53688 0.768442 0.639919i \(-0.221032\pi\)
0.768442 + 0.639919i \(0.221032\pi\)
\(20\) 0 0
\(21\) −36.1980 −0.376146
\(22\) 0 0
\(23\) −140.378 −1.27265 −0.636323 0.771423i \(-0.719545\pi\)
−0.636323 + 0.771423i \(0.719545\pi\)
\(24\) 0 0
\(25\) −23.3486 −0.186789
\(26\) 0 0
\(27\) 140.961 1.00474
\(28\) 0 0
\(29\) −116.806 −0.747943 −0.373971 0.927440i \(-0.622004\pi\)
−0.373971 + 0.927440i \(0.622004\pi\)
\(30\) 0 0
\(31\) −338.709 −1.96238 −0.981192 0.193034i \(-0.938167\pi\)
−0.981192 + 0.193034i \(0.938167\pi\)
\(32\) 0 0
\(33\) 56.8826 0.300061
\(34\) 0 0
\(35\) −70.5756 −0.340842
\(36\) 0 0
\(37\) −75.3416 −0.334759 −0.167379 0.985893i \(-0.553531\pi\)
−0.167379 + 0.985893i \(0.553531\pi\)
\(38\) 0 0
\(39\) 437.337 1.79564
\(40\) 0 0
\(41\) −22.4446 −0.0854941 −0.0427471 0.999086i \(-0.513611\pi\)
−0.0427471 + 0.999086i \(0.513611\pi\)
\(42\) 0 0
\(43\) −181.844 −0.644906 −0.322453 0.946585i \(-0.604508\pi\)
−0.322453 + 0.946585i \(0.604508\pi\)
\(44\) 0 0
\(45\) 2.61343 0.00865749
\(46\) 0 0
\(47\) −300.530 −0.932698 −0.466349 0.884601i \(-0.654431\pi\)
−0.466349 + 0.884601i \(0.654431\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 197.810 0.543115
\(52\) 0 0
\(53\) −31.8596 −0.0825708 −0.0412854 0.999147i \(-0.513145\pi\)
−0.0412854 + 0.999147i \(0.513145\pi\)
\(54\) 0 0
\(55\) 110.905 0.271898
\(56\) 0 0
\(57\) −658.201 −1.52949
\(58\) 0 0
\(59\) 68.3030 0.150717 0.0753584 0.997157i \(-0.475990\pi\)
0.0753584 + 0.997157i \(0.475990\pi\)
\(60\) 0 0
\(61\) −145.315 −0.305012 −0.152506 0.988303i \(-0.548734\pi\)
−0.152506 + 0.988303i \(0.548734\pi\)
\(62\) 0 0
\(63\) −1.81448 −0.00362862
\(64\) 0 0
\(65\) 852.679 1.62710
\(66\) 0 0
\(67\) 668.020 1.21808 0.609042 0.793138i \(-0.291554\pi\)
0.609042 + 0.793138i \(0.291554\pi\)
\(68\) 0 0
\(69\) 725.916 1.26652
\(70\) 0 0
\(71\) −727.608 −1.21621 −0.608107 0.793855i \(-0.708071\pi\)
−0.608107 + 0.793855i \(0.708071\pi\)
\(72\) 0 0
\(73\) −416.982 −0.668548 −0.334274 0.942476i \(-0.608491\pi\)
−0.334274 + 0.942476i \(0.608491\pi\)
\(74\) 0 0
\(75\) 120.739 0.185890
\(76\) 0 0
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −458.805 −0.653413 −0.326707 0.945126i \(-0.605939\pi\)
−0.326707 + 0.945126i \(0.605939\pi\)
\(80\) 0 0
\(81\) −721.934 −0.990307
\(82\) 0 0
\(83\) −355.737 −0.470449 −0.235224 0.971941i \(-0.575582\pi\)
−0.235224 + 0.971941i \(0.575582\pi\)
\(84\) 0 0
\(85\) 385.671 0.492140
\(86\) 0 0
\(87\) 604.022 0.744344
\(88\) 0 0
\(89\) −1245.97 −1.48396 −0.741980 0.670422i \(-0.766113\pi\)
−0.741980 + 0.670422i \(0.766113\pi\)
\(90\) 0 0
\(91\) −592.007 −0.681969
\(92\) 0 0
\(93\) 1751.51 1.95294
\(94\) 0 0
\(95\) −1283.30 −1.38594
\(96\) 0 0
\(97\) −935.338 −0.979063 −0.489532 0.871986i \(-0.662832\pi\)
−0.489532 + 0.871986i \(0.662832\pi\)
\(98\) 0 0
\(99\) 2.85133 0.00289464
\(100\) 0 0
\(101\) −533.395 −0.525493 −0.262747 0.964865i \(-0.584628\pi\)
−0.262747 + 0.964865i \(0.584628\pi\)
\(102\) 0 0
\(103\) 738.096 0.706086 0.353043 0.935607i \(-0.385147\pi\)
0.353043 + 0.935607i \(0.385147\pi\)
\(104\) 0 0
\(105\) 364.957 0.339202
\(106\) 0 0
\(107\) 2039.07 1.84228 0.921141 0.389229i \(-0.127259\pi\)
0.921141 + 0.389229i \(0.127259\pi\)
\(108\) 0 0
\(109\) 1488.69 1.30817 0.654085 0.756421i \(-0.273054\pi\)
0.654085 + 0.756421i \(0.273054\pi\)
\(110\) 0 0
\(111\) 389.603 0.333148
\(112\) 0 0
\(113\) −532.743 −0.443507 −0.221753 0.975103i \(-0.571178\pi\)
−0.221753 + 0.975103i \(0.571178\pi\)
\(114\) 0 0
\(115\) 1415.32 1.14765
\(116\) 0 0
\(117\) 21.9222 0.0173223
\(118\) 0 0
\(119\) −267.768 −0.206271
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 116.064 0.0850828
\(124\) 0 0
\(125\) 1495.68 1.07023
\(126\) 0 0
\(127\) 2257.44 1.57729 0.788645 0.614849i \(-0.210783\pi\)
0.788645 + 0.614849i \(0.210783\pi\)
\(128\) 0 0
\(129\) 940.343 0.641803
\(130\) 0 0
\(131\) −1174.21 −0.783142 −0.391571 0.920148i \(-0.628068\pi\)
−0.391571 + 0.920148i \(0.628068\pi\)
\(132\) 0 0
\(133\) 890.984 0.580888
\(134\) 0 0
\(135\) −1421.21 −0.906059
\(136\) 0 0
\(137\) 2690.08 1.67758 0.838792 0.544451i \(-0.183262\pi\)
0.838792 + 0.544451i \(0.183262\pi\)
\(138\) 0 0
\(139\) −17.7500 −0.0108312 −0.00541559 0.999985i \(-0.501724\pi\)
−0.00541559 + 0.999985i \(0.501724\pi\)
\(140\) 0 0
\(141\) 1554.09 0.928210
\(142\) 0 0
\(143\) 930.297 0.544023
\(144\) 0 0
\(145\) 1177.67 0.674482
\(146\) 0 0
\(147\) −253.386 −0.142170
\(148\) 0 0
\(149\) 1517.86 0.834550 0.417275 0.908780i \(-0.362985\pi\)
0.417275 + 0.908780i \(0.362985\pi\)
\(150\) 0 0
\(151\) −1948.86 −1.05031 −0.525153 0.851008i \(-0.675992\pi\)
−0.525153 + 0.851008i \(0.675992\pi\)
\(152\) 0 0
\(153\) 9.91550 0.00523935
\(154\) 0 0
\(155\) 3414.94 1.76964
\(156\) 0 0
\(157\) −1554.20 −0.790055 −0.395027 0.918669i \(-0.629265\pi\)
−0.395027 + 0.918669i \(0.629265\pi\)
\(158\) 0 0
\(159\) 164.751 0.0821735
\(160\) 0 0
\(161\) −982.647 −0.481015
\(162\) 0 0
\(163\) 3472.71 1.66873 0.834367 0.551209i \(-0.185833\pi\)
0.834367 + 0.551209i \(0.185833\pi\)
\(164\) 0 0
\(165\) −573.504 −0.270589
\(166\) 0 0
\(167\) 2228.90 1.03280 0.516400 0.856347i \(-0.327272\pi\)
0.516400 + 0.856347i \(0.327272\pi\)
\(168\) 0 0
\(169\) 4955.50 2.25558
\(170\) 0 0
\(171\) −32.9933 −0.0147547
\(172\) 0 0
\(173\) −1008.04 −0.443005 −0.221502 0.975160i \(-0.571096\pi\)
−0.221502 + 0.975160i \(0.571096\pi\)
\(174\) 0 0
\(175\) −163.440 −0.0705995
\(176\) 0 0
\(177\) −353.205 −0.149992
\(178\) 0 0
\(179\) 746.246 0.311603 0.155802 0.987788i \(-0.450204\pi\)
0.155802 + 0.987788i \(0.450204\pi\)
\(180\) 0 0
\(181\) −2787.76 −1.14482 −0.572410 0.819968i \(-0.693991\pi\)
−0.572410 + 0.819968i \(0.693991\pi\)
\(182\) 0 0
\(183\) 751.447 0.303544
\(184\) 0 0
\(185\) 759.611 0.301880
\(186\) 0 0
\(187\) 420.778 0.164547
\(188\) 0 0
\(189\) 986.730 0.379757
\(190\) 0 0
\(191\) 911.917 0.345466 0.172733 0.984969i \(-0.444740\pi\)
0.172733 + 0.984969i \(0.444740\pi\)
\(192\) 0 0
\(193\) 4454.66 1.66142 0.830709 0.556707i \(-0.187935\pi\)
0.830709 + 0.556707i \(0.187935\pi\)
\(194\) 0 0
\(195\) −4409.33 −1.61928
\(196\) 0 0
\(197\) −1377.46 −0.498171 −0.249086 0.968481i \(-0.580130\pi\)
−0.249086 + 0.968481i \(0.580130\pi\)
\(198\) 0 0
\(199\) 94.3572 0.0336121 0.0168060 0.999859i \(-0.494650\pi\)
0.0168060 + 0.999859i \(0.494650\pi\)
\(200\) 0 0
\(201\) −3454.43 −1.21222
\(202\) 0 0
\(203\) −817.643 −0.282696
\(204\) 0 0
\(205\) 226.292 0.0770971
\(206\) 0 0
\(207\) 36.3876 0.0122179
\(208\) 0 0
\(209\) −1400.12 −0.463388
\(210\) 0 0
\(211\) −1174.19 −0.383101 −0.191550 0.981483i \(-0.561352\pi\)
−0.191550 + 0.981483i \(0.561352\pi\)
\(212\) 0 0
\(213\) 3762.57 1.21036
\(214\) 0 0
\(215\) 1833.40 0.581565
\(216\) 0 0
\(217\) −2370.96 −0.741712
\(218\) 0 0
\(219\) 2156.27 0.665331
\(220\) 0 0
\(221\) 3235.11 0.984692
\(222\) 0 0
\(223\) −88.5875 −0.0266021 −0.0133010 0.999912i \(-0.504234\pi\)
−0.0133010 + 0.999912i \(0.504234\pi\)
\(224\) 0 0
\(225\) 6.05223 0.00179325
\(226\) 0 0
\(227\) −883.312 −0.258271 −0.129135 0.991627i \(-0.541220\pi\)
−0.129135 + 0.991627i \(0.541220\pi\)
\(228\) 0 0
\(229\) 1240.26 0.357898 0.178949 0.983858i \(-0.442730\pi\)
0.178949 + 0.983858i \(0.442730\pi\)
\(230\) 0 0
\(231\) 398.179 0.113412
\(232\) 0 0
\(233\) −5479.93 −1.54078 −0.770392 0.637571i \(-0.779939\pi\)
−0.770392 + 0.637571i \(0.779939\pi\)
\(234\) 0 0
\(235\) 3030.01 0.841090
\(236\) 0 0
\(237\) 2372.55 0.650269
\(238\) 0 0
\(239\) −594.006 −0.160766 −0.0803830 0.996764i \(-0.525614\pi\)
−0.0803830 + 0.996764i \(0.525614\pi\)
\(240\) 0 0
\(241\) 308.785 0.0825336 0.0412668 0.999148i \(-0.486861\pi\)
0.0412668 + 0.999148i \(0.486861\pi\)
\(242\) 0 0
\(243\) −72.7302 −0.0192002
\(244\) 0 0
\(245\) −494.029 −0.128826
\(246\) 0 0
\(247\) −10764.7 −2.77303
\(248\) 0 0
\(249\) 1839.57 0.468185
\(250\) 0 0
\(251\) −3487.59 −0.877031 −0.438515 0.898724i \(-0.644495\pi\)
−0.438515 + 0.898724i \(0.644495\pi\)
\(252\) 0 0
\(253\) 1544.16 0.383717
\(254\) 0 0
\(255\) −1994.36 −0.489772
\(256\) 0 0
\(257\) 451.445 0.109574 0.0547868 0.998498i \(-0.482552\pi\)
0.0547868 + 0.998498i \(0.482552\pi\)
\(258\) 0 0
\(259\) −527.391 −0.126527
\(260\) 0 0
\(261\) 30.2775 0.00718057
\(262\) 0 0
\(263\) 5878.61 1.37829 0.689146 0.724622i \(-0.257986\pi\)
0.689146 + 0.724622i \(0.257986\pi\)
\(264\) 0 0
\(265\) 321.216 0.0744609
\(266\) 0 0
\(267\) 6443.09 1.47682
\(268\) 0 0
\(269\) −52.8516 −0.0119792 −0.00598962 0.999982i \(-0.501907\pi\)
−0.00598962 + 0.999982i \(0.501907\pi\)
\(270\) 0 0
\(271\) 6822.19 1.52922 0.764610 0.644493i \(-0.222931\pi\)
0.764610 + 0.644493i \(0.222931\pi\)
\(272\) 0 0
\(273\) 3061.36 0.678688
\(274\) 0 0
\(275\) 256.835 0.0563189
\(276\) 0 0
\(277\) 469.032 0.101738 0.0508689 0.998705i \(-0.483801\pi\)
0.0508689 + 0.998705i \(0.483801\pi\)
\(278\) 0 0
\(279\) 87.7972 0.0188397
\(280\) 0 0
\(281\) −2305.05 −0.489352 −0.244676 0.969605i \(-0.578682\pi\)
−0.244676 + 0.969605i \(0.578682\pi\)
\(282\) 0 0
\(283\) 7370.80 1.54823 0.774114 0.633046i \(-0.218195\pi\)
0.774114 + 0.633046i \(0.218195\pi\)
\(284\) 0 0
\(285\) 6636.14 1.37927
\(286\) 0 0
\(287\) −157.112 −0.0323137
\(288\) 0 0
\(289\) −3449.74 −0.702167
\(290\) 0 0
\(291\) 4836.77 0.974352
\(292\) 0 0
\(293\) 1758.90 0.350702 0.175351 0.984506i \(-0.443894\pi\)
0.175351 + 0.984506i \(0.443894\pi\)
\(294\) 0 0
\(295\) −688.646 −0.135914
\(296\) 0 0
\(297\) −1550.58 −0.302941
\(298\) 0 0
\(299\) 11872.1 2.29626
\(300\) 0 0
\(301\) −1272.91 −0.243752
\(302\) 0 0
\(303\) 2758.27 0.522965
\(304\) 0 0
\(305\) 1465.10 0.275054
\(306\) 0 0
\(307\) −3468.10 −0.644739 −0.322369 0.946614i \(-0.604479\pi\)
−0.322369 + 0.946614i \(0.604479\pi\)
\(308\) 0 0
\(309\) −3816.81 −0.702688
\(310\) 0 0
\(311\) −1983.98 −0.361741 −0.180870 0.983507i \(-0.557891\pi\)
−0.180870 + 0.983507i \(0.557891\pi\)
\(312\) 0 0
\(313\) −10094.2 −1.82287 −0.911436 0.411443i \(-0.865025\pi\)
−0.911436 + 0.411443i \(0.865025\pi\)
\(314\) 0 0
\(315\) 18.2940 0.00327223
\(316\) 0 0
\(317\) −3051.34 −0.540633 −0.270316 0.962772i \(-0.587128\pi\)
−0.270316 + 0.962772i \(0.587128\pi\)
\(318\) 0 0
\(319\) 1284.87 0.225513
\(320\) 0 0
\(321\) −10544.3 −1.83342
\(322\) 0 0
\(323\) −4868.91 −0.838741
\(324\) 0 0
\(325\) 1974.65 0.337027
\(326\) 0 0
\(327\) −7698.23 −1.30187
\(328\) 0 0
\(329\) −2103.71 −0.352527
\(330\) 0 0
\(331\) 26.9826 0.00448066 0.00224033 0.999997i \(-0.499287\pi\)
0.00224033 + 0.999997i \(0.499287\pi\)
\(332\) 0 0
\(333\) 19.5294 0.00321383
\(334\) 0 0
\(335\) −6735.13 −1.09845
\(336\) 0 0
\(337\) 6818.62 1.10218 0.551089 0.834447i \(-0.314213\pi\)
0.551089 + 0.834447i \(0.314213\pi\)
\(338\) 0 0
\(339\) 2754.90 0.441373
\(340\) 0 0
\(341\) 3725.80 0.591681
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) −7318.86 −1.14213
\(346\) 0 0
\(347\) −11907.0 −1.84208 −0.921038 0.389473i \(-0.872657\pi\)
−0.921038 + 0.389473i \(0.872657\pi\)
\(348\) 0 0
\(349\) −4352.72 −0.667609 −0.333805 0.942642i \(-0.608333\pi\)
−0.333805 + 0.942642i \(0.608333\pi\)
\(350\) 0 0
\(351\) −11921.5 −1.81288
\(352\) 0 0
\(353\) −1326.31 −0.199978 −0.0999891 0.994989i \(-0.531881\pi\)
−0.0999891 + 0.994989i \(0.531881\pi\)
\(354\) 0 0
\(355\) 7335.91 1.09676
\(356\) 0 0
\(357\) 1384.67 0.205278
\(358\) 0 0
\(359\) 8292.92 1.21917 0.609587 0.792719i \(-0.291335\pi\)
0.609587 + 0.792719i \(0.291335\pi\)
\(360\) 0 0
\(361\) 9342.06 1.36201
\(362\) 0 0
\(363\) −625.709 −0.0904717
\(364\) 0 0
\(365\) 4204.10 0.602885
\(366\) 0 0
\(367\) 11027.5 1.56848 0.784241 0.620457i \(-0.213053\pi\)
0.784241 + 0.620457i \(0.213053\pi\)
\(368\) 0 0
\(369\) 5.81790 0.000820780 0
\(370\) 0 0
\(371\) −223.017 −0.0312088
\(372\) 0 0
\(373\) 8245.72 1.14463 0.572316 0.820034i \(-0.306045\pi\)
0.572316 + 0.820034i \(0.306045\pi\)
\(374\) 0 0
\(375\) −7734.41 −1.06508
\(376\) 0 0
\(377\) 9878.58 1.34953
\(378\) 0 0
\(379\) −10163.4 −1.37747 −0.688734 0.725014i \(-0.741833\pi\)
−0.688734 + 0.725014i \(0.741833\pi\)
\(380\) 0 0
\(381\) −11673.6 −1.56970
\(382\) 0 0
\(383\) −14338.9 −1.91301 −0.956506 0.291714i \(-0.905774\pi\)
−0.956506 + 0.291714i \(0.905774\pi\)
\(384\) 0 0
\(385\) 776.332 0.102768
\(386\) 0 0
\(387\) 47.1361 0.00619138
\(388\) 0 0
\(389\) −2382.91 −0.310587 −0.155294 0.987868i \(-0.549632\pi\)
−0.155294 + 0.987868i \(0.549632\pi\)
\(390\) 0 0
\(391\) 5369.82 0.694535
\(392\) 0 0
\(393\) 6072.04 0.779374
\(394\) 0 0
\(395\) 4625.78 0.589236
\(396\) 0 0
\(397\) −9868.22 −1.24754 −0.623768 0.781609i \(-0.714399\pi\)
−0.623768 + 0.781609i \(0.714399\pi\)
\(398\) 0 0
\(399\) −4607.41 −0.578093
\(400\) 0 0
\(401\) −5879.12 −0.732143 −0.366072 0.930587i \(-0.619298\pi\)
−0.366072 + 0.930587i \(0.619298\pi\)
\(402\) 0 0
\(403\) 28645.4 3.54077
\(404\) 0 0
\(405\) 7278.71 0.893042
\(406\) 0 0
\(407\) 828.758 0.100934
\(408\) 0 0
\(409\) 5680.84 0.686796 0.343398 0.939190i \(-0.388422\pi\)
0.343398 + 0.939190i \(0.388422\pi\)
\(410\) 0 0
\(411\) −13910.8 −1.66951
\(412\) 0 0
\(413\) 478.121 0.0569656
\(414\) 0 0
\(415\) 3586.62 0.424242
\(416\) 0 0
\(417\) 91.7878 0.0107791
\(418\) 0 0
\(419\) 1098.50 0.128079 0.0640395 0.997947i \(-0.479602\pi\)
0.0640395 + 0.997947i \(0.479602\pi\)
\(420\) 0 0
\(421\) −5265.06 −0.609509 −0.304754 0.952431i \(-0.598574\pi\)
−0.304754 + 0.952431i \(0.598574\pi\)
\(422\) 0 0
\(423\) 77.9008 0.00895430
\(424\) 0 0
\(425\) 893.143 0.101938
\(426\) 0 0
\(427\) −1017.21 −0.115284
\(428\) 0 0
\(429\) −4810.70 −0.541406
\(430\) 0 0
\(431\) −4273.45 −0.477598 −0.238799 0.971069i \(-0.576754\pi\)
−0.238799 + 0.971069i \(0.576754\pi\)
\(432\) 0 0
\(433\) −8560.19 −0.950061 −0.475031 0.879969i \(-0.657563\pi\)
−0.475031 + 0.879969i \(0.657563\pi\)
\(434\) 0 0
\(435\) −6089.89 −0.671236
\(436\) 0 0
\(437\) −17867.8 −1.95591
\(438\) 0 0
\(439\) −12664.2 −1.37684 −0.688419 0.725314i \(-0.741695\pi\)
−0.688419 + 0.725314i \(0.741695\pi\)
\(440\) 0 0
\(441\) −12.7014 −0.00137149
\(442\) 0 0
\(443\) −12368.9 −1.32656 −0.663279 0.748372i \(-0.730836\pi\)
−0.663279 + 0.748372i \(0.730836\pi\)
\(444\) 0 0
\(445\) 12562.2 1.33821
\(446\) 0 0
\(447\) −7849.09 −0.830535
\(448\) 0 0
\(449\) −2092.69 −0.219956 −0.109978 0.993934i \(-0.535078\pi\)
−0.109978 + 0.993934i \(0.535078\pi\)
\(450\) 0 0
\(451\) 246.891 0.0257775
\(452\) 0 0
\(453\) 10077.9 1.04525
\(454\) 0 0
\(455\) 5968.75 0.614988
\(456\) 0 0
\(457\) 7825.71 0.801031 0.400515 0.916290i \(-0.368831\pi\)
0.400515 + 0.916290i \(0.368831\pi\)
\(458\) 0 0
\(459\) −5392.13 −0.548329
\(460\) 0 0
\(461\) 4775.60 0.482477 0.241238 0.970466i \(-0.422446\pi\)
0.241238 + 0.970466i \(0.422446\pi\)
\(462\) 0 0
\(463\) −11518.3 −1.15615 −0.578077 0.815982i \(-0.696197\pi\)
−0.578077 + 0.815982i \(0.696197\pi\)
\(464\) 0 0
\(465\) −17659.2 −1.76113
\(466\) 0 0
\(467\) 7420.17 0.735256 0.367628 0.929973i \(-0.380170\pi\)
0.367628 + 0.929973i \(0.380170\pi\)
\(468\) 0 0
\(469\) 4676.14 0.460392
\(470\) 0 0
\(471\) 8037.00 0.786253
\(472\) 0 0
\(473\) 2000.29 0.194447
\(474\) 0 0
\(475\) −2971.89 −0.287073
\(476\) 0 0
\(477\) 8.25837 0.000792715 0
\(478\) 0 0
\(479\) −10159.2 −0.969076 −0.484538 0.874770i \(-0.661012\pi\)
−0.484538 + 0.874770i \(0.661012\pi\)
\(480\) 0 0
\(481\) 6371.82 0.604013
\(482\) 0 0
\(483\) 5081.41 0.478701
\(484\) 0 0
\(485\) 9430.29 0.882902
\(486\) 0 0
\(487\) 12344.9 1.14866 0.574331 0.818623i \(-0.305262\pi\)
0.574331 + 0.818623i \(0.305262\pi\)
\(488\) 0 0
\(489\) −17957.9 −1.66070
\(490\) 0 0
\(491\) −15344.9 −1.41040 −0.705200 0.709009i \(-0.749143\pi\)
−0.705200 + 0.709009i \(0.749143\pi\)
\(492\) 0 0
\(493\) 4468.13 0.408183
\(494\) 0 0
\(495\) −28.7477 −0.00261033
\(496\) 0 0
\(497\) −5093.26 −0.459686
\(498\) 0 0
\(499\) 5022.76 0.450601 0.225300 0.974289i \(-0.427664\pi\)
0.225300 + 0.974289i \(0.427664\pi\)
\(500\) 0 0
\(501\) −11526.0 −1.02783
\(502\) 0 0
\(503\) −8735.90 −0.774383 −0.387191 0.921999i \(-0.626555\pi\)
−0.387191 + 0.921999i \(0.626555\pi\)
\(504\) 0 0
\(505\) 5377.82 0.473881
\(506\) 0 0
\(507\) −25625.6 −2.24472
\(508\) 0 0
\(509\) −21805.5 −1.89884 −0.949420 0.314008i \(-0.898328\pi\)
−0.949420 + 0.314008i \(0.898328\pi\)
\(510\) 0 0
\(511\) −2918.87 −0.252687
\(512\) 0 0
\(513\) 17942.1 1.54417
\(514\) 0 0
\(515\) −7441.66 −0.636735
\(516\) 0 0
\(517\) 3305.83 0.281219
\(518\) 0 0
\(519\) 5212.72 0.440873
\(520\) 0 0
\(521\) −4732.28 −0.397936 −0.198968 0.980006i \(-0.563759\pi\)
−0.198968 + 0.980006i \(0.563759\pi\)
\(522\) 0 0
\(523\) 7511.23 0.627998 0.313999 0.949423i \(-0.398331\pi\)
0.313999 + 0.949423i \(0.398331\pi\)
\(524\) 0 0
\(525\) 845.174 0.0702598
\(526\) 0 0
\(527\) 12956.5 1.07095
\(528\) 0 0
\(529\) 7539.02 0.619629
\(530\) 0 0
\(531\) −17.7049 −0.00144695
\(532\) 0 0
\(533\) 1898.20 0.154259
\(534\) 0 0
\(535\) −20558.4 −1.66134
\(536\) 0 0
\(537\) −3858.95 −0.310104
\(538\) 0 0
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −598.410 −0.0475557 −0.0237779 0.999717i \(-0.507569\pi\)
−0.0237779 + 0.999717i \(0.507569\pi\)
\(542\) 0 0
\(543\) 14415.9 1.13931
\(544\) 0 0
\(545\) −15009.3 −1.17968
\(546\) 0 0
\(547\) 14042.3 1.09763 0.548816 0.835943i \(-0.315079\pi\)
0.548816 + 0.835943i \(0.315079\pi\)
\(548\) 0 0
\(549\) 37.6674 0.00292824
\(550\) 0 0
\(551\) −14867.5 −1.14950
\(552\) 0 0
\(553\) −3211.64 −0.246967
\(554\) 0 0
\(555\) −3928.06 −0.300427
\(556\) 0 0
\(557\) 4965.87 0.377757 0.188878 0.982000i \(-0.439515\pi\)
0.188878 + 0.982000i \(0.439515\pi\)
\(558\) 0 0
\(559\) 15379.0 1.16362
\(560\) 0 0
\(561\) −2175.90 −0.163755
\(562\) 0 0
\(563\) 15362.4 1.14999 0.574997 0.818155i \(-0.305003\pi\)
0.574997 + 0.818155i \(0.305003\pi\)
\(564\) 0 0
\(565\) 5371.24 0.399947
\(566\) 0 0
\(567\) −5053.54 −0.374301
\(568\) 0 0
\(569\) 17735.3 1.30668 0.653341 0.757064i \(-0.273367\pi\)
0.653341 + 0.757064i \(0.273367\pi\)
\(570\) 0 0
\(571\) 19818.8 1.45252 0.726262 0.687418i \(-0.241256\pi\)
0.726262 + 0.687418i \(0.241256\pi\)
\(572\) 0 0
\(573\) −4715.66 −0.343804
\(574\) 0 0
\(575\) 3277.63 0.237716
\(576\) 0 0
\(577\) 6579.03 0.474677 0.237339 0.971427i \(-0.423725\pi\)
0.237339 + 0.971427i \(0.423725\pi\)
\(578\) 0 0
\(579\) −23035.7 −1.65342
\(580\) 0 0
\(581\) −2490.16 −0.177813
\(582\) 0 0
\(583\) 350.455 0.0248960
\(584\) 0 0
\(585\) −221.024 −0.0156209
\(586\) 0 0
\(587\) −13901.5 −0.977470 −0.488735 0.872432i \(-0.662541\pi\)
−0.488735 + 0.872432i \(0.662541\pi\)
\(588\) 0 0
\(589\) −43112.0 −3.01596
\(590\) 0 0
\(591\) 7123.03 0.495774
\(592\) 0 0
\(593\) 23928.0 1.65700 0.828502 0.559986i \(-0.189193\pi\)
0.828502 + 0.559986i \(0.189193\pi\)
\(594\) 0 0
\(595\) 2699.70 0.186011
\(596\) 0 0
\(597\) −487.935 −0.0334503
\(598\) 0 0
\(599\) −24078.9 −1.64247 −0.821233 0.570594i \(-0.806713\pi\)
−0.821233 + 0.570594i \(0.806713\pi\)
\(600\) 0 0
\(601\) −11806.6 −0.801336 −0.400668 0.916223i \(-0.631222\pi\)
−0.400668 + 0.916223i \(0.631222\pi\)
\(602\) 0 0
\(603\) −173.158 −0.0116941
\(604\) 0 0
\(605\) −1219.95 −0.0819802
\(606\) 0 0
\(607\) −1957.71 −0.130908 −0.0654539 0.997856i \(-0.520850\pi\)
−0.0654539 + 0.997856i \(0.520850\pi\)
\(608\) 0 0
\(609\) 4228.15 0.281336
\(610\) 0 0
\(611\) 25416.6 1.68289
\(612\) 0 0
\(613\) −16029.2 −1.05614 −0.528069 0.849201i \(-0.677084\pi\)
−0.528069 + 0.849201i \(0.677084\pi\)
\(614\) 0 0
\(615\) −1170.19 −0.0767261
\(616\) 0 0
\(617\) −7153.99 −0.466789 −0.233394 0.972382i \(-0.574983\pi\)
−0.233394 + 0.972382i \(0.574983\pi\)
\(618\) 0 0
\(619\) 11035.9 0.716590 0.358295 0.933608i \(-0.383358\pi\)
0.358295 + 0.933608i \(0.383358\pi\)
\(620\) 0 0
\(621\) −19787.9 −1.27868
\(622\) 0 0
\(623\) −8721.78 −0.560884
\(624\) 0 0
\(625\) −12161.3 −0.778321
\(626\) 0 0
\(627\) 7240.22 0.461158
\(628\) 0 0
\(629\) 2882.01 0.182692
\(630\) 0 0
\(631\) 4311.46 0.272007 0.136004 0.990708i \(-0.456574\pi\)
0.136004 + 0.990708i \(0.456574\pi\)
\(632\) 0 0
\(633\) 6071.89 0.381258
\(634\) 0 0
\(635\) −22760.1 −1.42237
\(636\) 0 0
\(637\) −4144.05 −0.257760
\(638\) 0 0
\(639\) 188.604 0.0116762
\(640\) 0 0
\(641\) 2692.13 0.165886 0.0829429 0.996554i \(-0.473568\pi\)
0.0829429 + 0.996554i \(0.473568\pi\)
\(642\) 0 0
\(643\) −19694.3 −1.20788 −0.603941 0.797029i \(-0.706404\pi\)
−0.603941 + 0.797029i \(0.706404\pi\)
\(644\) 0 0
\(645\) −9480.76 −0.578767
\(646\) 0 0
\(647\) 21225.5 1.28974 0.644870 0.764292i \(-0.276911\pi\)
0.644870 + 0.764292i \(0.276911\pi\)
\(648\) 0 0
\(649\) −751.333 −0.0454428
\(650\) 0 0
\(651\) 12260.6 0.738143
\(652\) 0 0
\(653\) −12929.7 −0.774850 −0.387425 0.921901i \(-0.626635\pi\)
−0.387425 + 0.921901i \(0.626635\pi\)
\(654\) 0 0
\(655\) 11838.7 0.706224
\(656\) 0 0
\(657\) 108.086 0.00641835
\(658\) 0 0
\(659\) 20835.3 1.23161 0.615803 0.787900i \(-0.288832\pi\)
0.615803 + 0.787900i \(0.288832\pi\)
\(660\) 0 0
\(661\) −1451.06 −0.0853850 −0.0426925 0.999088i \(-0.513594\pi\)
−0.0426925 + 0.999088i \(0.513594\pi\)
\(662\) 0 0
\(663\) −16729.2 −0.979954
\(664\) 0 0
\(665\) −8983.10 −0.523834
\(666\) 0 0
\(667\) 16397.0 0.951867
\(668\) 0 0
\(669\) 458.099 0.0264741
\(670\) 0 0
\(671\) 1598.47 0.0919645
\(672\) 0 0
\(673\) −28986.0 −1.66022 −0.830111 0.557598i \(-0.811723\pi\)
−0.830111 + 0.557598i \(0.811723\pi\)
\(674\) 0 0
\(675\) −3291.25 −0.187675
\(676\) 0 0
\(677\) 24818.6 1.40895 0.704474 0.709730i \(-0.251183\pi\)
0.704474 + 0.709730i \(0.251183\pi\)
\(678\) 0 0
\(679\) −6547.36 −0.370051
\(680\) 0 0
\(681\) 4567.74 0.257028
\(682\) 0 0
\(683\) 7450.70 0.417413 0.208706 0.977978i \(-0.433075\pi\)
0.208706 + 0.977978i \(0.433075\pi\)
\(684\) 0 0
\(685\) −27122.0 −1.51282
\(686\) 0 0
\(687\) −6413.57 −0.356176
\(688\) 0 0
\(689\) 2694.44 0.148984
\(690\) 0 0
\(691\) 28469.1 1.56731 0.783657 0.621193i \(-0.213352\pi\)
0.783657 + 0.621193i \(0.213352\pi\)
\(692\) 0 0
\(693\) 19.9593 0.00109407
\(694\) 0 0
\(695\) 178.959 0.00976736
\(696\) 0 0
\(697\) 858.563 0.0466577
\(698\) 0 0
\(699\) 28337.6 1.53337
\(700\) 0 0
\(701\) 20045.7 1.08005 0.540027 0.841648i \(-0.318414\pi\)
0.540027 + 0.841648i \(0.318414\pi\)
\(702\) 0 0
\(703\) −9589.73 −0.514486
\(704\) 0 0
\(705\) −15668.6 −0.837043
\(706\) 0 0
\(707\) −3733.77 −0.198618
\(708\) 0 0
\(709\) 15326.9 0.811868 0.405934 0.913902i \(-0.366946\pi\)
0.405934 + 0.913902i \(0.366946\pi\)
\(710\) 0 0
\(711\) 118.928 0.00627304
\(712\) 0 0
\(713\) 47547.3 2.49742
\(714\) 0 0
\(715\) −9379.47 −0.490591
\(716\) 0 0
\(717\) 3071.70 0.159992
\(718\) 0 0
\(719\) 11023.4 0.571770 0.285885 0.958264i \(-0.407712\pi\)
0.285885 + 0.958264i \(0.407712\pi\)
\(720\) 0 0
\(721\) 5166.68 0.266875
\(722\) 0 0
\(723\) −1596.77 −0.0821365
\(724\) 0 0
\(725\) 2727.26 0.139707
\(726\) 0 0
\(727\) −28755.9 −1.46698 −0.733492 0.679699i \(-0.762111\pi\)
−0.733492 + 0.679699i \(0.762111\pi\)
\(728\) 0 0
\(729\) 19868.3 1.00942
\(730\) 0 0
\(731\) 6956.00 0.351952
\(732\) 0 0
\(733\) 21500.9 1.08343 0.541714 0.840563i \(-0.317775\pi\)
0.541714 + 0.840563i \(0.317775\pi\)
\(734\) 0 0
\(735\) 2554.70 0.128206
\(736\) 0 0
\(737\) −7348.21 −0.367266
\(738\) 0 0
\(739\) 2598.63 0.129353 0.0646767 0.997906i \(-0.479398\pi\)
0.0646767 + 0.997906i \(0.479398\pi\)
\(740\) 0 0
\(741\) 55665.7 2.75969
\(742\) 0 0
\(743\) −29920.5 −1.47736 −0.738678 0.674058i \(-0.764550\pi\)
−0.738678 + 0.674058i \(0.764550\pi\)
\(744\) 0 0
\(745\) −15303.4 −0.752583
\(746\) 0 0
\(747\) 92.2112 0.00451651
\(748\) 0 0
\(749\) 14273.5 0.696317
\(750\) 0 0
\(751\) −17763.1 −0.863096 −0.431548 0.902090i \(-0.642032\pi\)
−0.431548 + 0.902090i \(0.642032\pi\)
\(752\) 0 0
\(753\) 18034.8 0.872810
\(754\) 0 0
\(755\) 19648.9 0.947147
\(756\) 0 0
\(757\) 6472.04 0.310740 0.155370 0.987856i \(-0.450343\pi\)
0.155370 + 0.987856i \(0.450343\pi\)
\(758\) 0 0
\(759\) −7985.08 −0.381871
\(760\) 0 0
\(761\) −33720.2 −1.60625 −0.803126 0.595809i \(-0.796831\pi\)
−0.803126 + 0.595809i \(0.796831\pi\)
\(762\) 0 0
\(763\) 10420.8 0.494441
\(764\) 0 0
\(765\) −99.9703 −0.00472475
\(766\) 0 0
\(767\) −5776.55 −0.271941
\(768\) 0 0
\(769\) −9361.49 −0.438991 −0.219495 0.975614i \(-0.570441\pi\)
−0.219495 + 0.975614i \(0.570441\pi\)
\(770\) 0 0
\(771\) −2334.49 −0.109046
\(772\) 0 0
\(773\) 34886.0 1.62324 0.811618 0.584188i \(-0.198587\pi\)
0.811618 + 0.584188i \(0.198587\pi\)
\(774\) 0 0
\(775\) 7908.38 0.366551
\(776\) 0 0
\(777\) 2727.22 0.125918
\(778\) 0 0
\(779\) −2856.83 −0.131395
\(780\) 0 0
\(781\) 8003.69 0.366702
\(782\) 0 0
\(783\) −16465.2 −0.751490
\(784\) 0 0
\(785\) 15669.8 0.712458
\(786\) 0 0
\(787\) 9526.64 0.431497 0.215748 0.976449i \(-0.430781\pi\)
0.215748 + 0.976449i \(0.430781\pi\)
\(788\) 0 0
\(789\) −30399.2 −1.37166
\(790\) 0 0
\(791\) −3729.20 −0.167630
\(792\) 0 0
\(793\) 12289.7 0.550339
\(794\) 0 0
\(795\) −1661.05 −0.0741026
\(796\) 0 0
\(797\) −33267.9 −1.47856 −0.739278 0.673400i \(-0.764833\pi\)
−0.739278 + 0.673400i \(0.764833\pi\)
\(798\) 0 0
\(799\) 11496.0 0.509012
\(800\) 0 0
\(801\) 322.970 0.0142467
\(802\) 0 0
\(803\) 4586.80 0.201575
\(804\) 0 0
\(805\) 9907.27 0.433771
\(806\) 0 0
\(807\) 273.303 0.0119216
\(808\) 0 0
\(809\) 17949.6 0.780069 0.390035 0.920800i \(-0.372463\pi\)
0.390035 + 0.920800i \(0.372463\pi\)
\(810\) 0 0
\(811\) −10877.9 −0.470991 −0.235495 0.971875i \(-0.575671\pi\)
−0.235495 + 0.971875i \(0.575671\pi\)
\(812\) 0 0
\(813\) −35278.6 −1.52186
\(814\) 0 0
\(815\) −35012.7 −1.50484
\(816\) 0 0
\(817\) −23145.7 −0.991147
\(818\) 0 0
\(819\) 153.455 0.00654720
\(820\) 0 0
\(821\) −4519.04 −0.192102 −0.0960509 0.995376i \(-0.530621\pi\)
−0.0960509 + 0.995376i \(0.530621\pi\)
\(822\) 0 0
\(823\) −36987.7 −1.56660 −0.783300 0.621644i \(-0.786465\pi\)
−0.783300 + 0.621644i \(0.786465\pi\)
\(824\) 0 0
\(825\) −1328.13 −0.0560480
\(826\) 0 0
\(827\) −15325.3 −0.644392 −0.322196 0.946673i \(-0.604421\pi\)
−0.322196 + 0.946673i \(0.604421\pi\)
\(828\) 0 0
\(829\) 26546.3 1.11217 0.556087 0.831124i \(-0.312302\pi\)
0.556087 + 0.831124i \(0.312302\pi\)
\(830\) 0 0
\(831\) −2425.43 −0.101248
\(832\) 0 0
\(833\) −1874.37 −0.0779630
\(834\) 0 0
\(835\) −22472.3 −0.931361
\(836\) 0 0
\(837\) −47744.9 −1.97169
\(838\) 0 0
\(839\) −11906.5 −0.489938 −0.244969 0.969531i \(-0.578778\pi\)
−0.244969 + 0.969531i \(0.578778\pi\)
\(840\) 0 0
\(841\) −10745.3 −0.440581
\(842\) 0 0
\(843\) 11919.8 0.486997
\(844\) 0 0
\(845\) −49962.5 −2.03404
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) 0 0
\(849\) −38115.5 −1.54078
\(850\) 0 0
\(851\) 10576.3 0.426030
\(852\) 0 0
\(853\) −6859.53 −0.275341 −0.137670 0.990478i \(-0.543961\pi\)
−0.137670 + 0.990478i \(0.543961\pi\)
\(854\) 0 0
\(855\) 332.646 0.0133056
\(856\) 0 0
\(857\) 5193.59 0.207013 0.103506 0.994629i \(-0.466994\pi\)
0.103506 + 0.994629i \(0.466994\pi\)
\(858\) 0 0
\(859\) −5265.73 −0.209155 −0.104578 0.994517i \(-0.533349\pi\)
−0.104578 + 0.994517i \(0.533349\pi\)
\(860\) 0 0
\(861\) 812.451 0.0321583
\(862\) 0 0
\(863\) 16016.7 0.631767 0.315884 0.948798i \(-0.397699\pi\)
0.315884 + 0.948798i \(0.397699\pi\)
\(864\) 0 0
\(865\) 10163.3 0.399494
\(866\) 0 0
\(867\) 17839.1 0.698788
\(868\) 0 0
\(869\) 5046.86 0.197011
\(870\) 0 0
\(871\) −56496.0 −2.19781
\(872\) 0 0
\(873\) 242.450 0.00939943
\(874\) 0 0
\(875\) 10469.8 0.404507
\(876\) 0 0
\(877\) −11195.5 −0.431065 −0.215533 0.976497i \(-0.569149\pi\)
−0.215533 + 0.976497i \(0.569149\pi\)
\(878\) 0 0
\(879\) −9095.51 −0.349015
\(880\) 0 0
\(881\) 45542.5 1.74162 0.870809 0.491621i \(-0.163595\pi\)
0.870809 + 0.491621i \(0.163595\pi\)
\(882\) 0 0
\(883\) −10394.9 −0.396167 −0.198083 0.980185i \(-0.563472\pi\)
−0.198083 + 0.980185i \(0.563472\pi\)
\(884\) 0 0
\(885\) 3561.09 0.135260
\(886\) 0 0
\(887\) 4020.51 0.152193 0.0760967 0.997100i \(-0.475754\pi\)
0.0760967 + 0.997100i \(0.475754\pi\)
\(888\) 0 0
\(889\) 15802.1 0.596159
\(890\) 0 0
\(891\) 7941.28 0.298589
\(892\) 0 0
\(893\) −38252.5 −1.43345
\(894\) 0 0
\(895\) −7523.82 −0.280998
\(896\) 0 0
\(897\) −61392.5 −2.28521
\(898\) 0 0
\(899\) 39563.3 1.46775
\(900\) 0 0
\(901\) 1218.71 0.0450623
\(902\) 0 0
\(903\) 6582.40 0.242579
\(904\) 0 0
\(905\) 28106.8 1.03238
\(906\) 0 0
\(907\) 23907.5 0.875231 0.437615 0.899162i \(-0.355823\pi\)
0.437615 + 0.899162i \(0.355823\pi\)
\(908\) 0 0
\(909\) 138.262 0.00504496
\(910\) 0 0
\(911\) −40571.4 −1.47551 −0.737755 0.675069i \(-0.764114\pi\)
−0.737755 + 0.675069i \(0.764114\pi\)
\(912\) 0 0
\(913\) 3913.11 0.141846
\(914\) 0 0
\(915\) −7576.26 −0.273731
\(916\) 0 0
\(917\) −8219.50 −0.296000
\(918\) 0 0
\(919\) −20551.0 −0.737667 −0.368834 0.929495i \(-0.620243\pi\)
−0.368834 + 0.929495i \(0.620243\pi\)
\(920\) 0 0
\(921\) 17934.1 0.641637
\(922\) 0 0
\(923\) 61535.6 2.19444
\(924\) 0 0
\(925\) 1759.12 0.0625292
\(926\) 0 0
\(927\) −191.323 −0.00677872
\(928\) 0 0
\(929\) 34068.4 1.20317 0.601587 0.798807i \(-0.294535\pi\)
0.601587 + 0.798807i \(0.294535\pi\)
\(930\) 0 0
\(931\) 6236.89 0.219555
\(932\) 0 0
\(933\) 10259.5 0.360000
\(934\) 0 0
\(935\) −4242.38 −0.148386
\(936\) 0 0
\(937\) 15597.9 0.543824 0.271912 0.962322i \(-0.412344\pi\)
0.271912 + 0.962322i \(0.412344\pi\)
\(938\) 0 0
\(939\) 52198.7 1.81410
\(940\) 0 0
\(941\) −22855.3 −0.791775 −0.395887 0.918299i \(-0.629563\pi\)
−0.395887 + 0.918299i \(0.629563\pi\)
\(942\) 0 0
\(943\) 3150.73 0.108804
\(944\) 0 0
\(945\) −9948.44 −0.342458
\(946\) 0 0
\(947\) −36670.7 −1.25833 −0.629164 0.777272i \(-0.716603\pi\)
−0.629164 + 0.777272i \(0.716603\pi\)
\(948\) 0 0
\(949\) 35265.1 1.20628
\(950\) 0 0
\(951\) 15779.0 0.538031
\(952\) 0 0
\(953\) −19922.8 −0.677192 −0.338596 0.940932i \(-0.609952\pi\)
−0.338596 + 0.940932i \(0.609952\pi\)
\(954\) 0 0
\(955\) −9194.16 −0.311535
\(956\) 0 0
\(957\) −6644.24 −0.224428
\(958\) 0 0
\(959\) 18830.6 0.634068
\(960\) 0 0
\(961\) 84932.7 2.85095
\(962\) 0 0
\(963\) −528.550 −0.0176867
\(964\) 0 0
\(965\) −44913.0 −1.49824
\(966\) 0 0
\(967\) −24523.8 −0.815545 −0.407772 0.913084i \(-0.633694\pi\)
−0.407772 + 0.913084i \(0.633694\pi\)
\(968\) 0 0
\(969\) 25177.9 0.834705
\(970\) 0 0
\(971\) −4493.82 −0.148520 −0.0742602 0.997239i \(-0.523660\pi\)
−0.0742602 + 0.997239i \(0.523660\pi\)
\(972\) 0 0
\(973\) −124.250 −0.00409380
\(974\) 0 0
\(975\) −10211.2 −0.335405
\(976\) 0 0
\(977\) −18285.3 −0.598771 −0.299385 0.954132i \(-0.596782\pi\)
−0.299385 + 0.954132i \(0.596782\pi\)
\(978\) 0 0
\(979\) 13705.7 0.447431
\(980\) 0 0
\(981\) −385.885 −0.0125590
\(982\) 0 0
\(983\) 25850.8 0.838772 0.419386 0.907808i \(-0.362245\pi\)
0.419386 + 0.907808i \(0.362245\pi\)
\(984\) 0 0
\(985\) 13887.8 0.449242
\(986\) 0 0
\(987\) 10878.6 0.350830
\(988\) 0 0
\(989\) 25526.9 0.820738
\(990\) 0 0
\(991\) 26842.1 0.860412 0.430206 0.902731i \(-0.358441\pi\)
0.430206 + 0.902731i \(0.358441\pi\)
\(992\) 0 0
\(993\) −139.531 −0.00445910
\(994\) 0 0
\(995\) −951.331 −0.0303108
\(996\) 0 0
\(997\) −10468.1 −0.332526 −0.166263 0.986081i \(-0.553170\pi\)
−0.166263 + 0.986081i \(0.553170\pi\)
\(998\) 0 0
\(999\) −10620.3 −0.336347
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.4.a.w.1.1 4
4.3 odd 2 77.4.a.c.1.2 4
12.11 even 2 693.4.a.m.1.3 4
20.19 odd 2 1925.4.a.q.1.3 4
28.27 even 2 539.4.a.f.1.2 4
44.43 even 2 847.4.a.e.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.c.1.2 4 4.3 odd 2
539.4.a.f.1.2 4 28.27 even 2
693.4.a.m.1.3 4 12.11 even 2
847.4.a.e.1.3 4 44.43 even 2
1232.4.a.w.1.1 4 1.1 even 1 trivial
1925.4.a.q.1.3 4 20.19 odd 2