Properties

Label 1232.4.a.u
Level $1232$
Weight $4$
Character orbit 1232.a
Self dual yes
Analytic conductor $72.690$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,4,Mod(1,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.6903531271\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 29x^{2} + 3x + 114 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 616)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} + ( - \beta_{2} + \beta_1 - 4) q^{5} - 7 q^{7} + (\beta_{2} - \beta_1 - 11) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 + 1) q^{3} + ( - \beta_{2} + \beta_1 - 4) q^{5} - 7 q^{7} + (\beta_{2} - \beta_1 - 11) q^{9} - 11 q^{11} + (\beta_{3} + 3 \beta_{2} - 5 \beta_1 - 6) q^{13} + (\beta_{3} - \beta_{2} + 10 \beta_1 - 19) q^{15} + ( - \beta_{2} - 16 \beta_1 - 11) q^{17} + (3 \beta_{3} - 6 \beta_{2} + \beta_1 - 19) q^{19} + (7 \beta_1 - 7) q^{21} + ( - 3 \beta_{3} - \beta_{2} + \cdots + 25) q^{23}+ \cdots + ( - 11 \beta_{2} + 11 \beta_1 + 121) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} - 13 q^{5} - 28 q^{7} - 47 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 3 q^{3} - 13 q^{5} - 28 q^{7} - 47 q^{9} - 44 q^{11} - 34 q^{13} - 63 q^{15} - 58 q^{17} - 60 q^{19} - 21 q^{21} + 93 q^{23} - 19 q^{25} - 63 q^{27} - 144 q^{29} + 129 q^{31} - 33 q^{33} + 91 q^{35} - 187 q^{37} + 244 q^{39} + 110 q^{41} + 360 q^{43} - 286 q^{45} + 438 q^{47} + 196 q^{49} + 902 q^{51} + 56 q^{53} + 143 q^{55} - 94 q^{57} + 1209 q^{59} + 104 q^{61} + 329 q^{63} - 1256 q^{65} + 1075 q^{67} + 451 q^{69} + 963 q^{71} - 646 q^{73} + 804 q^{75} + 308 q^{77} + 1838 q^{79} - 656 q^{81} + 1238 q^{83} - 278 q^{85} + 914 q^{87} - 1453 q^{89} + 238 q^{91} + 521 q^{93} + 2730 q^{95} + 573 q^{97} + 517 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 29x^{2} + 3x + 114 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 15 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 20\nu + 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 22\beta _1 + 15 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.49248
2.12727
−2.21517
−4.40458
0 −4.49248 0 −8.18240 0 −7.00000 0 −6.81760 0
1.2 0 −1.12727 0 10.7293 0 −7.00000 0 −25.7293 0
1.3 0 3.21517 0 1.66265 0 −7.00000 0 −16.6627 0
1.4 0 5.40458 0 −17.2095 0 −7.00000 0 2.20951 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1232.4.a.u 4
4.b odd 2 1 616.4.a.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
616.4.a.f 4 4.b odd 2 1
1232.4.a.u 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1232))\):

\( T_{3}^{4} - 3T_{3}^{3} - 26T_{3}^{2} + 54T_{3} + 88 \) Copy content Toggle raw display
\( T_{5}^{4} + 13T_{5}^{3} - 156T_{5}^{2} - 1292T_{5} + 2512 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 3 T^{3} + \cdots + 88 \) Copy content Toggle raw display
$5$ \( T^{4} + 13 T^{3} + \cdots + 2512 \) Copy content Toggle raw display
$7$ \( (T + 7)^{4} \) Copy content Toggle raw display
$11$ \( (T + 11)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 34 T^{3} + \cdots - 211008 \) Copy content Toggle raw display
$17$ \( T^{4} + 58 T^{3} + \cdots + 5765952 \) Copy content Toggle raw display
$19$ \( T^{4} + 60 T^{3} + \cdots - 17594528 \) Copy content Toggle raw display
$23$ \( T^{4} - 93 T^{3} + \cdots + 38437024 \) Copy content Toggle raw display
$29$ \( T^{4} + 144 T^{3} + \cdots - 468493904 \) Copy content Toggle raw display
$31$ \( T^{4} - 129 T^{3} + \cdots + 286967068 \) Copy content Toggle raw display
$37$ \( T^{4} + 187 T^{3} + \cdots + 254219712 \) Copy content Toggle raw display
$41$ \( T^{4} - 110 T^{3} + \cdots + 54950112 \) Copy content Toggle raw display
$43$ \( T^{4} - 360 T^{3} + \cdots - 537759104 \) Copy content Toggle raw display
$47$ \( T^{4} - 438 T^{3} + \cdots + 970263328 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 3137121344 \) Copy content Toggle raw display
$59$ \( T^{4} - 1209 T^{3} + \cdots + 688652496 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 8526139944 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 43533229152 \) Copy content Toggle raw display
$71$ \( T^{4} - 963 T^{3} + \cdots + 268924608 \) Copy content Toggle raw display
$73$ \( T^{4} + 646 T^{3} + \cdots - 34883136 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 164016348608 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 18943413504 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 65355809976 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 663884262664 \) Copy content Toggle raw display
show more
show less