Properties

Label 1232.4.a.h.1.1
Level $1232$
Weight $4$
Character 1232.1
Self dual yes
Analytic conductor $72.690$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,4,Mod(1,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.6903531271\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 308)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1232.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.00000 q^{3} -1.00000 q^{5} -7.00000 q^{7} +22.0000 q^{9} -11.0000 q^{11} +12.0000 q^{13} -7.00000 q^{15} +2.00000 q^{17} -82.0000 q^{19} -49.0000 q^{21} -7.00000 q^{23} -124.000 q^{25} -35.0000 q^{27} -102.000 q^{29} +171.000 q^{31} -77.0000 q^{33} +7.00000 q^{35} -357.000 q^{37} +84.0000 q^{39} -114.000 q^{41} +344.000 q^{43} -22.0000 q^{45} -96.0000 q^{47} +49.0000 q^{49} +14.0000 q^{51} -430.000 q^{53} +11.0000 q^{55} -574.000 q^{57} +201.000 q^{59} -2.00000 q^{61} -154.000 q^{63} -12.0000 q^{65} -313.000 q^{67} -49.0000 q^{69} +579.000 q^{71} -438.000 q^{73} -868.000 q^{75} +77.0000 q^{77} -494.000 q^{79} -839.000 q^{81} -748.000 q^{83} -2.00000 q^{85} -714.000 q^{87} +457.000 q^{89} -84.0000 q^{91} +1197.00 q^{93} +82.0000 q^{95} -1037.00 q^{97} -242.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 7.00000 1.34715 0.673575 0.739119i \(-0.264758\pi\)
0.673575 + 0.739119i \(0.264758\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.0894427 −0.0447214 0.998999i \(-0.514240\pi\)
−0.0447214 + 0.998999i \(0.514240\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 22.0000 0.814815
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 12.0000 0.256015 0.128008 0.991773i \(-0.459142\pi\)
0.128008 + 0.991773i \(0.459142\pi\)
\(14\) 0 0
\(15\) −7.00000 −0.120493
\(16\) 0 0
\(17\) 2.00000 0.0285336 0.0142668 0.999898i \(-0.495459\pi\)
0.0142668 + 0.999898i \(0.495459\pi\)
\(18\) 0 0
\(19\) −82.0000 −0.990110 −0.495055 0.868862i \(-0.664852\pi\)
−0.495055 + 0.868862i \(0.664852\pi\)
\(20\) 0 0
\(21\) −49.0000 −0.509175
\(22\) 0 0
\(23\) −7.00000 −0.0634609 −0.0317305 0.999496i \(-0.510102\pi\)
−0.0317305 + 0.999496i \(0.510102\pi\)
\(24\) 0 0
\(25\) −124.000 −0.992000
\(26\) 0 0
\(27\) −35.0000 −0.249472
\(28\) 0 0
\(29\) −102.000 −0.653135 −0.326568 0.945174i \(-0.605892\pi\)
−0.326568 + 0.945174i \(0.605892\pi\)
\(30\) 0 0
\(31\) 171.000 0.990726 0.495363 0.868686i \(-0.335035\pi\)
0.495363 + 0.868686i \(0.335035\pi\)
\(32\) 0 0
\(33\) −77.0000 −0.406181
\(34\) 0 0
\(35\) 7.00000 0.0338062
\(36\) 0 0
\(37\) −357.000 −1.58623 −0.793114 0.609073i \(-0.791542\pi\)
−0.793114 + 0.609073i \(0.791542\pi\)
\(38\) 0 0
\(39\) 84.0000 0.344891
\(40\) 0 0
\(41\) −114.000 −0.434239 −0.217120 0.976145i \(-0.569666\pi\)
−0.217120 + 0.976145i \(0.569666\pi\)
\(42\) 0 0
\(43\) 344.000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) −22.0000 −0.0728793
\(46\) 0 0
\(47\) −96.0000 −0.297937 −0.148969 0.988842i \(-0.547595\pi\)
−0.148969 + 0.988842i \(0.547595\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 14.0000 0.0384391
\(52\) 0 0
\(53\) −430.000 −1.11443 −0.557217 0.830367i \(-0.688131\pi\)
−0.557217 + 0.830367i \(0.688131\pi\)
\(54\) 0 0
\(55\) 11.0000 0.0269680
\(56\) 0 0
\(57\) −574.000 −1.33383
\(58\) 0 0
\(59\) 201.000 0.443525 0.221762 0.975101i \(-0.428819\pi\)
0.221762 + 0.975101i \(0.428819\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.00419793 −0.00209897 0.999998i \(-0.500668\pi\)
−0.00209897 + 0.999998i \(0.500668\pi\)
\(62\) 0 0
\(63\) −154.000 −0.307971
\(64\) 0 0
\(65\) −12.0000 −0.0228987
\(66\) 0 0
\(67\) −313.000 −0.570732 −0.285366 0.958419i \(-0.592115\pi\)
−0.285366 + 0.958419i \(0.592115\pi\)
\(68\) 0 0
\(69\) −49.0000 −0.0854914
\(70\) 0 0
\(71\) 579.000 0.967812 0.483906 0.875120i \(-0.339218\pi\)
0.483906 + 0.875120i \(0.339218\pi\)
\(72\) 0 0
\(73\) −438.000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) −868.000 −1.33637
\(76\) 0 0
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −494.000 −0.703536 −0.351768 0.936087i \(-0.614419\pi\)
−0.351768 + 0.936087i \(0.614419\pi\)
\(80\) 0 0
\(81\) −839.000 −1.15089
\(82\) 0 0
\(83\) −748.000 −0.989201 −0.494600 0.869121i \(-0.664686\pi\)
−0.494600 + 0.869121i \(0.664686\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.00255212
\(86\) 0 0
\(87\) −714.000 −0.879872
\(88\) 0 0
\(89\) 457.000 0.544291 0.272146 0.962256i \(-0.412267\pi\)
0.272146 + 0.962256i \(0.412267\pi\)
\(90\) 0 0
\(91\) −84.0000 −0.0967648
\(92\) 0 0
\(93\) 1197.00 1.33466
\(94\) 0 0
\(95\) 82.0000 0.0885581
\(96\) 0 0
\(97\) −1037.00 −1.08548 −0.542739 0.839901i \(-0.682613\pi\)
−0.542739 + 0.839901i \(0.682613\pi\)
\(98\) 0 0
\(99\) −242.000 −0.245676
\(100\) 0 0
\(101\) 68.0000 0.0669926 0.0334963 0.999439i \(-0.489336\pi\)
0.0334963 + 0.999439i \(0.489336\pi\)
\(102\) 0 0
\(103\) 468.000 0.447703 0.223852 0.974623i \(-0.428137\pi\)
0.223852 + 0.974623i \(0.428137\pi\)
\(104\) 0 0
\(105\) 49.0000 0.0455420
\(106\) 0 0
\(107\) −1582.00 −1.42932 −0.714662 0.699470i \(-0.753420\pi\)
−0.714662 + 0.699470i \(0.753420\pi\)
\(108\) 0 0
\(109\) 516.000 0.453430 0.226715 0.973961i \(-0.427201\pi\)
0.226715 + 0.973961i \(0.427201\pi\)
\(110\) 0 0
\(111\) −2499.00 −2.13689
\(112\) 0 0
\(113\) −1627.00 −1.35447 −0.677236 0.735766i \(-0.736822\pi\)
−0.677236 + 0.735766i \(0.736822\pi\)
\(114\) 0 0
\(115\) 7.00000 0.00567612
\(116\) 0 0
\(117\) 264.000 0.208605
\(118\) 0 0
\(119\) −14.0000 −0.0107847
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −798.000 −0.584986
\(124\) 0 0
\(125\) 249.000 0.178170
\(126\) 0 0
\(127\) 2790.00 1.94939 0.974695 0.223540i \(-0.0717613\pi\)
0.974695 + 0.223540i \(0.0717613\pi\)
\(128\) 0 0
\(129\) 2408.00 1.64351
\(130\) 0 0
\(131\) −730.000 −0.486873 −0.243437 0.969917i \(-0.578275\pi\)
−0.243437 + 0.969917i \(0.578275\pi\)
\(132\) 0 0
\(133\) 574.000 0.374226
\(134\) 0 0
\(135\) 35.0000 0.0223135
\(136\) 0 0
\(137\) −1819.00 −1.13436 −0.567181 0.823593i \(-0.691966\pi\)
−0.567181 + 0.823593i \(0.691966\pi\)
\(138\) 0 0
\(139\) 802.000 0.489387 0.244693 0.969601i \(-0.421313\pi\)
0.244693 + 0.969601i \(0.421313\pi\)
\(140\) 0 0
\(141\) −672.000 −0.401366
\(142\) 0 0
\(143\) −132.000 −0.0771916
\(144\) 0 0
\(145\) 102.000 0.0584182
\(146\) 0 0
\(147\) 343.000 0.192450
\(148\) 0 0
\(149\) 314.000 0.172644 0.0863218 0.996267i \(-0.472489\pi\)
0.0863218 + 0.996267i \(0.472489\pi\)
\(150\) 0 0
\(151\) −766.000 −0.412822 −0.206411 0.978465i \(-0.566178\pi\)
−0.206411 + 0.978465i \(0.566178\pi\)
\(152\) 0 0
\(153\) 44.0000 0.0232496
\(154\) 0 0
\(155\) −171.000 −0.0886132
\(156\) 0 0
\(157\) −1681.00 −0.854512 −0.427256 0.904131i \(-0.640520\pi\)
−0.427256 + 0.904131i \(0.640520\pi\)
\(158\) 0 0
\(159\) −3010.00 −1.50131
\(160\) 0 0
\(161\) 49.0000 0.0239860
\(162\) 0 0
\(163\) −724.000 −0.347902 −0.173951 0.984754i \(-0.555653\pi\)
−0.173951 + 0.984754i \(0.555653\pi\)
\(164\) 0 0
\(165\) 77.0000 0.0363300
\(166\) 0 0
\(167\) 1242.00 0.575502 0.287751 0.957705i \(-0.407092\pi\)
0.287751 + 0.957705i \(0.407092\pi\)
\(168\) 0 0
\(169\) −2053.00 −0.934456
\(170\) 0 0
\(171\) −1804.00 −0.806756
\(172\) 0 0
\(173\) 2432.00 1.06880 0.534398 0.845233i \(-0.320539\pi\)
0.534398 + 0.845233i \(0.320539\pi\)
\(174\) 0 0
\(175\) 868.000 0.374941
\(176\) 0 0
\(177\) 1407.00 0.597495
\(178\) 0 0
\(179\) 2035.00 0.849738 0.424869 0.905255i \(-0.360320\pi\)
0.424869 + 0.905255i \(0.360320\pi\)
\(180\) 0 0
\(181\) 1405.00 0.576977 0.288488 0.957483i \(-0.406847\pi\)
0.288488 + 0.957483i \(0.406847\pi\)
\(182\) 0 0
\(183\) −14.0000 −0.00565524
\(184\) 0 0
\(185\) 357.000 0.141877
\(186\) 0 0
\(187\) −22.0000 −0.00860320
\(188\) 0 0
\(189\) 245.000 0.0942917
\(190\) 0 0
\(191\) 1671.00 0.633033 0.316517 0.948587i \(-0.397487\pi\)
0.316517 + 0.948587i \(0.397487\pi\)
\(192\) 0 0
\(193\) −2066.00 −0.770539 −0.385269 0.922804i \(-0.625891\pi\)
−0.385269 + 0.922804i \(0.625891\pi\)
\(194\) 0 0
\(195\) −84.0000 −0.0308480
\(196\) 0 0
\(197\) 3442.00 1.24483 0.622417 0.782686i \(-0.286151\pi\)
0.622417 + 0.782686i \(0.286151\pi\)
\(198\) 0 0
\(199\) −3008.00 −1.07151 −0.535757 0.844372i \(-0.679974\pi\)
−0.535757 + 0.844372i \(0.679974\pi\)
\(200\) 0 0
\(201\) −2191.00 −0.768862
\(202\) 0 0
\(203\) 714.000 0.246862
\(204\) 0 0
\(205\) 114.000 0.0388395
\(206\) 0 0
\(207\) −154.000 −0.0517089
\(208\) 0 0
\(209\) 902.000 0.298529
\(210\) 0 0
\(211\) 778.000 0.253838 0.126919 0.991913i \(-0.459491\pi\)
0.126919 + 0.991913i \(0.459491\pi\)
\(212\) 0 0
\(213\) 4053.00 1.30379
\(214\) 0 0
\(215\) −344.000 −0.109119
\(216\) 0 0
\(217\) −1197.00 −0.374459
\(218\) 0 0
\(219\) −3066.00 −0.946032
\(220\) 0 0
\(221\) 24.0000 0.00730504
\(222\) 0 0
\(223\) 2739.00 0.822498 0.411249 0.911523i \(-0.365093\pi\)
0.411249 + 0.911523i \(0.365093\pi\)
\(224\) 0 0
\(225\) −2728.00 −0.808296
\(226\) 0 0
\(227\) 732.000 0.214029 0.107014 0.994257i \(-0.465871\pi\)
0.107014 + 0.994257i \(0.465871\pi\)
\(228\) 0 0
\(229\) −823.000 −0.237491 −0.118745 0.992925i \(-0.537887\pi\)
−0.118745 + 0.992925i \(0.537887\pi\)
\(230\) 0 0
\(231\) 539.000 0.153522
\(232\) 0 0
\(233\) 1462.00 0.411068 0.205534 0.978650i \(-0.434107\pi\)
0.205534 + 0.978650i \(0.434107\pi\)
\(234\) 0 0
\(235\) 96.0000 0.0266483
\(236\) 0 0
\(237\) −3458.00 −0.947769
\(238\) 0 0
\(239\) −1700.00 −0.460100 −0.230050 0.973179i \(-0.573889\pi\)
−0.230050 + 0.973179i \(0.573889\pi\)
\(240\) 0 0
\(241\) 3460.00 0.924806 0.462403 0.886670i \(-0.346987\pi\)
0.462403 + 0.886670i \(0.346987\pi\)
\(242\) 0 0
\(243\) −4928.00 −1.30095
\(244\) 0 0
\(245\) −49.0000 −0.0127775
\(246\) 0 0
\(247\) −984.000 −0.253483
\(248\) 0 0
\(249\) −5236.00 −1.33260
\(250\) 0 0
\(251\) 265.000 0.0666400 0.0333200 0.999445i \(-0.489392\pi\)
0.0333200 + 0.999445i \(0.489392\pi\)
\(252\) 0 0
\(253\) 77.0000 0.0191342
\(254\) 0 0
\(255\) −14.0000 −0.00343809
\(256\) 0 0
\(257\) −6502.00 −1.57815 −0.789073 0.614299i \(-0.789439\pi\)
−0.789073 + 0.614299i \(0.789439\pi\)
\(258\) 0 0
\(259\) 2499.00 0.599538
\(260\) 0 0
\(261\) −2244.00 −0.532184
\(262\) 0 0
\(263\) 1398.00 0.327773 0.163887 0.986479i \(-0.447597\pi\)
0.163887 + 0.986479i \(0.447597\pi\)
\(264\) 0 0
\(265\) 430.000 0.0996781
\(266\) 0 0
\(267\) 3199.00 0.733242
\(268\) 0 0
\(269\) 3686.00 0.835462 0.417731 0.908571i \(-0.362825\pi\)
0.417731 + 0.908571i \(0.362825\pi\)
\(270\) 0 0
\(271\) 3808.00 0.853578 0.426789 0.904351i \(-0.359645\pi\)
0.426789 + 0.904351i \(0.359645\pi\)
\(272\) 0 0
\(273\) −588.000 −0.130357
\(274\) 0 0
\(275\) 1364.00 0.299099
\(276\) 0 0
\(277\) −8872.00 −1.92443 −0.962214 0.272293i \(-0.912218\pi\)
−0.962214 + 0.272293i \(0.912218\pi\)
\(278\) 0 0
\(279\) 3762.00 0.807258
\(280\) 0 0
\(281\) −2788.00 −0.591879 −0.295940 0.955207i \(-0.595633\pi\)
−0.295940 + 0.955207i \(0.595633\pi\)
\(282\) 0 0
\(283\) −160.000 −0.0336078 −0.0168039 0.999859i \(-0.505349\pi\)
−0.0168039 + 0.999859i \(0.505349\pi\)
\(284\) 0 0
\(285\) 574.000 0.119301
\(286\) 0 0
\(287\) 798.000 0.164127
\(288\) 0 0
\(289\) −4909.00 −0.999186
\(290\) 0 0
\(291\) −7259.00 −1.46230
\(292\) 0 0
\(293\) −1142.00 −0.227701 −0.113850 0.993498i \(-0.536318\pi\)
−0.113850 + 0.993498i \(0.536318\pi\)
\(294\) 0 0
\(295\) −201.000 −0.0396701
\(296\) 0 0
\(297\) 385.000 0.0752187
\(298\) 0 0
\(299\) −84.0000 −0.0162470
\(300\) 0 0
\(301\) −2408.00 −0.461112
\(302\) 0 0
\(303\) 476.000 0.0902491
\(304\) 0 0
\(305\) 2.00000 0.000375474 0
\(306\) 0 0
\(307\) 10220.0 1.89996 0.949978 0.312318i \(-0.101106\pi\)
0.949978 + 0.312318i \(0.101106\pi\)
\(308\) 0 0
\(309\) 3276.00 0.603123
\(310\) 0 0
\(311\) −4864.00 −0.886856 −0.443428 0.896310i \(-0.646238\pi\)
−0.443428 + 0.896310i \(0.646238\pi\)
\(312\) 0 0
\(313\) −3703.00 −0.668709 −0.334355 0.942447i \(-0.608518\pi\)
−0.334355 + 0.942447i \(0.608518\pi\)
\(314\) 0 0
\(315\) 154.000 0.0275458
\(316\) 0 0
\(317\) 81.0000 0.0143515 0.00717573 0.999974i \(-0.497716\pi\)
0.00717573 + 0.999974i \(0.497716\pi\)
\(318\) 0 0
\(319\) 1122.00 0.196928
\(320\) 0 0
\(321\) −11074.0 −1.92552
\(322\) 0 0
\(323\) −164.000 −0.0282514
\(324\) 0 0
\(325\) −1488.00 −0.253967
\(326\) 0 0
\(327\) 3612.00 0.610838
\(328\) 0 0
\(329\) 672.000 0.112610
\(330\) 0 0
\(331\) −2675.00 −0.444203 −0.222102 0.975024i \(-0.571292\pi\)
−0.222102 + 0.975024i \(0.571292\pi\)
\(332\) 0 0
\(333\) −7854.00 −1.29248
\(334\) 0 0
\(335\) 313.000 0.0510478
\(336\) 0 0
\(337\) 1422.00 0.229855 0.114928 0.993374i \(-0.463336\pi\)
0.114928 + 0.993374i \(0.463336\pi\)
\(338\) 0 0
\(339\) −11389.0 −1.82468
\(340\) 0 0
\(341\) −1881.00 −0.298715
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 49.0000 0.00764658
\(346\) 0 0
\(347\) −9110.00 −1.40937 −0.704684 0.709522i \(-0.748911\pi\)
−0.704684 + 0.709522i \(0.748911\pi\)
\(348\) 0 0
\(349\) −114.000 −0.0174850 −0.00874252 0.999962i \(-0.502783\pi\)
−0.00874252 + 0.999962i \(0.502783\pi\)
\(350\) 0 0
\(351\) −420.000 −0.0638688
\(352\) 0 0
\(353\) 12465.0 1.87945 0.939724 0.341934i \(-0.111082\pi\)
0.939724 + 0.341934i \(0.111082\pi\)
\(354\) 0 0
\(355\) −579.000 −0.0865637
\(356\) 0 0
\(357\) −98.0000 −0.0145286
\(358\) 0 0
\(359\) −7944.00 −1.16788 −0.583939 0.811797i \(-0.698489\pi\)
−0.583939 + 0.811797i \(0.698489\pi\)
\(360\) 0 0
\(361\) −135.000 −0.0196822
\(362\) 0 0
\(363\) 847.000 0.122468
\(364\) 0 0
\(365\) 438.000 0.0628109
\(366\) 0 0
\(367\) 1591.00 0.226293 0.113146 0.993578i \(-0.463907\pi\)
0.113146 + 0.993578i \(0.463907\pi\)
\(368\) 0 0
\(369\) −2508.00 −0.353825
\(370\) 0 0
\(371\) 3010.00 0.421217
\(372\) 0 0
\(373\) 6892.00 0.956714 0.478357 0.878166i \(-0.341233\pi\)
0.478357 + 0.878166i \(0.341233\pi\)
\(374\) 0 0
\(375\) 1743.00 0.240022
\(376\) 0 0
\(377\) −1224.00 −0.167213
\(378\) 0 0
\(379\) −3935.00 −0.533318 −0.266659 0.963791i \(-0.585920\pi\)
−0.266659 + 0.963791i \(0.585920\pi\)
\(380\) 0 0
\(381\) 19530.0 2.62612
\(382\) 0 0
\(383\) −7325.00 −0.977259 −0.488629 0.872492i \(-0.662503\pi\)
−0.488629 + 0.872492i \(0.662503\pi\)
\(384\) 0 0
\(385\) −77.0000 −0.0101929
\(386\) 0 0
\(387\) 7568.00 0.994065
\(388\) 0 0
\(389\) 8937.00 1.16484 0.582421 0.812887i \(-0.302105\pi\)
0.582421 + 0.812887i \(0.302105\pi\)
\(390\) 0 0
\(391\) −14.0000 −0.00181077
\(392\) 0 0
\(393\) −5110.00 −0.655892
\(394\) 0 0
\(395\) 494.000 0.0629262
\(396\) 0 0
\(397\) −7526.00 −0.951434 −0.475717 0.879599i \(-0.657811\pi\)
−0.475717 + 0.879599i \(0.657811\pi\)
\(398\) 0 0
\(399\) 4018.00 0.504139
\(400\) 0 0
\(401\) 6202.00 0.772352 0.386176 0.922425i \(-0.373796\pi\)
0.386176 + 0.922425i \(0.373796\pi\)
\(402\) 0 0
\(403\) 2052.00 0.253641
\(404\) 0 0
\(405\) 839.000 0.102939
\(406\) 0 0
\(407\) 3927.00 0.478266
\(408\) 0 0
\(409\) 1366.00 0.165145 0.0825726 0.996585i \(-0.473686\pi\)
0.0825726 + 0.996585i \(0.473686\pi\)
\(410\) 0 0
\(411\) −12733.0 −1.52816
\(412\) 0 0
\(413\) −1407.00 −0.167637
\(414\) 0 0
\(415\) 748.000 0.0884768
\(416\) 0 0
\(417\) 5614.00 0.659278
\(418\) 0 0
\(419\) −6384.00 −0.744341 −0.372170 0.928164i \(-0.621386\pi\)
−0.372170 + 0.928164i \(0.621386\pi\)
\(420\) 0 0
\(421\) 5534.00 0.640643 0.320321 0.947309i \(-0.396209\pi\)
0.320321 + 0.947309i \(0.396209\pi\)
\(422\) 0 0
\(423\) −2112.00 −0.242763
\(424\) 0 0
\(425\) −248.000 −0.0283053
\(426\) 0 0
\(427\) 14.0000 0.00158667
\(428\) 0 0
\(429\) −924.000 −0.103989
\(430\) 0 0
\(431\) 10740.0 1.20030 0.600148 0.799889i \(-0.295108\pi\)
0.600148 + 0.799889i \(0.295108\pi\)
\(432\) 0 0
\(433\) 16151.0 1.79253 0.896267 0.443514i \(-0.146268\pi\)
0.896267 + 0.443514i \(0.146268\pi\)
\(434\) 0 0
\(435\) 714.000 0.0786981
\(436\) 0 0
\(437\) 574.000 0.0628333
\(438\) 0 0
\(439\) −5914.00 −0.642961 −0.321480 0.946916i \(-0.604180\pi\)
−0.321480 + 0.946916i \(0.604180\pi\)
\(440\) 0 0
\(441\) 1078.00 0.116402
\(442\) 0 0
\(443\) −7237.00 −0.776163 −0.388082 0.921625i \(-0.626862\pi\)
−0.388082 + 0.921625i \(0.626862\pi\)
\(444\) 0 0
\(445\) −457.000 −0.0486829
\(446\) 0 0
\(447\) 2198.00 0.232577
\(448\) 0 0
\(449\) 9839.00 1.03415 0.517073 0.855942i \(-0.327022\pi\)
0.517073 + 0.855942i \(0.327022\pi\)
\(450\) 0 0
\(451\) 1254.00 0.130928
\(452\) 0 0
\(453\) −5362.00 −0.556134
\(454\) 0 0
\(455\) 84.0000 0.00865490
\(456\) 0 0
\(457\) −6824.00 −0.698497 −0.349249 0.937030i \(-0.613563\pi\)
−0.349249 + 0.937030i \(0.613563\pi\)
\(458\) 0 0
\(459\) −70.0000 −0.00711834
\(460\) 0 0
\(461\) 13922.0 1.40653 0.703267 0.710926i \(-0.251724\pi\)
0.703267 + 0.710926i \(0.251724\pi\)
\(462\) 0 0
\(463\) 1551.00 0.155683 0.0778413 0.996966i \(-0.475197\pi\)
0.0778413 + 0.996966i \(0.475197\pi\)
\(464\) 0 0
\(465\) −1197.00 −0.119375
\(466\) 0 0
\(467\) −10719.0 −1.06213 −0.531067 0.847330i \(-0.678209\pi\)
−0.531067 + 0.847330i \(0.678209\pi\)
\(468\) 0 0
\(469\) 2191.00 0.215716
\(470\) 0 0
\(471\) −11767.0 −1.15116
\(472\) 0 0
\(473\) −3784.00 −0.367840
\(474\) 0 0
\(475\) 10168.0 0.982189
\(476\) 0 0
\(477\) −9460.00 −0.908058
\(478\) 0 0
\(479\) 12252.0 1.16870 0.584351 0.811501i \(-0.301349\pi\)
0.584351 + 0.811501i \(0.301349\pi\)
\(480\) 0 0
\(481\) −4284.00 −0.406099
\(482\) 0 0
\(483\) 343.000 0.0323127
\(484\) 0 0
\(485\) 1037.00 0.0970881
\(486\) 0 0
\(487\) 8521.00 0.792861 0.396431 0.918065i \(-0.370249\pi\)
0.396431 + 0.918065i \(0.370249\pi\)
\(488\) 0 0
\(489\) −5068.00 −0.468677
\(490\) 0 0
\(491\) −7946.00 −0.730342 −0.365171 0.930940i \(-0.618989\pi\)
−0.365171 + 0.930940i \(0.618989\pi\)
\(492\) 0 0
\(493\) −204.000 −0.0186363
\(494\) 0 0
\(495\) 242.000 0.0219739
\(496\) 0 0
\(497\) −4053.00 −0.365799
\(498\) 0 0
\(499\) 4660.00 0.418057 0.209028 0.977910i \(-0.432970\pi\)
0.209028 + 0.977910i \(0.432970\pi\)
\(500\) 0 0
\(501\) 8694.00 0.775288
\(502\) 0 0
\(503\) 18880.0 1.67359 0.836797 0.547514i \(-0.184426\pi\)
0.836797 + 0.547514i \(0.184426\pi\)
\(504\) 0 0
\(505\) −68.0000 −0.00599200
\(506\) 0 0
\(507\) −14371.0 −1.25885
\(508\) 0 0
\(509\) −1999.00 −0.174075 −0.0870374 0.996205i \(-0.527740\pi\)
−0.0870374 + 0.996205i \(0.527740\pi\)
\(510\) 0 0
\(511\) 3066.00 0.265424
\(512\) 0 0
\(513\) 2870.00 0.247005
\(514\) 0 0
\(515\) −468.000 −0.0400438
\(516\) 0 0
\(517\) 1056.00 0.0898314
\(518\) 0 0
\(519\) 17024.0 1.43983
\(520\) 0 0
\(521\) 18063.0 1.51891 0.759457 0.650557i \(-0.225465\pi\)
0.759457 + 0.650557i \(0.225465\pi\)
\(522\) 0 0
\(523\) −7712.00 −0.644784 −0.322392 0.946606i \(-0.604487\pi\)
−0.322392 + 0.946606i \(0.604487\pi\)
\(524\) 0 0
\(525\) 6076.00 0.505102
\(526\) 0 0
\(527\) 342.000 0.0282690
\(528\) 0 0
\(529\) −12118.0 −0.995973
\(530\) 0 0
\(531\) 4422.00 0.361391
\(532\) 0 0
\(533\) −1368.00 −0.111172
\(534\) 0 0
\(535\) 1582.00 0.127843
\(536\) 0 0
\(537\) 14245.0 1.14472
\(538\) 0 0
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −704.000 −0.0559470 −0.0279735 0.999609i \(-0.508905\pi\)
−0.0279735 + 0.999609i \(0.508905\pi\)
\(542\) 0 0
\(543\) 9835.00 0.777275
\(544\) 0 0
\(545\) −516.000 −0.0405560
\(546\) 0 0
\(547\) 20680.0 1.61648 0.808239 0.588855i \(-0.200421\pi\)
0.808239 + 0.588855i \(0.200421\pi\)
\(548\) 0 0
\(549\) −44.0000 −0.00342054
\(550\) 0 0
\(551\) 8364.00 0.646676
\(552\) 0 0
\(553\) 3458.00 0.265912
\(554\) 0 0
\(555\) 2499.00 0.191129
\(556\) 0 0
\(557\) −19266.0 −1.46558 −0.732789 0.680456i \(-0.761782\pi\)
−0.732789 + 0.680456i \(0.761782\pi\)
\(558\) 0 0
\(559\) 4128.00 0.312336
\(560\) 0 0
\(561\) −154.000 −0.0115898
\(562\) 0 0
\(563\) 18956.0 1.41901 0.709503 0.704703i \(-0.248920\pi\)
0.709503 + 0.704703i \(0.248920\pi\)
\(564\) 0 0
\(565\) 1627.00 0.121148
\(566\) 0 0
\(567\) 5873.00 0.434996
\(568\) 0 0
\(569\) 13726.0 1.01129 0.505645 0.862742i \(-0.331255\pi\)
0.505645 + 0.862742i \(0.331255\pi\)
\(570\) 0 0
\(571\) −8620.00 −0.631761 −0.315881 0.948799i \(-0.602300\pi\)
−0.315881 + 0.948799i \(0.602300\pi\)
\(572\) 0 0
\(573\) 11697.0 0.852791
\(574\) 0 0
\(575\) 868.000 0.0629532
\(576\) 0 0
\(577\) −5761.00 −0.415656 −0.207828 0.978165i \(-0.566639\pi\)
−0.207828 + 0.978165i \(0.566639\pi\)
\(578\) 0 0
\(579\) −14462.0 −1.03803
\(580\) 0 0
\(581\) 5236.00 0.373883
\(582\) 0 0
\(583\) 4730.00 0.336015
\(584\) 0 0
\(585\) −264.000 −0.0186582
\(586\) 0 0
\(587\) −13188.0 −0.927303 −0.463652 0.886018i \(-0.653461\pi\)
−0.463652 + 0.886018i \(0.653461\pi\)
\(588\) 0 0
\(589\) −14022.0 −0.980928
\(590\) 0 0
\(591\) 24094.0 1.67698
\(592\) 0 0
\(593\) 26766.0 1.85354 0.926769 0.375632i \(-0.122574\pi\)
0.926769 + 0.375632i \(0.122574\pi\)
\(594\) 0 0
\(595\) 14.0000 0.000964612 0
\(596\) 0 0
\(597\) −21056.0 −1.44349
\(598\) 0 0
\(599\) −20664.0 −1.40953 −0.704765 0.709441i \(-0.748947\pi\)
−0.704765 + 0.709441i \(0.748947\pi\)
\(600\) 0 0
\(601\) 23656.0 1.60557 0.802786 0.596268i \(-0.203350\pi\)
0.802786 + 0.596268i \(0.203350\pi\)
\(602\) 0 0
\(603\) −6886.00 −0.465041
\(604\) 0 0
\(605\) −121.000 −0.00813116
\(606\) 0 0
\(607\) 18674.0 1.24869 0.624345 0.781149i \(-0.285366\pi\)
0.624345 + 0.781149i \(0.285366\pi\)
\(608\) 0 0
\(609\) 4998.00 0.332560
\(610\) 0 0
\(611\) −1152.00 −0.0762765
\(612\) 0 0
\(613\) 7248.00 0.477559 0.238780 0.971074i \(-0.423253\pi\)
0.238780 + 0.971074i \(0.423253\pi\)
\(614\) 0 0
\(615\) 798.000 0.0523227
\(616\) 0 0
\(617\) 2066.00 0.134804 0.0674020 0.997726i \(-0.478529\pi\)
0.0674020 + 0.997726i \(0.478529\pi\)
\(618\) 0 0
\(619\) −1997.00 −0.129671 −0.0648354 0.997896i \(-0.520652\pi\)
−0.0648354 + 0.997896i \(0.520652\pi\)
\(620\) 0 0
\(621\) 245.000 0.0158317
\(622\) 0 0
\(623\) −3199.00 −0.205723
\(624\) 0 0
\(625\) 15251.0 0.976064
\(626\) 0 0
\(627\) 6314.00 0.402164
\(628\) 0 0
\(629\) −714.000 −0.0452608
\(630\) 0 0
\(631\) 5129.00 0.323585 0.161793 0.986825i \(-0.448272\pi\)
0.161793 + 0.986825i \(0.448272\pi\)
\(632\) 0 0
\(633\) 5446.00 0.341957
\(634\) 0 0
\(635\) −2790.00 −0.174359
\(636\) 0 0
\(637\) 588.000 0.0365736
\(638\) 0 0
\(639\) 12738.0 0.788588
\(640\) 0 0
\(641\) −15129.0 −0.932230 −0.466115 0.884724i \(-0.654347\pi\)
−0.466115 + 0.884724i \(0.654347\pi\)
\(642\) 0 0
\(643\) −2807.00 −0.172158 −0.0860788 0.996288i \(-0.527434\pi\)
−0.0860788 + 0.996288i \(0.527434\pi\)
\(644\) 0 0
\(645\) −2408.00 −0.147000
\(646\) 0 0
\(647\) 20137.0 1.22360 0.611798 0.791014i \(-0.290446\pi\)
0.611798 + 0.791014i \(0.290446\pi\)
\(648\) 0 0
\(649\) −2211.00 −0.133728
\(650\) 0 0
\(651\) −8379.00 −0.504453
\(652\) 0 0
\(653\) 26247.0 1.57293 0.786466 0.617634i \(-0.211909\pi\)
0.786466 + 0.617634i \(0.211909\pi\)
\(654\) 0 0
\(655\) 730.000 0.0435473
\(656\) 0 0
\(657\) −9636.00 −0.572201
\(658\) 0 0
\(659\) 28074.0 1.65950 0.829748 0.558138i \(-0.188484\pi\)
0.829748 + 0.558138i \(0.188484\pi\)
\(660\) 0 0
\(661\) 2355.00 0.138576 0.0692881 0.997597i \(-0.477927\pi\)
0.0692881 + 0.997597i \(0.477927\pi\)
\(662\) 0 0
\(663\) 168.000 0.00984099
\(664\) 0 0
\(665\) −574.000 −0.0334718
\(666\) 0 0
\(667\) 714.000 0.0414486
\(668\) 0 0
\(669\) 19173.0 1.10803
\(670\) 0 0
\(671\) 22.0000 0.00126572
\(672\) 0 0
\(673\) −19180.0 −1.09857 −0.549283 0.835637i \(-0.685099\pi\)
−0.549283 + 0.835637i \(0.685099\pi\)
\(674\) 0 0
\(675\) 4340.00 0.247477
\(676\) 0 0
\(677\) −27482.0 −1.56015 −0.780073 0.625688i \(-0.784818\pi\)
−0.780073 + 0.625688i \(0.784818\pi\)
\(678\) 0 0
\(679\) 7259.00 0.410272
\(680\) 0 0
\(681\) 5124.00 0.288329
\(682\) 0 0
\(683\) 24468.0 1.37078 0.685389 0.728177i \(-0.259632\pi\)
0.685389 + 0.728177i \(0.259632\pi\)
\(684\) 0 0
\(685\) 1819.00 0.101460
\(686\) 0 0
\(687\) −5761.00 −0.319936
\(688\) 0 0
\(689\) −5160.00 −0.285313
\(690\) 0 0
\(691\) −147.000 −0.00809283 −0.00404641 0.999992i \(-0.501288\pi\)
−0.00404641 + 0.999992i \(0.501288\pi\)
\(692\) 0 0
\(693\) 1694.00 0.0928568
\(694\) 0 0
\(695\) −802.000 −0.0437721
\(696\) 0 0
\(697\) −228.000 −0.0123904
\(698\) 0 0
\(699\) 10234.0 0.553770
\(700\) 0 0
\(701\) 5760.00 0.310346 0.155173 0.987887i \(-0.450407\pi\)
0.155173 + 0.987887i \(0.450407\pi\)
\(702\) 0 0
\(703\) 29274.0 1.57054
\(704\) 0 0
\(705\) 672.000 0.0358993
\(706\) 0 0
\(707\) −476.000 −0.0253208
\(708\) 0 0
\(709\) 11775.0 0.623723 0.311861 0.950128i \(-0.399048\pi\)
0.311861 + 0.950128i \(0.399048\pi\)
\(710\) 0 0
\(711\) −10868.0 −0.573252
\(712\) 0 0
\(713\) −1197.00 −0.0628724
\(714\) 0 0
\(715\) 132.000 0.00690422
\(716\) 0 0
\(717\) −11900.0 −0.619824
\(718\) 0 0
\(719\) 21687.0 1.12488 0.562440 0.826838i \(-0.309863\pi\)
0.562440 + 0.826838i \(0.309863\pi\)
\(720\) 0 0
\(721\) −3276.00 −0.169216
\(722\) 0 0
\(723\) 24220.0 1.24585
\(724\) 0 0
\(725\) 12648.0 0.647910
\(726\) 0 0
\(727\) −33585.0 −1.71334 −0.856670 0.515864i \(-0.827471\pi\)
−0.856670 + 0.515864i \(0.827471\pi\)
\(728\) 0 0
\(729\) −11843.0 −0.601687
\(730\) 0 0
\(731\) 688.000 0.0348107
\(732\) 0 0
\(733\) −32404.0 −1.63284 −0.816418 0.577461i \(-0.804044\pi\)
−0.816418 + 0.577461i \(0.804044\pi\)
\(734\) 0 0
\(735\) −343.000 −0.0172133
\(736\) 0 0
\(737\) 3443.00 0.172082
\(738\) 0 0
\(739\) −6038.00 −0.300557 −0.150278 0.988644i \(-0.548017\pi\)
−0.150278 + 0.988644i \(0.548017\pi\)
\(740\) 0 0
\(741\) −6888.00 −0.341480
\(742\) 0 0
\(743\) 3656.00 0.180519 0.0902595 0.995918i \(-0.471230\pi\)
0.0902595 + 0.995918i \(0.471230\pi\)
\(744\) 0 0
\(745\) −314.000 −0.0154417
\(746\) 0 0
\(747\) −16456.0 −0.806015
\(748\) 0 0
\(749\) 11074.0 0.540234
\(750\) 0 0
\(751\) 4915.00 0.238816 0.119408 0.992845i \(-0.461900\pi\)
0.119408 + 0.992845i \(0.461900\pi\)
\(752\) 0 0
\(753\) 1855.00 0.0897742
\(754\) 0 0
\(755\) 766.000 0.0369240
\(756\) 0 0
\(757\) −19186.0 −0.921172 −0.460586 0.887615i \(-0.652361\pi\)
−0.460586 + 0.887615i \(0.652361\pi\)
\(758\) 0 0
\(759\) 539.000 0.0257766
\(760\) 0 0
\(761\) 2448.00 0.116610 0.0583048 0.998299i \(-0.481430\pi\)
0.0583048 + 0.998299i \(0.481430\pi\)
\(762\) 0 0
\(763\) −3612.00 −0.171380
\(764\) 0 0
\(765\) −44.0000 −0.00207951
\(766\) 0 0
\(767\) 2412.00 0.113549
\(768\) 0 0
\(769\) −8312.00 −0.389777 −0.194888 0.980825i \(-0.562434\pi\)
−0.194888 + 0.980825i \(0.562434\pi\)
\(770\) 0 0
\(771\) −45514.0 −2.12600
\(772\) 0 0
\(773\) −17598.0 −0.818831 −0.409415 0.912348i \(-0.634267\pi\)
−0.409415 + 0.912348i \(0.634267\pi\)
\(774\) 0 0
\(775\) −21204.0 −0.982800
\(776\) 0 0
\(777\) 17493.0 0.807668
\(778\) 0 0
\(779\) 9348.00 0.429945
\(780\) 0 0
\(781\) −6369.00 −0.291806
\(782\) 0 0
\(783\) 3570.00 0.162939
\(784\) 0 0
\(785\) 1681.00 0.0764299
\(786\) 0 0
\(787\) 7982.00 0.361534 0.180767 0.983526i \(-0.442142\pi\)
0.180767 + 0.983526i \(0.442142\pi\)
\(788\) 0 0
\(789\) 9786.00 0.441560
\(790\) 0 0
\(791\) 11389.0 0.511942
\(792\) 0 0
\(793\) −24.0000 −0.00107474
\(794\) 0 0
\(795\) 3010.00 0.134281
\(796\) 0 0
\(797\) −12489.0 −0.555060 −0.277530 0.960717i \(-0.589516\pi\)
−0.277530 + 0.960717i \(0.589516\pi\)
\(798\) 0 0
\(799\) −192.000 −0.00850122
\(800\) 0 0
\(801\) 10054.0 0.443496
\(802\) 0 0
\(803\) 4818.00 0.211735
\(804\) 0 0
\(805\) −49.0000 −0.00214537
\(806\) 0 0
\(807\) 25802.0 1.12549
\(808\) 0 0
\(809\) 31966.0 1.38920 0.694601 0.719395i \(-0.255581\pi\)
0.694601 + 0.719395i \(0.255581\pi\)
\(810\) 0 0
\(811\) −20786.0 −0.899994 −0.449997 0.893030i \(-0.648575\pi\)
−0.449997 + 0.893030i \(0.648575\pi\)
\(812\) 0 0
\(813\) 26656.0 1.14990
\(814\) 0 0
\(815\) 724.000 0.0311173
\(816\) 0 0
\(817\) −28208.0 −1.20792
\(818\) 0 0
\(819\) −1848.00 −0.0788454
\(820\) 0 0
\(821\) −33038.0 −1.40443 −0.702213 0.711967i \(-0.747805\pi\)
−0.702213 + 0.711967i \(0.747805\pi\)
\(822\) 0 0
\(823\) 6877.00 0.291272 0.145636 0.989338i \(-0.453477\pi\)
0.145636 + 0.989338i \(0.453477\pi\)
\(824\) 0 0
\(825\) 9548.00 0.402932
\(826\) 0 0
\(827\) −28964.0 −1.21787 −0.608934 0.793221i \(-0.708403\pi\)
−0.608934 + 0.793221i \(0.708403\pi\)
\(828\) 0 0
\(829\) −30365.0 −1.27216 −0.636080 0.771623i \(-0.719445\pi\)
−0.636080 + 0.771623i \(0.719445\pi\)
\(830\) 0 0
\(831\) −62104.0 −2.59250
\(832\) 0 0
\(833\) 98.0000 0.00407623
\(834\) 0 0
\(835\) −1242.00 −0.0514745
\(836\) 0 0
\(837\) −5985.00 −0.247159
\(838\) 0 0
\(839\) −27393.0 −1.12719 −0.563594 0.826052i \(-0.690582\pi\)
−0.563594 + 0.826052i \(0.690582\pi\)
\(840\) 0 0
\(841\) −13985.0 −0.573414
\(842\) 0 0
\(843\) −19516.0 −0.797351
\(844\) 0 0
\(845\) 2053.00 0.0835803
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 0 0
\(849\) −1120.00 −0.0452748
\(850\) 0 0
\(851\) 2499.00 0.100663
\(852\) 0 0
\(853\) −38994.0 −1.56522 −0.782608 0.622515i \(-0.786111\pi\)
−0.782608 + 0.622515i \(0.786111\pi\)
\(854\) 0 0
\(855\) 1804.00 0.0721585
\(856\) 0 0
\(857\) 2564.00 0.102199 0.0510995 0.998694i \(-0.483727\pi\)
0.0510995 + 0.998694i \(0.483727\pi\)
\(858\) 0 0
\(859\) −21643.0 −0.859662 −0.429831 0.902909i \(-0.641427\pi\)
−0.429831 + 0.902909i \(0.641427\pi\)
\(860\) 0 0
\(861\) 5586.00 0.221104
\(862\) 0 0
\(863\) −10988.0 −0.433414 −0.216707 0.976237i \(-0.569532\pi\)
−0.216707 + 0.976237i \(0.569532\pi\)
\(864\) 0 0
\(865\) −2432.00 −0.0955959
\(866\) 0 0
\(867\) −34363.0 −1.34605
\(868\) 0 0
\(869\) 5434.00 0.212124
\(870\) 0 0
\(871\) −3756.00 −0.146116
\(872\) 0 0
\(873\) −22814.0 −0.884464
\(874\) 0 0
\(875\) −1743.00 −0.0673419
\(876\) 0 0
\(877\) 23082.0 0.888739 0.444369 0.895844i \(-0.353428\pi\)
0.444369 + 0.895844i \(0.353428\pi\)
\(878\) 0 0
\(879\) −7994.00 −0.306747
\(880\) 0 0
\(881\) 29107.0 1.11310 0.556549 0.830815i \(-0.312125\pi\)
0.556549 + 0.830815i \(0.312125\pi\)
\(882\) 0 0
\(883\) −40852.0 −1.55694 −0.778471 0.627681i \(-0.784004\pi\)
−0.778471 + 0.627681i \(0.784004\pi\)
\(884\) 0 0
\(885\) −1407.00 −0.0534416
\(886\) 0 0
\(887\) 35034.0 1.32619 0.663093 0.748537i \(-0.269243\pi\)
0.663093 + 0.748537i \(0.269243\pi\)
\(888\) 0 0
\(889\) −19530.0 −0.736800
\(890\) 0 0
\(891\) 9229.00 0.347007
\(892\) 0 0
\(893\) 7872.00 0.294990
\(894\) 0 0
\(895\) −2035.00 −0.0760028
\(896\) 0 0
\(897\) −588.000 −0.0218871
\(898\) 0 0
\(899\) −17442.0 −0.647078
\(900\) 0 0
\(901\) −860.000 −0.0317988
\(902\) 0 0
\(903\) −16856.0 −0.621188
\(904\) 0 0
\(905\) −1405.00 −0.0516064
\(906\) 0 0
\(907\) −50728.0 −1.85711 −0.928553 0.371199i \(-0.878947\pi\)
−0.928553 + 0.371199i \(0.878947\pi\)
\(908\) 0 0
\(909\) 1496.00 0.0545866
\(910\) 0 0
\(911\) −20088.0 −0.730565 −0.365283 0.930897i \(-0.619028\pi\)
−0.365283 + 0.930897i \(0.619028\pi\)
\(912\) 0 0
\(913\) 8228.00 0.298255
\(914\) 0 0
\(915\) 14.0000 0.000505820 0
\(916\) 0 0
\(917\) 5110.00 0.184021
\(918\) 0 0
\(919\) −11504.0 −0.412929 −0.206465 0.978454i \(-0.566196\pi\)
−0.206465 + 0.978454i \(0.566196\pi\)
\(920\) 0 0
\(921\) 71540.0 2.55953
\(922\) 0 0
\(923\) 6948.00 0.247775
\(924\) 0 0
\(925\) 44268.0 1.57354
\(926\) 0 0
\(927\) 10296.0 0.364795
\(928\) 0 0
\(929\) −7134.00 −0.251947 −0.125974 0.992034i \(-0.540205\pi\)
−0.125974 + 0.992034i \(0.540205\pi\)
\(930\) 0 0
\(931\) −4018.00 −0.141444
\(932\) 0 0
\(933\) −34048.0 −1.19473
\(934\) 0 0
\(935\) 22.0000 0.000769494 0
\(936\) 0 0
\(937\) 10036.0 0.349906 0.174953 0.984577i \(-0.444023\pi\)
0.174953 + 0.984577i \(0.444023\pi\)
\(938\) 0 0
\(939\) −25921.0 −0.900852
\(940\) 0 0
\(941\) −54438.0 −1.88590 −0.942948 0.332940i \(-0.891959\pi\)
−0.942948 + 0.332940i \(0.891959\pi\)
\(942\) 0 0
\(943\) 798.000 0.0275572
\(944\) 0 0
\(945\) −245.000 −0.00843370
\(946\) 0 0
\(947\) 15975.0 0.548171 0.274085 0.961705i \(-0.411625\pi\)
0.274085 + 0.961705i \(0.411625\pi\)
\(948\) 0 0
\(949\) −5256.00 −0.179786
\(950\) 0 0
\(951\) 567.000 0.0193336
\(952\) 0 0
\(953\) 33996.0 1.15555 0.577775 0.816196i \(-0.303921\pi\)
0.577775 + 0.816196i \(0.303921\pi\)
\(954\) 0 0
\(955\) −1671.00 −0.0566202
\(956\) 0 0
\(957\) 7854.00 0.265291
\(958\) 0 0
\(959\) 12733.0 0.428749
\(960\) 0 0
\(961\) −550.000 −0.0184620
\(962\) 0 0
\(963\) −34804.0 −1.16463
\(964\) 0 0
\(965\) 2066.00 0.0689191
\(966\) 0 0
\(967\) −40966.0 −1.36233 −0.681167 0.732128i \(-0.738527\pi\)
−0.681167 + 0.732128i \(0.738527\pi\)
\(968\) 0 0
\(969\) −1148.00 −0.0380589
\(970\) 0 0
\(971\) −23793.0 −0.786358 −0.393179 0.919462i \(-0.628625\pi\)
−0.393179 + 0.919462i \(0.628625\pi\)
\(972\) 0 0
\(973\) −5614.00 −0.184971
\(974\) 0 0
\(975\) −10416.0 −0.342132
\(976\) 0 0
\(977\) −439.000 −0.0143755 −0.00718775 0.999974i \(-0.502288\pi\)
−0.00718775 + 0.999974i \(0.502288\pi\)
\(978\) 0 0
\(979\) −5027.00 −0.164110
\(980\) 0 0
\(981\) 11352.0 0.369461
\(982\) 0 0
\(983\) 7863.00 0.255128 0.127564 0.991830i \(-0.459284\pi\)
0.127564 + 0.991830i \(0.459284\pi\)
\(984\) 0 0
\(985\) −3442.00 −0.111341
\(986\) 0 0
\(987\) 4704.00 0.151702
\(988\) 0 0
\(989\) −2408.00 −0.0774216
\(990\) 0 0
\(991\) 46360.0 1.48605 0.743024 0.669265i \(-0.233391\pi\)
0.743024 + 0.669265i \(0.233391\pi\)
\(992\) 0 0
\(993\) −18725.0 −0.598409
\(994\) 0 0
\(995\) 3008.00 0.0958392
\(996\) 0 0
\(997\) 5860.00 0.186147 0.0930733 0.995659i \(-0.470331\pi\)
0.0930733 + 0.995659i \(0.470331\pi\)
\(998\) 0 0
\(999\) 12495.0 0.395720
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.4.a.h.1.1 1
4.3 odd 2 308.4.a.a.1.1 1
28.27 even 2 2156.4.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.4.a.a.1.1 1 4.3 odd 2
1232.4.a.h.1.1 1 1.1 even 1 trivial
2156.4.a.c.1.1 1 28.27 even 2