Properties

Label 1232.4.a.c
Level $1232$
Weight $4$
Character orbit 1232.a
Self dual yes
Analytic conductor $72.690$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,4,Mod(1,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.6903531271\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 308)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 4 q^{3} - 12 q^{5} - 7 q^{7} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{3} - 12 q^{5} - 7 q^{7} - 11 q^{9} - 11 q^{11} - 10 q^{13} + 48 q^{15} + 24 q^{17} + 94 q^{19} + 28 q^{21} + 180 q^{23} + 19 q^{25} + 152 q^{27} + 30 q^{29} + 94 q^{31} + 44 q^{33} + 84 q^{35} - 214 q^{37} + 40 q^{39} - 48 q^{41} - 8 q^{43} + 132 q^{45} - 30 q^{47} + 49 q^{49} - 96 q^{51} + 54 q^{53} + 132 q^{55} - 376 q^{57} - 360 q^{59} - 178 q^{61} + 77 q^{63} + 120 q^{65} + 292 q^{67} - 720 q^{69} - 312 q^{71} + 728 q^{73} - 76 q^{75} + 77 q^{77} + 1288 q^{79} - 311 q^{81} - 66 q^{83} - 288 q^{85} - 120 q^{87} - 390 q^{89} + 70 q^{91} - 376 q^{93} - 1128 q^{95} - 1510 q^{97} + 121 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −4.00000 0 −12.0000 0 −7.00000 0 −11.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1232.4.a.c 1
4.b odd 2 1 308.4.a.b 1
28.d even 2 1 2156.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
308.4.a.b 1 4.b odd 2 1
1232.4.a.c 1 1.a even 1 1 trivial
2156.4.a.a 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1232))\):

\( T_{3} + 4 \) Copy content Toggle raw display
\( T_{5} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 4 \) Copy content Toggle raw display
$5$ \( T + 12 \) Copy content Toggle raw display
$7$ \( T + 7 \) Copy content Toggle raw display
$11$ \( T + 11 \) Copy content Toggle raw display
$13$ \( T + 10 \) Copy content Toggle raw display
$17$ \( T - 24 \) Copy content Toggle raw display
$19$ \( T - 94 \) Copy content Toggle raw display
$23$ \( T - 180 \) Copy content Toggle raw display
$29$ \( T - 30 \) Copy content Toggle raw display
$31$ \( T - 94 \) Copy content Toggle raw display
$37$ \( T + 214 \) Copy content Toggle raw display
$41$ \( T + 48 \) Copy content Toggle raw display
$43$ \( T + 8 \) Copy content Toggle raw display
$47$ \( T + 30 \) Copy content Toggle raw display
$53$ \( T - 54 \) Copy content Toggle raw display
$59$ \( T + 360 \) Copy content Toggle raw display
$61$ \( T + 178 \) Copy content Toggle raw display
$67$ \( T - 292 \) Copy content Toggle raw display
$71$ \( T + 312 \) Copy content Toggle raw display
$73$ \( T - 728 \) Copy content Toggle raw display
$79$ \( T - 1288 \) Copy content Toggle raw display
$83$ \( T + 66 \) Copy content Toggle raw display
$89$ \( T + 390 \) Copy content Toggle raw display
$97$ \( T + 1510 \) Copy content Toggle raw display
show more
show less