# Properties

 Label 1232.2.q.g Level $1232$ Weight $2$ Character orbit 1232.q Analytic conductor $9.838$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1232,2,Mod(177,1232)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1232, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1232.177");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1232 = 2^{4} \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1232.q (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$9.83756952902$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{7})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} + 7x^{2} + 49$$ x^4 + 7*x^2 + 49 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 154) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_1 q^{3} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{5} + ( - \beta_{3} - \beta_1) q^{7} + 4 \beta_{2} q^{9}+O(q^{10})$$ q + b1 * q^3 + (-b3 + b2 - b1) * q^5 + (-b3 - b1) * q^7 + 4*b2 * q^9 $$q + \beta_1 q^{3} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{5} + ( - \beta_{3} - \beta_1) q^{7} + 4 \beta_{2} q^{9} + (\beta_{2} + 1) q^{11} + 5 q^{13} + (\beta_{3} + 7) q^{15} + ( - 6 \beta_{2} - 6) q^{17} + (\beta_{3} + 3 \beta_{2} + \beta_1) q^{19} + 7 q^{21} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{23} + ( - 3 \beta_{2} + 2 \beta_1 - 3) q^{25} + \beta_{3} q^{27} + ( - 2 \beta_{3} + 1) q^{29} + ( - 4 \beta_{2} - 4) q^{31} + (\beta_{3} + \beta_1) q^{33} + ( - 7 \beta_{2} + \beta_1 - 7) q^{35} + (\beta_{3} + \beta_{2} + \beta_1) q^{37} + 5 \beta_1 q^{39} + ( - 3 \beta_{3} + 3) q^{41} + 4 q^{43} + ( - 4 \beta_{2} + 4 \beta_1 - 4) q^{45} + (2 \beta_{3} - 8 \beta_{2} + 2 \beta_1) q^{47} + ( - 7 \beta_{2} - 7) q^{49} + ( - 6 \beta_{3} - 6 \beta_1) q^{51} + (\beta_{2} - \beta_1 + 1) q^{53} + ( - \beta_{3} - 1) q^{55} + (3 \beta_{3} - 7) q^{57} + (2 \beta_{2} + \beta_1 + 2) q^{59} + (2 \beta_{3} + 9 \beta_{2} + 2 \beta_1) q^{61} + 4 \beta_1 q^{63} + ( - 5 \beta_{3} + 5 \beta_{2} - 5 \beta_1) q^{65} + ( - 4 \beta_{2} - 3 \beta_1 - 4) q^{67} + (\beta_{3} + 7) q^{69} + ( - \beta_{3} - 7) q^{71} + ( - 3 \beta_{2} + \beta_1 - 3) q^{73} + ( - 3 \beta_{3} + 14 \beta_{2} - 3 \beta_1) q^{75} - \beta_{3} q^{77} + (\beta_{3} + \beta_1) q^{79} + (5 \beta_{2} + 5) q^{81} + ( - 2 \beta_{3} - 8) q^{83} + (6 \beta_{3} + 6) q^{85} + (14 \beta_{2} + \beta_1 + 14) q^{87} + (4 \beta_{3} - 4 \beta_{2} + 4 \beta_1) q^{89} + ( - 5 \beta_{3} - 5 \beta_1) q^{91} + ( - 4 \beta_{3} - 4 \beta_1) q^{93} + (4 \beta_{2} + 2 \beta_1 + 4) q^{95} + (2 \beta_{3} - 11) q^{97} - 4 q^{99}+O(q^{100})$$ q + b1 * q^3 + (-b3 + b2 - b1) * q^5 + (-b3 - b1) * q^7 + 4*b2 * q^9 + (b2 + 1) * q^11 + 5 * q^13 + (b3 + 7) * q^15 + (-6*b2 - 6) * q^17 + (b3 + 3*b2 + b1) * q^19 + 7 * q^21 + (-b3 + b2 - b1) * q^23 + (-3*b2 + 2*b1 - 3) * q^25 + b3 * q^27 + (-2*b3 + 1) * q^29 + (-4*b2 - 4) * q^31 + (b3 + b1) * q^33 + (-7*b2 + b1 - 7) * q^35 + (b3 + b2 + b1) * q^37 + 5*b1 * q^39 + (-3*b3 + 3) * q^41 + 4 * q^43 + (-4*b2 + 4*b1 - 4) * q^45 + (2*b3 - 8*b2 + 2*b1) * q^47 + (-7*b2 - 7) * q^49 + (-6*b3 - 6*b1) * q^51 + (b2 - b1 + 1) * q^53 + (-b3 - 1) * q^55 + (3*b3 - 7) * q^57 + (2*b2 + b1 + 2) * q^59 + (2*b3 + 9*b2 + 2*b1) * q^61 + 4*b1 * q^63 + (-5*b3 + 5*b2 - 5*b1) * q^65 + (-4*b2 - 3*b1 - 4) * q^67 + (b3 + 7) * q^69 + (-b3 - 7) * q^71 + (-3*b2 + b1 - 3) * q^73 + (-3*b3 + 14*b2 - 3*b1) * q^75 - b3 * q^77 + (b3 + b1) * q^79 + (5*b2 + 5) * q^81 + (-2*b3 - 8) * q^83 + (6*b3 + 6) * q^85 + (14*b2 + b1 + 14) * q^87 + (4*b3 - 4*b2 + 4*b1) * q^89 + (-5*b3 - 5*b1) * q^91 + (-4*b3 - 4*b1) * q^93 + (4*b2 + 2*b1 + 4) * q^95 + (2*b3 - 11) * q^97 - 4 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 2 q^{5} - 8 q^{9}+O(q^{10})$$ 4 * q - 2 * q^5 - 8 * q^9 $$4 q - 2 q^{5} - 8 q^{9} + 2 q^{11} + 20 q^{13} + 28 q^{15} - 12 q^{17} - 6 q^{19} + 28 q^{21} - 2 q^{23} - 6 q^{25} + 4 q^{29} - 8 q^{31} - 14 q^{35} - 2 q^{37} + 12 q^{41} + 16 q^{43} - 8 q^{45} + 16 q^{47} - 14 q^{49} + 2 q^{53} - 4 q^{55} - 28 q^{57} + 4 q^{59} - 18 q^{61} - 10 q^{65} - 8 q^{67} + 28 q^{69} - 28 q^{71} - 6 q^{73} - 28 q^{75} + 10 q^{81} - 32 q^{83} + 24 q^{85} + 28 q^{87} + 8 q^{89} + 8 q^{95} - 44 q^{97} - 16 q^{99}+O(q^{100})$$ 4 * q - 2 * q^5 - 8 * q^9 + 2 * q^11 + 20 * q^13 + 28 * q^15 - 12 * q^17 - 6 * q^19 + 28 * q^21 - 2 * q^23 - 6 * q^25 + 4 * q^29 - 8 * q^31 - 14 * q^35 - 2 * q^37 + 12 * q^41 + 16 * q^43 - 8 * q^45 + 16 * q^47 - 14 * q^49 + 2 * q^53 - 4 * q^55 - 28 * q^57 + 4 * q^59 - 18 * q^61 - 10 * q^65 - 8 * q^67 + 28 * q^69 - 28 * q^71 - 6 * q^73 - 28 * q^75 + 10 * q^81 - 32 * q^83 + 24 * q^85 + 28 * q^87 + 8 * q^89 + 8 * q^95 - 44 * q^97 - 16 * q^99

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 7x^{2} + 49$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$( \nu^{2} ) / 7$$ (v^2) / 7 $$\beta_{3}$$ $$=$$ $$( \nu^{3} ) / 7$$ (v^3) / 7
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$7\beta_{2}$$ 7*b2 $$\nu^{3}$$ $$=$$ $$7\beta_{3}$$ 7*b3

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1232\mathbb{Z}\right)^\times$$.

 $$n$$ $$309$$ $$353$$ $$463$$ $$673$$ $$\chi(n)$$ $$1$$ $$\beta_{2}$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
177.1
 −1.32288 − 2.29129i 1.32288 + 2.29129i −1.32288 + 2.29129i 1.32288 − 2.29129i
0 −1.32288 2.29129i 0 −1.82288 + 3.15731i 0 −1.32288 + 2.29129i 0 −2.00000 + 3.46410i 0
177.2 0 1.32288 + 2.29129i 0 0.822876 1.42526i 0 1.32288 2.29129i 0 −2.00000 + 3.46410i 0
529.1 0 −1.32288 + 2.29129i 0 −1.82288 3.15731i 0 −1.32288 2.29129i 0 −2.00000 3.46410i 0
529.2 0 1.32288 2.29129i 0 0.822876 + 1.42526i 0 1.32288 + 2.29129i 0 −2.00000 3.46410i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1232.2.q.g 4
4.b odd 2 1 154.2.e.f 4
7.c even 3 1 inner 1232.2.q.g 4
7.c even 3 1 8624.2.a.ca 2
7.d odd 6 1 8624.2.a.bk 2
12.b even 2 1 1386.2.k.s 4
28.d even 2 1 1078.2.e.v 4
28.f even 6 1 1078.2.a.n 2
28.f even 6 1 1078.2.e.v 4
28.g odd 6 1 154.2.e.f 4
28.g odd 6 1 1078.2.a.s 2
84.j odd 6 1 9702.2.a.dr 2
84.n even 6 1 1386.2.k.s 4
84.n even 6 1 9702.2.a.cz 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.2.e.f 4 4.b odd 2 1
154.2.e.f 4 28.g odd 6 1
1078.2.a.n 2 28.f even 6 1
1078.2.a.s 2 28.g odd 6 1
1078.2.e.v 4 28.d even 2 1
1078.2.e.v 4 28.f even 6 1
1232.2.q.g 4 1.a even 1 1 trivial
1232.2.q.g 4 7.c even 3 1 inner
1386.2.k.s 4 12.b even 2 1
1386.2.k.s 4 84.n even 6 1
8624.2.a.bk 2 7.d odd 6 1
8624.2.a.ca 2 7.c even 3 1
9702.2.a.cz 2 84.n even 6 1
9702.2.a.dr 2 84.j odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1232, [\chi])$$:

 $$T_{3}^{4} + 7T_{3}^{2} + 49$$ T3^4 + 7*T3^2 + 49 $$T_{13} - 5$$ T13 - 5

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$T^{4} + 7T^{2} + 49$$
$5$ $$T^{4} + 2 T^{3} + 10 T^{2} - 12 T + 36$$
$7$ $$T^{4} + 7T^{2} + 49$$
$11$ $$(T^{2} - T + 1)^{2}$$
$13$ $$(T - 5)^{4}$$
$17$ $$(T^{2} + 6 T + 36)^{2}$$
$19$ $$T^{4} + 6 T^{3} + 34 T^{2} + 12 T + 4$$
$23$ $$T^{4} + 2 T^{3} + 10 T^{2} - 12 T + 36$$
$29$ $$(T^{2} - 2 T - 27)^{2}$$
$31$ $$(T^{2} + 4 T + 16)^{2}$$
$37$ $$T^{4} + 2 T^{3} + 10 T^{2} - 12 T + 36$$
$41$ $$(T^{2} - 6 T - 54)^{2}$$
$43$ $$(T - 4)^{4}$$
$47$ $$T^{4} - 16 T^{3} + 220 T^{2} + \cdots + 1296$$
$53$ $$T^{4} - 2 T^{3} + 10 T^{2} + 12 T + 36$$
$59$ $$T^{4} - 4 T^{3} + 19 T^{2} + 12 T + 9$$
$61$ $$T^{4} + 18 T^{3} + 271 T^{2} + \cdots + 2809$$
$67$ $$T^{4} + 8 T^{3} + 111 T^{2} + \cdots + 2209$$
$71$ $$(T^{2} + 14 T + 42)^{2}$$
$73$ $$T^{4} + 6 T^{3} + 34 T^{2} + 12 T + 4$$
$79$ $$T^{4} + 7T^{2} + 49$$
$83$ $$(T^{2} + 16 T + 36)^{2}$$
$89$ $$T^{4} - 8 T^{3} + 160 T^{2} + \cdots + 9216$$
$97$ $$(T^{2} + 22 T + 93)^{2}$$