Properties

Label 1232.2.q.b
Level $1232$
Weight $2$
Character orbit 1232.q
Analytic conductor $9.838$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1232.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.83756952902\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 616)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{3} - 2 \zeta_{6} q^{5} + ( - \zeta_{6} - 2) q^{7} + 2 \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{6} - 1) q^{3} - 2 \zeta_{6} q^{5} + ( - \zeta_{6} - 2) q^{7} + 2 \zeta_{6} q^{9} + (\zeta_{6} - 1) q^{11} + 3 q^{13} + 2 q^{15} + ( - 2 \zeta_{6} + 2) q^{17} + 4 \zeta_{6} q^{19} + ( - 2 \zeta_{6} + 3) q^{21} - 4 \zeta_{6} q^{23} + ( - \zeta_{6} + 1) q^{25} - 5 q^{27} - 7 q^{29} + (8 \zeta_{6} - 8) q^{31} - \zeta_{6} q^{33} + (6 \zeta_{6} - 2) q^{35} - 12 \zeta_{6} q^{37} + (3 \zeta_{6} - 3) q^{39} - 8 q^{41} - 8 q^{43} + ( - 4 \zeta_{6} + 4) q^{45} - 10 \zeta_{6} q^{47} + (5 \zeta_{6} + 3) q^{49} + 2 \zeta_{6} q^{51} + (14 \zeta_{6} - 14) q^{53} + 2 q^{55} - 4 q^{57} + (9 \zeta_{6} - 9) q^{59} + 5 \zeta_{6} q^{61} + ( - 6 \zeta_{6} + 2) q^{63} - 6 \zeta_{6} q^{65} + (3 \zeta_{6} - 3) q^{67} + 4 q^{69} + 6 q^{71} + (4 \zeta_{6} - 4) q^{73} + \zeta_{6} q^{75} + ( - 2 \zeta_{6} + 3) q^{77} - 17 \zeta_{6} q^{79} + (\zeta_{6} - 1) q^{81} + 6 q^{83} - 4 q^{85} + ( - 7 \zeta_{6} + 7) q^{87} + 2 \zeta_{6} q^{89} + ( - 3 \zeta_{6} - 6) q^{91} - 8 \zeta_{6} q^{93} + ( - 8 \zeta_{6} + 8) q^{95} + 7 q^{97} - 2 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 2 q^{5} - 5 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} - 2 q^{5} - 5 q^{7} + 2 q^{9} - q^{11} + 6 q^{13} + 4 q^{15} + 2 q^{17} + 4 q^{19} + 4 q^{21} - 4 q^{23} + q^{25} - 10 q^{27} - 14 q^{29} - 8 q^{31} - q^{33} + 2 q^{35} - 12 q^{37} - 3 q^{39} - 16 q^{41} - 16 q^{43} + 4 q^{45} - 10 q^{47} + 11 q^{49} + 2 q^{51} - 14 q^{53} + 4 q^{55} - 8 q^{57} - 9 q^{59} + 5 q^{61} - 2 q^{63} - 6 q^{65} - 3 q^{67} + 8 q^{69} + 12 q^{71} - 4 q^{73} + q^{75} + 4 q^{77} - 17 q^{79} - q^{81} + 12 q^{83} - 8 q^{85} + 7 q^{87} + 2 q^{89} - 15 q^{91} - 8 q^{93} + 8 q^{95} + 14 q^{97} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1232\mathbb{Z}\right)^\times\).

\(n\) \(309\) \(353\) \(463\) \(673\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
177.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −0.500000 0.866025i 0 −1.00000 + 1.73205i 0 −2.50000 + 0.866025i 0 1.00000 1.73205i 0
529.1 0 −0.500000 + 0.866025i 0 −1.00000 1.73205i 0 −2.50000 0.866025i 0 1.00000 + 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1232.2.q.b 2
4.b odd 2 1 616.2.q.a 2
7.c even 3 1 inner 1232.2.q.b 2
7.c even 3 1 8624.2.a.v 1
7.d odd 6 1 8624.2.a.i 1
28.f even 6 1 4312.2.a.g 1
28.g odd 6 1 616.2.q.a 2
28.g odd 6 1 4312.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
616.2.q.a 2 4.b odd 2 1
616.2.q.a 2 28.g odd 6 1
1232.2.q.b 2 1.a even 1 1 trivial
1232.2.q.b 2 7.c even 3 1 inner
4312.2.a.d 1 28.g odd 6 1
4312.2.a.g 1 28.f even 6 1
8624.2.a.i 1 7.d odd 6 1
8624.2.a.v 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1232, [\chi])\):

\( T_{3}^{2} + T_{3} + 1 \) Copy content Toggle raw display
\( T_{13} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$7$ \( T^{2} + 5T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$13$ \( (T - 3)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$19$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$23$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$29$ \( (T + 7)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$37$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$41$ \( (T + 8)^{2} \) Copy content Toggle raw display
$43$ \( (T + 8)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$53$ \( T^{2} + 14T + 196 \) Copy content Toggle raw display
$59$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$61$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$67$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$71$ \( (T - 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$79$ \( T^{2} + 17T + 289 \) Copy content Toggle raw display
$83$ \( (T - 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$97$ \( (T - 7)^{2} \) Copy content Toggle raw display
show more
show less