Properties

Label 1232.2.f.b
Level $1232$
Weight $2$
Character orbit 1232.f
Analytic conductor $9.838$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1232,2,Mod(351,1232)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1232.351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1232, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1232.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-2,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.83756952902\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.10323968.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 7x^{4} + 10x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + \beta_{3} q^{5} + q^{7} + (\beta_{2} + 1) q^{9} + ( - \beta_{5} + \beta_{4} - \beta_{2} - 1) q^{11} + ( - \beta_{5} - \beta_{4} + \beta_1) q^{13} + (\beta_{4} - \beta_1) q^{15} + ( - 2 \beta_{5} + \beta_{4} - 2 \beta_1) q^{17}+ \cdots + ( - \beta_{5} - \beta_{3} - 3 \beta_1 - 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{5} + 6 q^{7} + 4 q^{9} - 4 q^{11} + 4 q^{25} - 2 q^{33} - 2 q^{35} - 2 q^{37} - 16 q^{39} + 8 q^{43} + 8 q^{45} + 6 q^{49} + 24 q^{51} + 12 q^{53} - 8 q^{55} + 4 q^{63} + 10 q^{69} - 4 q^{77}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 7x^{4} + 10x^{2} + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} + 6\nu^{2} + 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} + 6\nu^{3} + 5\nu \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + 7\nu^{3} + 9\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - \beta_{4} - 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{3} - 6\beta_{2} + 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -6\beta_{5} + 7\beta_{4} + 19\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1232\mathbb{Z}\right)^\times\).

\(n\) \(309\) \(353\) \(463\) \(673\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
351.1
2.26382i
1.27932i
0.488306i
0.488306i
1.27932i
2.26382i
0 2.26382i 0 −0.484862 0 1.00000 0 −2.12489 0
351.2 0 1.27932i 0 −3.14134 0 1.00000 0 1.36333 0
351.3 0 0.488306i 0 2.62620 0 1.00000 0 2.76156 0
351.4 0 0.488306i 0 2.62620 0 1.00000 0 2.76156 0
351.5 0 1.27932i 0 −3.14134 0 1.00000 0 1.36333 0
351.6 0 2.26382i 0 −0.484862 0 1.00000 0 −2.12489 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 351.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1232.2.f.b yes 6
4.b odd 2 1 1232.2.f.a 6
11.b odd 2 1 1232.2.f.a 6
44.c even 2 1 inner 1232.2.f.b yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1232.2.f.a 6 4.b odd 2 1
1232.2.f.a 6 11.b odd 2 1
1232.2.f.b yes 6 1.a even 1 1 trivial
1232.2.f.b yes 6 44.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1232, [\chi])\):

\( T_{3}^{6} + 7T_{3}^{4} + 10T_{3}^{2} + 2 \) Copy content Toggle raw display
\( T_{19}^{3} - 40T_{19} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 7 T^{4} + \cdots + 2 \) Copy content Toggle raw display
$5$ \( (T^{3} + T^{2} - 8 T - 4)^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 4 T^{5} + \cdots + 1331 \) Copy content Toggle raw display
$13$ \( T^{6} + 44 T^{4} + \cdots + 2048 \) Copy content Toggle raw display
$17$ \( T^{6} + 76 T^{4} + \cdots + 512 \) Copy content Toggle raw display
$19$ \( (T^{3} - 40 T + 64)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 91 T^{4} + \cdots + 32 \) Copy content Toggle raw display
$29$ \( T^{6} + 48 T^{4} + \cdots + 2048 \) Copy content Toggle raw display
$31$ \( T^{6} + 79 T^{4} + \cdots + 1250 \) Copy content Toggle raw display
$37$ \( (T^{3} + T^{2} - 6 T + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 284 T^{4} + \cdots + 476288 \) Copy content Toggle raw display
$43$ \( (T^{3} - 4 T^{2} + \cdots + 400)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 104 T^{4} + \cdots + 968 \) Copy content Toggle raw display
$53$ \( (T^{3} - 6 T^{2} - 78 T - 44)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 71 T^{4} + \cdots + 50 \) Copy content Toggle raw display
$61$ \( T^{6} + 124 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$67$ \( T^{6} + 115 T^{4} + \cdots + 53792 \) Copy content Toggle raw display
$71$ \( T^{6} + 227 T^{4} + \cdots + 26912 \) Copy content Toggle raw display
$73$ \( T^{6} + 140 T^{4} + \cdots + 3200 \) Copy content Toggle raw display
$79$ \( (T^{3} + 4 T^{2} + \cdots - 160)^{2} \) Copy content Toggle raw display
$83$ \( (T^{3} + 16 T^{2} + \cdots - 640)^{2} \) Copy content Toggle raw display
$89$ \( (T^{3} - 11 T^{2} + \cdots + 332)^{2} \) Copy content Toggle raw display
$97$ \( (T^{3} - 11 T^{2} + \cdots + 452)^{2} \) Copy content Toggle raw display
show more
show less