Properties

Label 1232.2.a.e.1.1
Level $1232$
Weight $2$
Character 1232.1
Self dual yes
Analytic conductor $9.838$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(9.83756952902\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 154)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1232.1

$q$-expansion

\(f(q)\) \(=\) \(q-4.00000 q^{5} +1.00000 q^{7} -3.00000 q^{9} +O(q^{10})\) \(q-4.00000 q^{5} +1.00000 q^{7} -3.00000 q^{9} +1.00000 q^{11} +2.00000 q^{13} -4.00000 q^{17} +6.00000 q^{19} -4.00000 q^{23} +11.0000 q^{25} -2.00000 q^{29} +2.00000 q^{31} -4.00000 q^{35} +10.0000 q^{37} +4.00000 q^{41} +8.00000 q^{43} +12.0000 q^{45} -2.00000 q^{47} +1.00000 q^{49} +6.00000 q^{53} -4.00000 q^{55} +12.0000 q^{59} -14.0000 q^{61} -3.00000 q^{63} -8.00000 q^{65} +12.0000 q^{67} +8.00000 q^{71} +4.00000 q^{73} +1.00000 q^{77} +9.00000 q^{81} +6.00000 q^{83} +16.0000 q^{85} -6.00000 q^{89} +2.00000 q^{91} -24.0000 q^{95} -14.0000 q^{97} -3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) −4.00000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 12.0000 1.78885
\(46\) 0 0
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 0 0
\(63\) −3.00000 −0.377964
\(64\) 0 0
\(65\) −8.00000 −0.992278
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 16.0000 1.73544
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −24.0000 −2.46235
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −18.0000 −1.77359 −0.886796 0.462160i \(-0.847074\pi\)
−0.886796 + 0.462160i \(0.847074\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.0000 1.54678 0.773389 0.633932i \(-0.218560\pi\)
0.773389 + 0.633932i \(0.218560\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) 16.0000 1.49201
\(116\) 0 0
\(117\) −6.00000 −0.554700
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.00000 −0.524222 −0.262111 0.965038i \(-0.584419\pi\)
−0.262111 + 0.965038i \(0.584419\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) 8.00000 0.664364
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) 24.0000 1.95309 0.976546 0.215308i \(-0.0690756\pi\)
0.976546 + 0.215308i \(0.0690756\pi\)
\(152\) 0 0
\(153\) 12.0000 0.970143
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) −8.00000 −0.638470 −0.319235 0.947676i \(-0.603426\pi\)
−0.319235 + 0.947676i \(0.603426\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.00000 −0.315244
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.00000 −0.309529 −0.154765 0.987951i \(-0.549462\pi\)
−0.154765 + 0.987951i \(0.549462\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −18.0000 −1.37649
\(172\) 0 0
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) 0 0
\(175\) 11.0000 0.831522
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) 20.0000 1.48659 0.743294 0.668965i \(-0.233262\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −40.0000 −2.94086
\(186\) 0 0
\(187\) −4.00000 −0.292509
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) 14.0000 0.992434 0.496217 0.868199i \(-0.334722\pi\)
0.496217 + 0.868199i \(0.334722\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.00000 −0.140372
\(204\) 0 0
\(205\) −16.0000 −1.11749
\(206\) 0 0
\(207\) 12.0000 0.834058
\(208\) 0 0
\(209\) 6.00000 0.415029
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −32.0000 −2.18238
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) 0 0
\(225\) −33.0000 −2.20000
\(226\) 0 0
\(227\) 2.00000 0.132745 0.0663723 0.997795i \(-0.478857\pi\)
0.0663723 + 0.997795i \(0.478857\pi\)
\(228\) 0 0
\(229\) 20.0000 1.32164 0.660819 0.750546i \(-0.270209\pi\)
0.660819 + 0.750546i \(0.270209\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 30.0000 1.96537 0.982683 0.185296i \(-0.0593245\pi\)
0.982683 + 0.185296i \(0.0593245\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) 12.0000 0.772988 0.386494 0.922292i \(-0.373686\pi\)
0.386494 + 0.922292i \(0.373686\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.00000 −0.255551
\(246\) 0 0
\(247\) 12.0000 0.763542
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) −4.00000 −0.251478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) 10.0000 0.621370
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −24.0000 −1.47431
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.0000 0.663325
\(276\) 0 0
\(277\) −30.0000 −1.80253 −0.901263 0.433273i \(-0.857359\pi\)
−0.901263 + 0.433273i \(0.857359\pi\)
\(278\) 0 0
\(279\) −6.00000 −0.359211
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) −6.00000 −0.356663 −0.178331 0.983970i \(-0.557070\pi\)
−0.178331 + 0.983970i \(0.557070\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.00000 0.236113
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) −48.0000 −2.79467
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8.00000 −0.462652
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 56.0000 3.20655
\(306\) 0 0
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −14.0000 −0.793867 −0.396934 0.917847i \(-0.629926\pi\)
−0.396934 + 0.917847i \(0.629926\pi\)
\(312\) 0 0
\(313\) −2.00000 −0.113047 −0.0565233 0.998401i \(-0.518002\pi\)
−0.0565233 + 0.998401i \(0.518002\pi\)
\(314\) 0 0
\(315\) 12.0000 0.676123
\(316\) 0 0
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) −2.00000 −0.111979
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −24.0000 −1.33540
\(324\) 0 0
\(325\) 22.0000 1.22034
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.00000 −0.110264
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) −30.0000 −1.64399
\(334\) 0 0
\(335\) −48.0000 −2.62252
\(336\) 0 0
\(337\) −18.0000 −0.980522 −0.490261 0.871576i \(-0.663099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.00000 −0.429463 −0.214731 0.976673i \(-0.568888\pi\)
−0.214731 + 0.976673i \(0.568888\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) −32.0000 −1.69838
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −16.0000 −0.837478
\(366\) 0 0
\(367\) −22.0000 −1.14839 −0.574195 0.818718i \(-0.694685\pi\)
−0.574195 + 0.818718i \(0.694685\pi\)
\(368\) 0 0
\(369\) −12.0000 −0.624695
\(370\) 0 0
\(371\) 6.00000 0.311504
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.0000 0.510976 0.255488 0.966812i \(-0.417764\pi\)
0.255488 + 0.966812i \(0.417764\pi\)
\(384\) 0 0
\(385\) −4.00000 −0.203859
\(386\) 0 0
\(387\) −24.0000 −1.21999
\(388\) 0 0
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 24.0000 1.20453 0.602263 0.798298i \(-0.294266\pi\)
0.602263 + 0.798298i \(0.294266\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 0 0
\(405\) −36.0000 −1.78885
\(406\) 0 0
\(407\) 10.0000 0.495682
\(408\) 0 0
\(409\) 16.0000 0.791149 0.395575 0.918434i \(-0.370545\pi\)
0.395575 + 0.918434i \(0.370545\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12.0000 0.590481
\(414\) 0 0
\(415\) −24.0000 −1.17811
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 32.0000 1.56330 0.781651 0.623716i \(-0.214378\pi\)
0.781651 + 0.623716i \(0.214378\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 0 0
\(423\) 6.00000 0.291730
\(424\) 0 0
\(425\) −44.0000 −2.13431
\(426\) 0 0
\(427\) −14.0000 −0.677507
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −24.0000 −1.14808
\(438\) 0 0
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) 24.0000 1.13771
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.00000 −0.375046
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 12.0000 0.554109
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.00000 0.367840
\(474\) 0 0
\(475\) 66.0000 3.02829
\(476\) 0 0
\(477\) −18.0000 −0.824163
\(478\) 0 0
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) 20.0000 0.911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 56.0000 2.54283
\(486\) 0 0
\(487\) 28.0000 1.26880 0.634401 0.773004i \(-0.281247\pi\)
0.634401 + 0.773004i \(0.281247\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 0 0
\(493\) 8.00000 0.360302
\(494\) 0 0
\(495\) 12.0000 0.539360
\(496\) 0 0
\(497\) 8.00000 0.358849
\(498\) 0 0
\(499\) −44.0000 −1.96971 −0.984855 0.173379i \(-0.944532\pi\)
−0.984855 + 0.173379i \(0.944532\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 36.0000 1.60516 0.802580 0.596544i \(-0.203460\pi\)
0.802580 + 0.596544i \(0.203460\pi\)
\(504\) 0 0
\(505\) −24.0000 −1.06799
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −28.0000 −1.24108 −0.620539 0.784176i \(-0.713086\pi\)
−0.620539 + 0.784176i \(0.713086\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 72.0000 3.17270
\(516\) 0 0
\(517\) −2.00000 −0.0879599
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) 34.0000 1.48672 0.743358 0.668894i \(-0.233232\pi\)
0.743358 + 0.668894i \(0.233232\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.00000 −0.348485
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −36.0000 −1.56227
\(532\) 0 0
\(533\) 8.00000 0.346518
\(534\) 0 0
\(535\) −64.0000 −2.76696
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 56.0000 2.39878
\(546\) 0 0
\(547\) 12.0000 0.513083 0.256541 0.966533i \(-0.417417\pi\)
0.256541 + 0.966533i \(0.417417\pi\)
\(548\) 0 0
\(549\) 42.0000 1.79252
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.0000 0.593199 0.296600 0.955002i \(-0.404147\pi\)
0.296600 + 0.955002i \(0.404147\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 34.0000 1.43293 0.716465 0.697623i \(-0.245759\pi\)
0.716465 + 0.697623i \(0.245759\pi\)
\(564\) 0 0
\(565\) −56.0000 −2.35594
\(566\) 0 0
\(567\) 9.00000 0.377964
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −44.0000 −1.83493
\(576\) 0 0
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.00000 0.248922
\(582\) 0 0
\(583\) 6.00000 0.248495
\(584\) 0 0
\(585\) 24.0000 0.992278
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 12.0000 0.494451
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12.0000 −0.492781 −0.246390 0.969171i \(-0.579245\pi\)
−0.246390 + 0.969171i \(0.579245\pi\)
\(594\) 0 0
\(595\) 16.0000 0.655936
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) 0 0
\(603\) −36.0000 −1.46603
\(604\) 0 0
\(605\) −4.00000 −0.162623
\(606\) 0 0
\(607\) −8.00000 −0.324710 −0.162355 0.986732i \(-0.551909\pi\)
−0.162355 + 0.986732i \(0.551909\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.00000 −0.161823
\(612\) 0 0
\(613\) 46.0000 1.85792 0.928961 0.370177i \(-0.120703\pi\)
0.928961 + 0.370177i \(0.120703\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.0000 0.724653 0.362326 0.932051i \(-0.381983\pi\)
0.362326 + 0.932051i \(0.381983\pi\)
\(618\) 0 0
\(619\) −8.00000 −0.321547 −0.160774 0.986991i \(-0.551399\pi\)
−0.160774 + 0.986991i \(0.551399\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −40.0000 −1.59490
\(630\) 0 0
\(631\) 12.0000 0.477712 0.238856 0.971055i \(-0.423228\pi\)
0.238856 + 0.971055i \(0.423228\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 32.0000 1.26988
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) 0 0
\(639\) −24.0000 −0.949425
\(640\) 0 0
\(641\) −6.00000 −0.236986 −0.118493 0.992955i \(-0.537806\pi\)
−0.118493 + 0.992955i \(0.537806\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.00000 −0.235884 −0.117942 0.993020i \(-0.537630\pi\)
−0.117942 + 0.993020i \(0.537630\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 10.0000 0.391330 0.195665 0.980671i \(-0.437313\pi\)
0.195665 + 0.980671i \(0.437313\pi\)
\(654\) 0 0
\(655\) 24.0000 0.937758
\(656\) 0 0
\(657\) −12.0000 −0.468165
\(658\) 0 0
\(659\) 8.00000 0.311636 0.155818 0.987786i \(-0.450199\pi\)
0.155818 + 0.987786i \(0.450199\pi\)
\(660\) 0 0
\(661\) 20.0000 0.777910 0.388955 0.921257i \(-0.372836\pi\)
0.388955 + 0.921257i \(0.372836\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −24.0000 −0.930680
\(666\) 0 0
\(667\) 8.00000 0.309761
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −14.0000 −0.540464
\(672\) 0 0
\(673\) 22.0000 0.848038 0.424019 0.905653i \(-0.360619\pi\)
0.424019 + 0.905653i \(0.360619\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 26.0000 0.999261 0.499631 0.866239i \(-0.333469\pi\)
0.499631 + 0.866239i \(0.333469\pi\)
\(678\) 0 0
\(679\) −14.0000 −0.537271
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) −24.0000 −0.916993
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) −36.0000 −1.36950 −0.684752 0.728776i \(-0.740090\pi\)
−0.684752 + 0.728776i \(0.740090\pi\)
\(692\) 0 0
\(693\) −3.00000 −0.113961
\(694\) 0 0
\(695\) 56.0000 2.12420
\(696\) 0 0
\(697\) −16.0000 −0.606043
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) 60.0000 2.26294
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.00000 0.225653
\(708\) 0 0
\(709\) 18.0000 0.676004 0.338002 0.941145i \(-0.390249\pi\)
0.338002 + 0.941145i \(0.390249\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.00000 −0.299602
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 26.0000 0.969636 0.484818 0.874615i \(-0.338886\pi\)
0.484818 + 0.874615i \(0.338886\pi\)
\(720\) 0 0
\(721\) −18.0000 −0.670355
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −22.0000 −0.817059
\(726\) 0 0
\(727\) 10.0000 0.370879 0.185440 0.982656i \(-0.440629\pi\)
0.185440 + 0.982656i \(0.440629\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −32.0000 −1.18356
\(732\) 0 0
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.0000 0.442026
\(738\) 0 0
\(739\) 12.0000 0.441427 0.220714 0.975339i \(-0.429161\pi\)
0.220714 + 0.975339i \(0.429161\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) −8.00000 −0.293097
\(746\) 0 0
\(747\) −18.0000 −0.658586
\(748\) 0 0
\(749\) 16.0000 0.584627
\(750\) 0 0
\(751\) −28.0000 −1.02173 −0.510867 0.859660i \(-0.670676\pi\)
−0.510867 + 0.859660i \(0.670676\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −96.0000 −3.49380
\(756\) 0 0
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −48.0000 −1.74000 −0.869999 0.493053i \(-0.835881\pi\)
−0.869999 + 0.493053i \(0.835881\pi\)
\(762\) 0 0
\(763\) −14.0000 −0.506834
\(764\) 0 0
\(765\) −48.0000 −1.73544
\(766\) 0 0
\(767\) 24.0000 0.866590
\(768\) 0 0
\(769\) 16.0000 0.576975 0.288487 0.957484i \(-0.406848\pi\)
0.288487 + 0.957484i \(0.406848\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −48.0000 −1.72644 −0.863220 0.504828i \(-0.831556\pi\)
−0.863220 + 0.504828i \(0.831556\pi\)
\(774\) 0 0
\(775\) 22.0000 0.790263
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) 8.00000 0.286263
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 32.0000 1.14213
\(786\) 0 0
\(787\) 22.0000 0.784215 0.392108 0.919919i \(-0.371746\pi\)
0.392108 + 0.919919i \(0.371746\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 14.0000 0.497783
\(792\) 0 0
\(793\) −28.0000 −0.994309
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16.0000 −0.566749 −0.283375 0.959009i \(-0.591454\pi\)
−0.283375 + 0.959009i \(0.591454\pi\)
\(798\) 0 0
\(799\) 8.00000 0.283020
\(800\) 0 0
\(801\) 18.0000 0.635999
\(802\) 0 0
\(803\) 4.00000 0.141157
\(804\) 0 0
\(805\) 16.0000 0.563926
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) −38.0000 −1.33436 −0.667180 0.744896i \(-0.732499\pi\)
−0.667180 + 0.744896i \(0.732499\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 16.0000 0.560456
\(816\) 0 0
\(817\) 48.0000 1.67931
\(818\) 0 0
\(819\) −6.00000 −0.209657
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) 4.00000 0.139431 0.0697156 0.997567i \(-0.477791\pi\)
0.0697156 + 0.997567i \(0.477791\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −20.0000 −0.695468 −0.347734 0.937593i \(-0.613049\pi\)
−0.347734 + 0.937593i \(0.613049\pi\)
\(828\) 0 0
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.00000 −0.138592
\(834\) 0 0
\(835\) 16.0000 0.553703
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −30.0000 −1.03572 −0.517858 0.855467i \(-0.673270\pi\)
−0.517858 + 0.855467i \(0.673270\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 36.0000 1.23844
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −40.0000 −1.37118
\(852\) 0 0
\(853\) 2.00000 0.0684787 0.0342393 0.999414i \(-0.489099\pi\)
0.0342393 + 0.999414i \(0.489099\pi\)
\(854\) 0 0
\(855\) 72.0000 2.46235
\(856\) 0 0
\(857\) 32.0000 1.09310 0.546550 0.837427i \(-0.315941\pi\)
0.546550 + 0.837427i \(0.315941\pi\)
\(858\) 0 0
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 44.0000 1.49778 0.748889 0.662696i \(-0.230588\pi\)
0.748889 + 0.662696i \(0.230588\pi\)
\(864\) 0 0
\(865\) 56.0000 1.90406
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 24.0000 0.813209
\(872\) 0 0
\(873\) 42.0000 1.42148
\(874\) 0 0
\(875\) −24.0000 −0.811348
\(876\) 0 0
\(877\) 34.0000 1.14810 0.574049 0.818821i \(-0.305372\pi\)
0.574049 + 0.818821i \(0.305372\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.0000 −0.537227 −0.268614 0.963248i \(-0.586566\pi\)
−0.268614 + 0.963248i \(0.586566\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 9.00000 0.301511
\(892\) 0 0
\(893\) −12.0000 −0.401565
\(894\) 0 0
\(895\) 16.0000 0.534821
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.00000 −0.133407
\(900\) 0 0
\(901\) −24.0000 −0.799556
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −80.0000 −2.65929
\(906\) 0 0
\(907\) 52.0000 1.72663 0.863316 0.504664i \(-0.168384\pi\)
0.863316 + 0.504664i \(0.168384\pi\)
\(908\) 0 0
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) 6.00000 0.198571
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6.00000 −0.198137
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 16.0000 0.526646
\(924\) 0 0
\(925\) 110.000 3.61678
\(926\) 0 0
\(927\) 54.0000 1.77359
\(928\) 0 0
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 16.0000 0.523256
\(936\) 0 0
\(937\) 12.0000 0.392023 0.196011 0.980602i \(-0.437201\pi\)
0.196011 + 0.980602i \(0.437201\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −14.0000 −0.456387 −0.228193 0.973616i \(-0.573282\pi\)
−0.228193 + 0.973616i \(0.573282\pi\)
\(942\) 0 0
\(943\) −16.0000 −0.521032
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.00000 0.129983 0.0649913 0.997886i \(-0.479298\pi\)
0.0649913 + 0.997886i \(0.479298\pi\)
\(948\) 0 0
\(949\) 8.00000 0.259691
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −22.0000 −0.712650 −0.356325 0.934362i \(-0.615970\pi\)
−0.356325 + 0.934362i \(0.615970\pi\)
\(954\) 0 0
\(955\) −16.0000 −0.517748
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) −48.0000 −1.54678
\(964\) 0 0
\(965\) −8.00000 −0.257529
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −56.0000 −1.79713 −0.898563 0.438845i \(-0.855388\pi\)
−0.898563 + 0.438845i \(0.855388\pi\)
\(972\) 0 0
\(973\) −14.0000 −0.448819
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.00000 0.0639857 0.0319928 0.999488i \(-0.489815\pi\)
0.0319928 + 0.999488i \(0.489815\pi\)
\(978\) 0 0
\(979\) −6.00000 −0.191761
\(980\) 0 0
\(981\) 42.0000 1.34096
\(982\) 0 0
\(983\) −18.0000 −0.574111 −0.287055 0.957914i \(-0.592676\pi\)
−0.287055 + 0.957914i \(0.592676\pi\)
\(984\) 0 0
\(985\) −24.0000 −0.764704
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −32.0000 −1.01754
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −56.0000 −1.77532
\(996\) 0 0
\(997\) −42.0000 −1.33015 −0.665077 0.746775i \(-0.731601\pi\)
−0.665077 + 0.746775i \(0.731601\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.2.a.e.1.1 1
4.3 odd 2 154.2.a.a.1.1 1
7.6 odd 2 8624.2.a.r.1.1 1
8.3 odd 2 4928.2.a.v.1.1 1
8.5 even 2 4928.2.a.w.1.1 1
12.11 even 2 1386.2.a.l.1.1 1
20.3 even 4 3850.2.c.j.1849.2 2
20.7 even 4 3850.2.c.j.1849.1 2
20.19 odd 2 3850.2.a.u.1.1 1
28.3 even 6 1078.2.e.i.177.1 2
28.11 odd 6 1078.2.e.j.177.1 2
28.19 even 6 1078.2.e.i.67.1 2
28.23 odd 6 1078.2.e.j.67.1 2
28.27 even 2 1078.2.a.d.1.1 1
44.43 even 2 1694.2.a.g.1.1 1
84.83 odd 2 9702.2.a.ba.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
154.2.a.a.1.1 1 4.3 odd 2
1078.2.a.d.1.1 1 28.27 even 2
1078.2.e.i.67.1 2 28.19 even 6
1078.2.e.i.177.1 2 28.3 even 6
1078.2.e.j.67.1 2 28.23 odd 6
1078.2.e.j.177.1 2 28.11 odd 6
1232.2.a.e.1.1 1 1.1 even 1 trivial
1386.2.a.l.1.1 1 12.11 even 2
1694.2.a.g.1.1 1 44.43 even 2
3850.2.a.u.1.1 1 20.19 odd 2
3850.2.c.j.1849.1 2 20.7 even 4
3850.2.c.j.1849.2 2 20.3 even 4
4928.2.a.v.1.1 1 8.3 odd 2
4928.2.a.w.1.1 1 8.5 even 2
8624.2.a.r.1.1 1 7.6 odd 2
9702.2.a.ba.1.1 1 84.83 odd 2