Properties

Label 1225.4.a.z.1.2
Level $1225$
Weight $4$
Character 1225.1
Self dual yes
Analytic conductor $72.277$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,4,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2773397570\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 32x^{2} - 35x + 120 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 175)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.53510\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.53510 q^{2} +6.46622 q^{3} +12.5671 q^{4} -29.3249 q^{6} -20.7124 q^{8} +14.8119 q^{9} +O(q^{10})\) \(q-4.53510 q^{2} +6.46622 q^{3} +12.5671 q^{4} -29.3249 q^{6} -20.7124 q^{8} +14.8119 q^{9} -54.0684 q^{11} +81.2617 q^{12} +75.2159 q^{13} -6.60441 q^{16} -71.2538 q^{17} -67.1736 q^{18} +65.5100 q^{19} +245.206 q^{22} -125.688 q^{23} -133.931 q^{24} -341.111 q^{26} -78.8106 q^{27} +190.405 q^{29} +193.105 q^{31} +195.650 q^{32} -349.618 q^{33} +323.143 q^{34} +186.144 q^{36} -114.673 q^{37} -297.094 q^{38} +486.362 q^{39} -216.896 q^{41} +413.032 q^{43} -679.484 q^{44} +570.007 q^{46} -113.555 q^{47} -42.7055 q^{48} -460.743 q^{51} +945.247 q^{52} -584.366 q^{53} +357.414 q^{54} +423.602 q^{57} -863.504 q^{58} -203.748 q^{59} +162.539 q^{61} -875.749 q^{62} -834.459 q^{64} +1585.55 q^{66} -477.534 q^{67} -895.456 q^{68} -812.725 q^{69} +822.294 q^{71} -306.790 q^{72} -798.993 q^{73} +520.052 q^{74} +823.273 q^{76} -2205.70 q^{78} -468.087 q^{79} -909.529 q^{81} +983.643 q^{82} -310.333 q^{83} -1873.14 q^{86} +1231.20 q^{87} +1119.88 q^{88} -1314.90 q^{89} -1579.53 q^{92} +1248.66 q^{93} +514.985 q^{94} +1265.12 q^{96} -1314.66 q^{97} -800.858 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 3 q^{3} + 36 q^{4} - q^{6} - 27 q^{8} + 61 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} - 3 q^{3} + 36 q^{4} - q^{6} - 27 q^{8} + 61 q^{9} + 100 q^{11} - 165 q^{12} + 44 q^{13} + 160 q^{16} - 53 q^{17} - 433 q^{18} + 29 q^{19} + 152 q^{22} - 295 q^{23} + 21 q^{24} - 700 q^{26} - 441 q^{27} + 129 q^{29} - 114 q^{31} + 310 q^{32} - 865 q^{33} - 203 q^{34} + 1101 q^{36} - 403 q^{37} + 555 q^{38} + 674 q^{39} - 671 q^{41} + 411 q^{43} + 438 q^{44} - 997 q^{46} - 8 q^{47} - 523 q^{48} - 885 q^{51} + 74 q^{52} - 90 q^{53} + 2777 q^{54} - 233 q^{57} - 673 q^{58} - 1018 q^{59} - 50 q^{61} - 1626 q^{62} - 2421 q^{64} + 3841 q^{66} - 424 q^{67} - 617 q^{68} - 1080 q^{69} + 215 q^{71} - 2940 q^{72} - 1207 q^{73} + 623 q^{74} + 3257 q^{76} - 278 q^{78} - 951 q^{79} + 28 q^{81} + 1695 q^{82} - 3035 q^{83} - 99 q^{86} + 2210 q^{87} - 163 q^{88} - 2819 q^{89} - 3073 q^{92} + 852 q^{93} + 3056 q^{94} + 1345 q^{96} - 1100 q^{97} + 2383 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.53510 −1.60340 −0.801700 0.597727i \(-0.796071\pi\)
−0.801700 + 0.597727i \(0.796071\pi\)
\(3\) 6.46622 1.24442 0.622212 0.782849i \(-0.286234\pi\)
0.622212 + 0.782849i \(0.286234\pi\)
\(4\) 12.5671 1.57089
\(5\) 0 0
\(6\) −29.3249 −1.99531
\(7\) 0 0
\(8\) −20.7124 −0.915365
\(9\) 14.8119 0.548591
\(10\) 0 0
\(11\) −54.0684 −1.48202 −0.741011 0.671493i \(-0.765653\pi\)
−0.741011 + 0.671493i \(0.765653\pi\)
\(12\) 81.2617 1.95485
\(13\) 75.2159 1.60470 0.802351 0.596853i \(-0.203582\pi\)
0.802351 + 0.596853i \(0.203582\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −6.60441 −0.103194
\(17\) −71.2538 −1.01656 −0.508282 0.861191i \(-0.669719\pi\)
−0.508282 + 0.861191i \(0.669719\pi\)
\(18\) −67.1736 −0.879610
\(19\) 65.5100 0.791002 0.395501 0.918466i \(-0.370571\pi\)
0.395501 + 0.918466i \(0.370571\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 245.206 2.37627
\(23\) −125.688 −1.13947 −0.569733 0.821830i \(-0.692953\pi\)
−0.569733 + 0.821830i \(0.692953\pi\)
\(24\) −133.931 −1.13910
\(25\) 0 0
\(26\) −341.111 −2.57298
\(27\) −78.8106 −0.561745
\(28\) 0 0
\(29\) 190.405 1.21922 0.609608 0.792703i \(-0.291327\pi\)
0.609608 + 0.792703i \(0.291327\pi\)
\(30\) 0 0
\(31\) 193.105 1.11879 0.559397 0.828900i \(-0.311033\pi\)
0.559397 + 0.828900i \(0.311033\pi\)
\(32\) 195.650 1.08083
\(33\) −349.618 −1.84426
\(34\) 323.143 1.62996
\(35\) 0 0
\(36\) 186.144 0.861776
\(37\) −114.673 −0.509516 −0.254758 0.967005i \(-0.581996\pi\)
−0.254758 + 0.967005i \(0.581996\pi\)
\(38\) −297.094 −1.26829
\(39\) 486.362 1.99693
\(40\) 0 0
\(41\) −216.896 −0.826180 −0.413090 0.910690i \(-0.635551\pi\)
−0.413090 + 0.910690i \(0.635551\pi\)
\(42\) 0 0
\(43\) 413.032 1.46481 0.732405 0.680870i \(-0.238398\pi\)
0.732405 + 0.680870i \(0.238398\pi\)
\(44\) −679.484 −2.32809
\(45\) 0 0
\(46\) 570.007 1.82702
\(47\) −113.555 −0.352421 −0.176210 0.984353i \(-0.556384\pi\)
−0.176210 + 0.984353i \(0.556384\pi\)
\(48\) −42.7055 −0.128417
\(49\) 0 0
\(50\) 0 0
\(51\) −460.743 −1.26504
\(52\) 945.247 2.52081
\(53\) −584.366 −1.51451 −0.757253 0.653122i \(-0.773459\pi\)
−0.757253 + 0.653122i \(0.773459\pi\)
\(54\) 357.414 0.900701
\(55\) 0 0
\(56\) 0 0
\(57\) 423.602 0.984341
\(58\) −863.504 −1.95489
\(59\) −203.748 −0.449589 −0.224795 0.974406i \(-0.572171\pi\)
−0.224795 + 0.974406i \(0.572171\pi\)
\(60\) 0 0
\(61\) 162.539 0.341163 0.170581 0.985344i \(-0.445435\pi\)
0.170581 + 0.985344i \(0.445435\pi\)
\(62\) −875.749 −1.79387
\(63\) 0 0
\(64\) −834.459 −1.62980
\(65\) 0 0
\(66\) 1585.55 2.95709
\(67\) −477.534 −0.870747 −0.435374 0.900250i \(-0.643384\pi\)
−0.435374 + 0.900250i \(0.643384\pi\)
\(68\) −895.456 −1.59691
\(69\) −812.725 −1.41798
\(70\) 0 0
\(71\) 822.294 1.37448 0.687242 0.726429i \(-0.258821\pi\)
0.687242 + 0.726429i \(0.258821\pi\)
\(72\) −306.790 −0.502161
\(73\) −798.993 −1.28103 −0.640514 0.767947i \(-0.721279\pi\)
−0.640514 + 0.767947i \(0.721279\pi\)
\(74\) 520.052 0.816957
\(75\) 0 0
\(76\) 823.273 1.24258
\(77\) 0 0
\(78\) −2205.70 −3.20188
\(79\) −468.087 −0.666632 −0.333316 0.942815i \(-0.608168\pi\)
−0.333316 + 0.942815i \(0.608168\pi\)
\(80\) 0 0
\(81\) −909.529 −1.24764
\(82\) 983.643 1.32470
\(83\) −310.333 −0.410403 −0.205202 0.978720i \(-0.565785\pi\)
−0.205202 + 0.978720i \(0.565785\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1873.14 −2.34867
\(87\) 1231.20 1.51722
\(88\) 1119.88 1.35659
\(89\) −1314.90 −1.56606 −0.783029 0.621985i \(-0.786326\pi\)
−0.783029 + 0.621985i \(0.786326\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1579.53 −1.78998
\(93\) 1248.66 1.39225
\(94\) 514.985 0.565071
\(95\) 0 0
\(96\) 1265.12 1.34501
\(97\) −1314.66 −1.37612 −0.688058 0.725656i \(-0.741537\pi\)
−0.688058 + 0.725656i \(0.741537\pi\)
\(98\) 0 0
\(99\) −800.858 −0.813023
\(100\) 0 0
\(101\) 401.240 0.395296 0.197648 0.980273i \(-0.436670\pi\)
0.197648 + 0.980273i \(0.436670\pi\)
\(102\) 2089.51 2.02836
\(103\) 291.844 0.279187 0.139594 0.990209i \(-0.455420\pi\)
0.139594 + 0.990209i \(0.455420\pi\)
\(104\) −1557.90 −1.46889
\(105\) 0 0
\(106\) 2650.16 2.42836
\(107\) 21.9594 0.0198402 0.00992009 0.999951i \(-0.496842\pi\)
0.00992009 + 0.999951i \(0.496842\pi\)
\(108\) −990.422 −0.882439
\(109\) −17.3019 −0.0152039 −0.00760194 0.999971i \(-0.502420\pi\)
−0.00760194 + 0.999971i \(0.502420\pi\)
\(110\) 0 0
\(111\) −741.498 −0.634053
\(112\) 0 0
\(113\) −58.8182 −0.0489660 −0.0244830 0.999700i \(-0.507794\pi\)
−0.0244830 + 0.999700i \(0.507794\pi\)
\(114\) −1921.08 −1.57829
\(115\) 0 0
\(116\) 2392.84 1.91526
\(117\) 1114.09 0.880324
\(118\) 924.018 0.720871
\(119\) 0 0
\(120\) 0 0
\(121\) 1592.39 1.19639
\(122\) −737.129 −0.547020
\(123\) −1402.49 −1.02812
\(124\) 2426.77 1.75750
\(125\) 0 0
\(126\) 0 0
\(127\) −1862.03 −1.30101 −0.650507 0.759501i \(-0.725443\pi\)
−0.650507 + 0.759501i \(0.725443\pi\)
\(128\) 2219.15 1.53240
\(129\) 2670.75 1.82284
\(130\) 0 0
\(131\) −775.161 −0.516994 −0.258497 0.966012i \(-0.583227\pi\)
−0.258497 + 0.966012i \(0.583227\pi\)
\(132\) −4393.69 −2.89714
\(133\) 0 0
\(134\) 2165.66 1.39616
\(135\) 0 0
\(136\) 1475.83 0.930528
\(137\) 1027.95 0.641051 0.320525 0.947240i \(-0.396141\pi\)
0.320525 + 0.947240i \(0.396141\pi\)
\(138\) 3685.79 2.27359
\(139\) 1029.66 0.628309 0.314154 0.949372i \(-0.398279\pi\)
0.314154 + 0.949372i \(0.398279\pi\)
\(140\) 0 0
\(141\) −734.274 −0.438561
\(142\) −3729.18 −2.20385
\(143\) −4066.80 −2.37820
\(144\) −97.8241 −0.0566112
\(145\) 0 0
\(146\) 3623.51 2.05400
\(147\) 0 0
\(148\) −1441.11 −0.800393
\(149\) 1414.67 0.777814 0.388907 0.921277i \(-0.372853\pi\)
0.388907 + 0.921277i \(0.372853\pi\)
\(150\) 0 0
\(151\) 2094.96 1.12904 0.564522 0.825418i \(-0.309060\pi\)
0.564522 + 0.825418i \(0.309060\pi\)
\(152\) −1356.87 −0.724056
\(153\) −1055.41 −0.557678
\(154\) 0 0
\(155\) 0 0
\(156\) 6112.17 3.13696
\(157\) −709.495 −0.360662 −0.180331 0.983606i \(-0.557717\pi\)
−0.180331 + 0.983606i \(0.557717\pi\)
\(158\) 2122.82 1.06888
\(159\) −3778.64 −1.88469
\(160\) 0 0
\(161\) 0 0
\(162\) 4124.80 2.00046
\(163\) −3276.23 −1.57432 −0.787160 0.616749i \(-0.788449\pi\)
−0.787160 + 0.616749i \(0.788449\pi\)
\(164\) −2725.75 −1.29784
\(165\) 0 0
\(166\) 1407.39 0.658040
\(167\) 2860.69 1.32555 0.662775 0.748819i \(-0.269379\pi\)
0.662775 + 0.748819i \(0.269379\pi\)
\(168\) 0 0
\(169\) 3460.42 1.57507
\(170\) 0 0
\(171\) 970.331 0.433936
\(172\) 5190.62 2.30105
\(173\) 2803.44 1.23203 0.616015 0.787734i \(-0.288746\pi\)
0.616015 + 0.787734i \(0.288746\pi\)
\(174\) −5583.61 −2.43271
\(175\) 0 0
\(176\) 357.090 0.152936
\(177\) −1317.48 −0.559479
\(178\) 5963.20 2.51102
\(179\) 248.617 0.103813 0.0519064 0.998652i \(-0.483470\pi\)
0.0519064 + 0.998652i \(0.483470\pi\)
\(180\) 0 0
\(181\) −2075.56 −0.852347 −0.426174 0.904641i \(-0.640139\pi\)
−0.426174 + 0.904641i \(0.640139\pi\)
\(182\) 0 0
\(183\) 1051.01 0.424551
\(184\) 2603.29 1.04303
\(185\) 0 0
\(186\) −5662.78 −2.23234
\(187\) 3852.58 1.50657
\(188\) −1427.07 −0.553614
\(189\) 0 0
\(190\) 0 0
\(191\) −1252.95 −0.474663 −0.237331 0.971429i \(-0.576273\pi\)
−0.237331 + 0.971429i \(0.576273\pi\)
\(192\) −5395.79 −2.02817
\(193\) −1602.12 −0.597527 −0.298764 0.954327i \(-0.596574\pi\)
−0.298764 + 0.954327i \(0.596574\pi\)
\(194\) 5962.10 2.20646
\(195\) 0 0
\(196\) 0 0
\(197\) −2346.38 −0.848593 −0.424296 0.905523i \(-0.639479\pi\)
−0.424296 + 0.905523i \(0.639479\pi\)
\(198\) 3631.97 1.30360
\(199\) 1993.53 0.710140 0.355070 0.934840i \(-0.384457\pi\)
0.355070 + 0.934840i \(0.384457\pi\)
\(200\) 0 0
\(201\) −3087.84 −1.08358
\(202\) −1819.67 −0.633818
\(203\) 0 0
\(204\) −5790.21 −1.98723
\(205\) 0 0
\(206\) −1323.54 −0.447649
\(207\) −1861.68 −0.625101
\(208\) −496.756 −0.165595
\(209\) −3542.02 −1.17228
\(210\) 0 0
\(211\) −5852.55 −1.90951 −0.954754 0.297396i \(-0.903882\pi\)
−0.954754 + 0.297396i \(0.903882\pi\)
\(212\) −7343.80 −2.37912
\(213\) 5317.13 1.71044
\(214\) −99.5883 −0.0318117
\(215\) 0 0
\(216\) 1632.35 0.514202
\(217\) 0 0
\(218\) 78.4659 0.0243779
\(219\) −5166.46 −1.59414
\(220\) 0 0
\(221\) −5359.42 −1.63128
\(222\) 3362.77 1.01664
\(223\) −1719.58 −0.516374 −0.258187 0.966095i \(-0.583125\pi\)
−0.258187 + 0.966095i \(0.583125\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 266.747 0.0785120
\(227\) −5686.00 −1.66252 −0.831262 0.555881i \(-0.812381\pi\)
−0.831262 + 0.555881i \(0.812381\pi\)
\(228\) 5323.46 1.54629
\(229\) 3087.40 0.890923 0.445461 0.895301i \(-0.353040\pi\)
0.445461 + 0.895301i \(0.353040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3943.73 −1.11603
\(233\) −3997.55 −1.12398 −0.561991 0.827143i \(-0.689965\pi\)
−0.561991 + 0.827143i \(0.689965\pi\)
\(234\) −5052.52 −1.41151
\(235\) 0 0
\(236\) −2560.53 −0.706255
\(237\) −3026.75 −0.829573
\(238\) 0 0
\(239\) −4499.79 −1.21786 −0.608928 0.793226i \(-0.708400\pi\)
−0.608928 + 0.793226i \(0.708400\pi\)
\(240\) 0 0
\(241\) −3633.26 −0.971115 −0.485557 0.874205i \(-0.661383\pi\)
−0.485557 + 0.874205i \(0.661383\pi\)
\(242\) −7221.66 −1.91829
\(243\) −3753.32 −0.990847
\(244\) 2042.64 0.535929
\(245\) 0 0
\(246\) 6360.45 1.64849
\(247\) 4927.39 1.26932
\(248\) −3999.65 −1.02411
\(249\) −2006.68 −0.510715
\(250\) 0 0
\(251\) 1211.21 0.304585 0.152292 0.988335i \(-0.451334\pi\)
0.152292 + 0.988335i \(0.451334\pi\)
\(252\) 0 0
\(253\) 6795.74 1.68871
\(254\) 8444.50 2.08604
\(255\) 0 0
\(256\) −3388.39 −0.827245
\(257\) −6225.81 −1.51111 −0.755556 0.655085i \(-0.772633\pi\)
−0.755556 + 0.655085i \(0.772633\pi\)
\(258\) −12112.1 −2.92275
\(259\) 0 0
\(260\) 0 0
\(261\) 2820.27 0.668851
\(262\) 3515.43 0.828947
\(263\) 757.377 0.177574 0.0887869 0.996051i \(-0.471701\pi\)
0.0887869 + 0.996051i \(0.471701\pi\)
\(264\) 7241.41 1.68817
\(265\) 0 0
\(266\) 0 0
\(267\) −8502.43 −1.94884
\(268\) −6001.23 −1.36785
\(269\) −1750.59 −0.396786 −0.198393 0.980123i \(-0.563572\pi\)
−0.198393 + 0.980123i \(0.563572\pi\)
\(270\) 0 0
\(271\) −4451.86 −0.997902 −0.498951 0.866630i \(-0.666281\pi\)
−0.498951 + 0.866630i \(0.666281\pi\)
\(272\) 470.589 0.104903
\(273\) 0 0
\(274\) −4661.87 −1.02786
\(275\) 0 0
\(276\) −10213.6 −2.22749
\(277\) 7691.69 1.66841 0.834204 0.551456i \(-0.185928\pi\)
0.834204 + 0.551456i \(0.185928\pi\)
\(278\) −4669.62 −1.00743
\(279\) 2860.26 0.613760
\(280\) 0 0
\(281\) −199.034 −0.0422540 −0.0211270 0.999777i \(-0.506725\pi\)
−0.0211270 + 0.999777i \(0.506725\pi\)
\(282\) 3330.01 0.703188
\(283\) −799.307 −0.167893 −0.0839467 0.996470i \(-0.526753\pi\)
−0.0839467 + 0.996470i \(0.526753\pi\)
\(284\) 10333.9 2.15916
\(285\) 0 0
\(286\) 18443.3 3.81321
\(287\) 0 0
\(288\) 2897.96 0.592931
\(289\) 164.110 0.0334031
\(290\) 0 0
\(291\) −8500.86 −1.71247
\(292\) −10041.0 −2.01235
\(293\) 3302.75 0.658528 0.329264 0.944238i \(-0.393199\pi\)
0.329264 + 0.944238i \(0.393199\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2375.14 0.466393
\(297\) 4261.16 0.832518
\(298\) −6415.67 −1.24715
\(299\) −9453.72 −1.82850
\(300\) 0 0
\(301\) 0 0
\(302\) −9500.87 −1.81031
\(303\) 2594.51 0.491916
\(304\) −432.655 −0.0816265
\(305\) 0 0
\(306\) 4786.38 0.894180
\(307\) −8628.17 −1.60402 −0.802012 0.597308i \(-0.796237\pi\)
−0.802012 + 0.597308i \(0.796237\pi\)
\(308\) 0 0
\(309\) 1887.13 0.347427
\(310\) 0 0
\(311\) 4900.60 0.893530 0.446765 0.894651i \(-0.352576\pi\)
0.446765 + 0.894651i \(0.352576\pi\)
\(312\) −10073.7 −1.82792
\(313\) −9114.26 −1.64590 −0.822952 0.568110i \(-0.807675\pi\)
−0.822952 + 0.568110i \(0.807675\pi\)
\(314\) 3217.63 0.578285
\(315\) 0 0
\(316\) −5882.51 −1.04721
\(317\) 8022.82 1.42147 0.710736 0.703459i \(-0.248362\pi\)
0.710736 + 0.703459i \(0.248362\pi\)
\(318\) 17136.5 3.02191
\(319\) −10294.9 −1.80691
\(320\) 0 0
\(321\) 141.995 0.0246896
\(322\) 0 0
\(323\) −4667.84 −0.804104
\(324\) −11430.2 −1.95990
\(325\) 0 0
\(326\) 14858.0 2.52426
\(327\) −111.878 −0.0189201
\(328\) 4492.42 0.756257
\(329\) 0 0
\(330\) 0 0
\(331\) −1333.58 −0.221451 −0.110725 0.993851i \(-0.535317\pi\)
−0.110725 + 0.993851i \(0.535317\pi\)
\(332\) −3899.99 −0.644698
\(333\) −1698.53 −0.279515
\(334\) −12973.5 −2.12539
\(335\) 0 0
\(336\) 0 0
\(337\) 1687.33 0.272744 0.136372 0.990658i \(-0.456456\pi\)
0.136372 + 0.990658i \(0.456456\pi\)
\(338\) −15693.4 −2.52546
\(339\) −380.331 −0.0609344
\(340\) 0 0
\(341\) −10440.9 −1.65808
\(342\) −4400.55 −0.695773
\(343\) 0 0
\(344\) −8554.87 −1.34084
\(345\) 0 0
\(346\) −12713.9 −1.97544
\(347\) −5955.18 −0.921299 −0.460649 0.887582i \(-0.652383\pi\)
−0.460649 + 0.887582i \(0.652383\pi\)
\(348\) 15472.6 2.38339
\(349\) −6876.59 −1.05471 −0.527357 0.849644i \(-0.676817\pi\)
−0.527357 + 0.849644i \(0.676817\pi\)
\(350\) 0 0
\(351\) −5927.81 −0.901433
\(352\) −10578.5 −1.60181
\(353\) 1395.95 0.210479 0.105239 0.994447i \(-0.466439\pi\)
0.105239 + 0.994447i \(0.466439\pi\)
\(354\) 5974.90 0.897069
\(355\) 0 0
\(356\) −16524.5 −2.46011
\(357\) 0 0
\(358\) −1127.50 −0.166453
\(359\) −382.988 −0.0563046 −0.0281523 0.999604i \(-0.508962\pi\)
−0.0281523 + 0.999604i \(0.508962\pi\)
\(360\) 0 0
\(361\) −2567.44 −0.374316
\(362\) 9412.85 1.36665
\(363\) 10296.8 1.48881
\(364\) 0 0
\(365\) 0 0
\(366\) −4766.43 −0.680725
\(367\) −10178.4 −1.44771 −0.723856 0.689951i \(-0.757632\pi\)
−0.723856 + 0.689951i \(0.757632\pi\)
\(368\) 830.094 0.117586
\(369\) −3212.65 −0.453235
\(370\) 0 0
\(371\) 0 0
\(372\) 15692.0 2.18708
\(373\) 2991.00 0.415196 0.207598 0.978214i \(-0.433435\pi\)
0.207598 + 0.978214i \(0.433435\pi\)
\(374\) −17471.8 −2.41563
\(375\) 0 0
\(376\) 2352.00 0.322594
\(377\) 14321.5 1.95648
\(378\) 0 0
\(379\) 7400.66 1.00302 0.501512 0.865150i \(-0.332777\pi\)
0.501512 + 0.865150i \(0.332777\pi\)
\(380\) 0 0
\(381\) −12040.3 −1.61901
\(382\) 5682.27 0.761074
\(383\) −10769.6 −1.43682 −0.718408 0.695622i \(-0.755129\pi\)
−0.718408 + 0.695622i \(0.755129\pi\)
\(384\) 14349.5 1.90695
\(385\) 0 0
\(386\) 7265.75 0.958075
\(387\) 6117.81 0.803580
\(388\) −16521.5 −2.16173
\(389\) −11193.3 −1.45893 −0.729466 0.684017i \(-0.760231\pi\)
−0.729466 + 0.684017i \(0.760231\pi\)
\(390\) 0 0
\(391\) 8955.74 1.15834
\(392\) 0 0
\(393\) −5012.36 −0.643359
\(394\) 10641.1 1.36063
\(395\) 0 0
\(396\) −10064.5 −1.27717
\(397\) 10371.9 1.31121 0.655605 0.755104i \(-0.272414\pi\)
0.655605 + 0.755104i \(0.272414\pi\)
\(398\) −9040.88 −1.13864
\(399\) 0 0
\(400\) 0 0
\(401\) 5402.20 0.672751 0.336375 0.941728i \(-0.390799\pi\)
0.336375 + 0.941728i \(0.390799\pi\)
\(402\) 14003.7 1.73741
\(403\) 14524.5 1.79533
\(404\) 5042.44 0.620967
\(405\) 0 0
\(406\) 0 0
\(407\) 6200.17 0.755113
\(408\) 9543.07 1.15797
\(409\) 12829.9 1.55110 0.775549 0.631288i \(-0.217473\pi\)
0.775549 + 0.631288i \(0.217473\pi\)
\(410\) 0 0
\(411\) 6646.97 0.797739
\(412\) 3667.64 0.438572
\(413\) 0 0
\(414\) 8442.91 1.00229
\(415\) 0 0
\(416\) 14716.0 1.73440
\(417\) 6658.02 0.781882
\(418\) 16063.4 1.87964
\(419\) −5620.85 −0.655362 −0.327681 0.944788i \(-0.606267\pi\)
−0.327681 + 0.944788i \(0.606267\pi\)
\(420\) 0 0
\(421\) −2177.11 −0.252033 −0.126017 0.992028i \(-0.540219\pi\)
−0.126017 + 0.992028i \(0.540219\pi\)
\(422\) 26541.9 3.06171
\(423\) −1681.98 −0.193335
\(424\) 12103.6 1.38633
\(425\) 0 0
\(426\) −24113.7 −2.74252
\(427\) 0 0
\(428\) 275.967 0.0311668
\(429\) −26296.8 −2.95949
\(430\) 0 0
\(431\) 10396.4 1.16190 0.580950 0.813939i \(-0.302681\pi\)
0.580950 + 0.813939i \(0.302681\pi\)
\(432\) 520.497 0.0579686
\(433\) 11875.6 1.31803 0.659015 0.752129i \(-0.270973\pi\)
0.659015 + 0.752129i \(0.270973\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −217.435 −0.0238836
\(437\) −8233.81 −0.901320
\(438\) 23430.4 2.55605
\(439\) −640.369 −0.0696200 −0.0348100 0.999394i \(-0.511083\pi\)
−0.0348100 + 0.999394i \(0.511083\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 24305.5 2.61560
\(443\) 854.852 0.0916823 0.0458411 0.998949i \(-0.485403\pi\)
0.0458411 + 0.998949i \(0.485403\pi\)
\(444\) −9318.50 −0.996028
\(445\) 0 0
\(446\) 7798.46 0.827954
\(447\) 9147.56 0.967930
\(448\) 0 0
\(449\) 3427.44 0.360247 0.180123 0.983644i \(-0.442350\pi\)
0.180123 + 0.983644i \(0.442350\pi\)
\(450\) 0 0
\(451\) 11727.2 1.22442
\(452\) −739.176 −0.0769202
\(453\) 13546.5 1.40501
\(454\) 25786.6 2.66569
\(455\) 0 0
\(456\) −8773.79 −0.901032
\(457\) −1709.31 −0.174963 −0.0874814 0.996166i \(-0.527882\pi\)
−0.0874814 + 0.996166i \(0.527882\pi\)
\(458\) −14001.7 −1.42851
\(459\) 5615.56 0.571050
\(460\) 0 0
\(461\) −2251.18 −0.227436 −0.113718 0.993513i \(-0.536276\pi\)
−0.113718 + 0.993513i \(0.536276\pi\)
\(462\) 0 0
\(463\) 3200.80 0.321282 0.160641 0.987013i \(-0.448644\pi\)
0.160641 + 0.987013i \(0.448644\pi\)
\(464\) −1257.51 −0.125816
\(465\) 0 0
\(466\) 18129.3 1.80219
\(467\) 5477.39 0.542748 0.271374 0.962474i \(-0.412522\pi\)
0.271374 + 0.962474i \(0.412522\pi\)
\(468\) 14000.9 1.38289
\(469\) 0 0
\(470\) 0 0
\(471\) −4587.75 −0.448816
\(472\) 4220.11 0.411538
\(473\) −22332.0 −2.17088
\(474\) 13726.6 1.33014
\(475\) 0 0
\(476\) 0 0
\(477\) −8655.60 −0.830844
\(478\) 20407.0 1.95271
\(479\) 14182.0 1.35280 0.676399 0.736535i \(-0.263539\pi\)
0.676399 + 0.736535i \(0.263539\pi\)
\(480\) 0 0
\(481\) −8625.20 −0.817620
\(482\) 16477.2 1.55709
\(483\) 0 0
\(484\) 20011.8 1.87940
\(485\) 0 0
\(486\) 17021.7 1.58872
\(487\) 5320.83 0.495092 0.247546 0.968876i \(-0.420376\pi\)
0.247546 + 0.968876i \(0.420376\pi\)
\(488\) −3366.56 −0.312289
\(489\) −21184.8 −1.95912
\(490\) 0 0
\(491\) −6574.80 −0.604311 −0.302155 0.953259i \(-0.597706\pi\)
−0.302155 + 0.953259i \(0.597706\pi\)
\(492\) −17625.3 −1.61506
\(493\) −13567.1 −1.23941
\(494\) −22346.2 −2.03523
\(495\) 0 0
\(496\) −1275.34 −0.115453
\(497\) 0 0
\(498\) 9100.49 0.818881
\(499\) −1507.68 −0.135256 −0.0676282 0.997711i \(-0.521543\pi\)
−0.0676282 + 0.997711i \(0.521543\pi\)
\(500\) 0 0
\(501\) 18497.8 1.64955
\(502\) −5492.95 −0.488371
\(503\) −8782.24 −0.778491 −0.389245 0.921134i \(-0.627264\pi\)
−0.389245 + 0.921134i \(0.627264\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −30819.4 −2.70768
\(507\) 22375.9 1.96005
\(508\) −23400.4 −2.04375
\(509\) −12696.6 −1.10563 −0.552815 0.833304i \(-0.686447\pi\)
−0.552815 + 0.833304i \(0.686447\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −2386.50 −0.205995
\(513\) −5162.88 −0.444341
\(514\) 28234.7 2.42291
\(515\) 0 0
\(516\) 33563.7 2.86349
\(517\) 6139.76 0.522295
\(518\) 0 0
\(519\) 18127.6 1.53317
\(520\) 0 0
\(521\) 10434.7 0.877455 0.438727 0.898620i \(-0.355429\pi\)
0.438727 + 0.898620i \(0.355429\pi\)
\(522\) −12790.2 −1.07243
\(523\) −8403.03 −0.702560 −0.351280 0.936270i \(-0.614254\pi\)
−0.351280 + 0.936270i \(0.614254\pi\)
\(524\) −9741.55 −0.812140
\(525\) 0 0
\(526\) −3434.78 −0.284722
\(527\) −13759.4 −1.13733
\(528\) 2309.02 0.190317
\(529\) 3630.43 0.298384
\(530\) 0 0
\(531\) −3017.91 −0.246640
\(532\) 0 0
\(533\) −16314.0 −1.32577
\(534\) 38559.4 3.12477
\(535\) 0 0
\(536\) 9890.85 0.797052
\(537\) 1607.61 0.129187
\(538\) 7939.11 0.636207
\(539\) 0 0
\(540\) 0 0
\(541\) 8349.66 0.663549 0.331775 0.943359i \(-0.392353\pi\)
0.331775 + 0.943359i \(0.392353\pi\)
\(542\) 20189.6 1.60004
\(543\) −13421.0 −1.06068
\(544\) −13940.8 −1.09873
\(545\) 0 0
\(546\) 0 0
\(547\) −12185.7 −0.952509 −0.476254 0.879308i \(-0.658006\pi\)
−0.476254 + 0.879308i \(0.658006\pi\)
\(548\) 12918.4 1.00702
\(549\) 2407.51 0.187159
\(550\) 0 0
\(551\) 12473.4 0.964402
\(552\) 16833.4 1.29797
\(553\) 0 0
\(554\) −34882.6 −2.67512
\(555\) 0 0
\(556\) 12939.9 0.987004
\(557\) 540.209 0.0410940 0.0205470 0.999789i \(-0.493459\pi\)
0.0205470 + 0.999789i \(0.493459\pi\)
\(558\) −12971.5 −0.984103
\(559\) 31066.6 2.35058
\(560\) 0 0
\(561\) 24911.6 1.87481
\(562\) 902.639 0.0677501
\(563\) −1949.26 −0.145917 −0.0729587 0.997335i \(-0.523244\pi\)
−0.0729587 + 0.997335i \(0.523244\pi\)
\(564\) −9227.71 −0.688930
\(565\) 0 0
\(566\) 3624.94 0.269200
\(567\) 0 0
\(568\) −17031.6 −1.25815
\(569\) 9487.28 0.698994 0.349497 0.936938i \(-0.386353\pi\)
0.349497 + 0.936938i \(0.386353\pi\)
\(570\) 0 0
\(571\) −20172.3 −1.47843 −0.739215 0.673470i \(-0.764803\pi\)
−0.739215 + 0.673470i \(0.764803\pi\)
\(572\) −51108.0 −3.73590
\(573\) −8101.87 −0.590681
\(574\) 0 0
\(575\) 0 0
\(576\) −12360.0 −0.894094
\(577\) 12937.3 0.933423 0.466712 0.884410i \(-0.345439\pi\)
0.466712 + 0.884410i \(0.345439\pi\)
\(578\) −744.254 −0.0535586
\(579\) −10359.6 −0.743577
\(580\) 0 0
\(581\) 0 0
\(582\) 38552.2 2.74578
\(583\) 31595.7 2.24453
\(584\) 16549.0 1.17261
\(585\) 0 0
\(586\) −14978.3 −1.05588
\(587\) −6489.43 −0.456299 −0.228149 0.973626i \(-0.573267\pi\)
−0.228149 + 0.973626i \(0.573267\pi\)
\(588\) 0 0
\(589\) 12650.3 0.884968
\(590\) 0 0
\(591\) −15172.2 −1.05601
\(592\) 757.345 0.0525789
\(593\) −16803.6 −1.16364 −0.581821 0.813317i \(-0.697660\pi\)
−0.581821 + 0.813317i \(0.697660\pi\)
\(594\) −19324.8 −1.33486
\(595\) 0 0
\(596\) 17778.3 1.22186
\(597\) 12890.6 0.883716
\(598\) 42873.5 2.93182
\(599\) 19139.6 1.30554 0.652772 0.757554i \(-0.273606\pi\)
0.652772 + 0.757554i \(0.273606\pi\)
\(600\) 0 0
\(601\) −14304.0 −0.970838 −0.485419 0.874282i \(-0.661333\pi\)
−0.485419 + 0.874282i \(0.661333\pi\)
\(602\) 0 0
\(603\) −7073.21 −0.477684
\(604\) 26327.7 1.77361
\(605\) 0 0
\(606\) −11766.3 −0.788738
\(607\) −2018.10 −0.134946 −0.0674730 0.997721i \(-0.521494\pi\)
−0.0674730 + 0.997721i \(0.521494\pi\)
\(608\) 12817.1 0.854935
\(609\) 0 0
\(610\) 0 0
\(611\) −8541.17 −0.565530
\(612\) −13263.4 −0.876050
\(613\) −21479.4 −1.41524 −0.707621 0.706592i \(-0.750232\pi\)
−0.707621 + 0.706592i \(0.750232\pi\)
\(614\) 39129.6 2.57189
\(615\) 0 0
\(616\) 0 0
\(617\) 5856.83 0.382151 0.191075 0.981575i \(-0.438803\pi\)
0.191075 + 0.981575i \(0.438803\pi\)
\(618\) −8558.31 −0.557065
\(619\) 17619.3 1.14407 0.572035 0.820229i \(-0.306154\pi\)
0.572035 + 0.820229i \(0.306154\pi\)
\(620\) 0 0
\(621\) 9905.53 0.640089
\(622\) −22224.7 −1.43269
\(623\) 0 0
\(624\) −3212.13 −0.206071
\(625\) 0 0
\(626\) 41334.1 2.63904
\(627\) −22903.5 −1.45882
\(628\) −8916.31 −0.566560
\(629\) 8170.87 0.517955
\(630\) 0 0
\(631\) 26395.7 1.66529 0.832643 0.553810i \(-0.186827\pi\)
0.832643 + 0.553810i \(0.186827\pi\)
\(632\) 9695.19 0.610212
\(633\) −37843.9 −2.37624
\(634\) −36384.3 −2.27919
\(635\) 0 0
\(636\) −47486.6 −2.96064
\(637\) 0 0
\(638\) 46688.3 2.89719
\(639\) 12179.8 0.754029
\(640\) 0 0
\(641\) 3209.30 0.197753 0.0988764 0.995100i \(-0.468475\pi\)
0.0988764 + 0.995100i \(0.468475\pi\)
\(642\) −643.959 −0.0395873
\(643\) −1762.48 −0.108096 −0.0540478 0.998538i \(-0.517212\pi\)
−0.0540478 + 0.998538i \(0.517212\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 21169.1 1.28930
\(647\) −24372.7 −1.48098 −0.740488 0.672070i \(-0.765405\pi\)
−0.740488 + 0.672070i \(0.765405\pi\)
\(648\) 18838.5 1.14205
\(649\) 11016.3 0.666301
\(650\) 0 0
\(651\) 0 0
\(652\) −41172.8 −2.47308
\(653\) −6389.97 −0.382938 −0.191469 0.981499i \(-0.561325\pi\)
−0.191469 + 0.981499i \(0.561325\pi\)
\(654\) 507.377 0.0303364
\(655\) 0 0
\(656\) 1432.47 0.0852567
\(657\) −11834.6 −0.702760
\(658\) 0 0
\(659\) −6111.68 −0.361270 −0.180635 0.983550i \(-0.557815\pi\)
−0.180635 + 0.983550i \(0.557815\pi\)
\(660\) 0 0
\(661\) −16391.1 −0.964510 −0.482255 0.876031i \(-0.660182\pi\)
−0.482255 + 0.876031i \(0.660182\pi\)
\(662\) 6047.92 0.355074
\(663\) −34655.2 −2.03001
\(664\) 6427.72 0.375669
\(665\) 0 0
\(666\) 7702.98 0.448175
\(667\) −23931.6 −1.38926
\(668\) 35950.6 2.08229
\(669\) −11119.2 −0.642588
\(670\) 0 0
\(671\) −8788.20 −0.505611
\(672\) 0 0
\(673\) 13055.9 0.747799 0.373900 0.927469i \(-0.378020\pi\)
0.373900 + 0.927469i \(0.378020\pi\)
\(674\) −7652.20 −0.437317
\(675\) 0 0
\(676\) 43487.6 2.47426
\(677\) −3154.53 −0.179082 −0.0895410 0.995983i \(-0.528540\pi\)
−0.0895410 + 0.995983i \(0.528540\pi\)
\(678\) 1724.84 0.0977022
\(679\) 0 0
\(680\) 0 0
\(681\) −36766.9 −2.06888
\(682\) 47350.4 2.65856
\(683\) −17282.7 −0.968233 −0.484117 0.875004i \(-0.660859\pi\)
−0.484117 + 0.875004i \(0.660859\pi\)
\(684\) 12194.3 0.681666
\(685\) 0 0
\(686\) 0 0
\(687\) 19963.8 1.10869
\(688\) −2727.83 −0.151159
\(689\) −43953.6 −2.43033
\(690\) 0 0
\(691\) −26838.3 −1.47753 −0.738766 0.673961i \(-0.764591\pi\)
−0.738766 + 0.673961i \(0.764591\pi\)
\(692\) 35231.1 1.93538
\(693\) 0 0
\(694\) 27007.3 1.47721
\(695\) 0 0
\(696\) −25501.0 −1.38881
\(697\) 15454.6 0.839866
\(698\) 31186.0 1.69113
\(699\) −25849.0 −1.39871
\(700\) 0 0
\(701\) −8374.52 −0.451214 −0.225607 0.974218i \(-0.572437\pi\)
−0.225607 + 0.974218i \(0.572437\pi\)
\(702\) 26883.2 1.44536
\(703\) −7512.21 −0.403028
\(704\) 45117.9 2.41540
\(705\) 0 0
\(706\) −6330.79 −0.337482
\(707\) 0 0
\(708\) −16556.9 −0.878881
\(709\) 11929.4 0.631902 0.315951 0.948775i \(-0.397676\pi\)
0.315951 + 0.948775i \(0.397676\pi\)
\(710\) 0 0
\(711\) −6933.28 −0.365708
\(712\) 27234.7 1.43352
\(713\) −24270.9 −1.27483
\(714\) 0 0
\(715\) 0 0
\(716\) 3124.40 0.163078
\(717\) −29096.6 −1.51553
\(718\) 1736.89 0.0902788
\(719\) 23392.3 1.21333 0.606666 0.794957i \(-0.292507\pi\)
0.606666 + 0.794957i \(0.292507\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 11643.6 0.600179
\(723\) −23493.4 −1.20848
\(724\) −26083.8 −1.33894
\(725\) 0 0
\(726\) −46696.8 −2.38717
\(727\) 10659.8 0.543810 0.271905 0.962324i \(-0.412346\pi\)
0.271905 + 0.962324i \(0.412346\pi\)
\(728\) 0 0
\(729\) 287.476 0.0146053
\(730\) 0 0
\(731\) −29430.1 −1.48907
\(732\) 13208.2 0.666923
\(733\) 23919.1 1.20528 0.602642 0.798011i \(-0.294115\pi\)
0.602642 + 0.798011i \(0.294115\pi\)
\(734\) 46160.2 2.32126
\(735\) 0 0
\(736\) −24590.9 −1.23157
\(737\) 25819.5 1.29047
\(738\) 14569.7 0.726717
\(739\) 34535.1 1.71907 0.859536 0.511074i \(-0.170752\pi\)
0.859536 + 0.511074i \(0.170752\pi\)
\(740\) 0 0
\(741\) 31861.6 1.57957
\(742\) 0 0
\(743\) −17526.8 −0.865403 −0.432702 0.901537i \(-0.642440\pi\)
−0.432702 + 0.901537i \(0.642440\pi\)
\(744\) −25862.6 −1.27442
\(745\) 0 0
\(746\) −13564.5 −0.665725
\(747\) −4596.63 −0.225143
\(748\) 48415.9 2.36666
\(749\) 0 0
\(750\) 0 0
\(751\) 18534.3 0.900565 0.450283 0.892886i \(-0.351323\pi\)
0.450283 + 0.892886i \(0.351323\pi\)
\(752\) 749.966 0.0363676
\(753\) 7831.94 0.379033
\(754\) −64949.2 −3.13702
\(755\) 0 0
\(756\) 0 0
\(757\) 9309.64 0.446981 0.223491 0.974706i \(-0.428255\pi\)
0.223491 + 0.974706i \(0.428255\pi\)
\(758\) −33562.7 −1.60825
\(759\) 43942.7 2.10148
\(760\) 0 0
\(761\) 2968.41 0.141399 0.0706996 0.997498i \(-0.477477\pi\)
0.0706996 + 0.997498i \(0.477477\pi\)
\(762\) 54604.0 2.59592
\(763\) 0 0
\(764\) −15746.0 −0.745643
\(765\) 0 0
\(766\) 48841.1 2.30379
\(767\) −15325.1 −0.721457
\(768\) −21910.1 −1.02944
\(769\) 34932.9 1.63812 0.819060 0.573708i \(-0.194495\pi\)
0.819060 + 0.573708i \(0.194495\pi\)
\(770\) 0 0
\(771\) −40257.5 −1.88046
\(772\) −20134.0 −0.938650
\(773\) −13595.4 −0.632591 −0.316295 0.948661i \(-0.602439\pi\)
−0.316295 + 0.948661i \(0.602439\pi\)
\(774\) −27744.9 −1.28846
\(775\) 0 0
\(776\) 27229.7 1.25965
\(777\) 0 0
\(778\) 50762.9 2.33925
\(779\) −14208.8 −0.653510
\(780\) 0 0
\(781\) −44460.1 −2.03701
\(782\) −40615.2 −1.85728
\(783\) −15005.9 −0.684888
\(784\) 0 0
\(785\) 0 0
\(786\) 22731.6 1.03156
\(787\) −14228.1 −0.644444 −0.322222 0.946664i \(-0.604430\pi\)
−0.322222 + 0.946664i \(0.604430\pi\)
\(788\) −29487.3 −1.33305
\(789\) 4897.36 0.220977
\(790\) 0 0
\(791\) 0 0
\(792\) 16587.7 0.744213
\(793\) 12225.5 0.547465
\(794\) −47037.5 −2.10239
\(795\) 0 0
\(796\) 25053.0 1.11555
\(797\) 11442.3 0.508539 0.254270 0.967133i \(-0.418165\pi\)
0.254270 + 0.967133i \(0.418165\pi\)
\(798\) 0 0
\(799\) 8091.26 0.358258
\(800\) 0 0
\(801\) −19476.2 −0.859125
\(802\) −24499.5 −1.07869
\(803\) 43200.3 1.89851
\(804\) −38805.2 −1.70218
\(805\) 0 0
\(806\) −65870.2 −2.87863
\(807\) −11319.7 −0.493770
\(808\) −8310.63 −0.361840
\(809\) 22732.9 0.987944 0.493972 0.869478i \(-0.335545\pi\)
0.493972 + 0.869478i \(0.335545\pi\)
\(810\) 0 0
\(811\) 29768.2 1.28890 0.644452 0.764644i \(-0.277085\pi\)
0.644452 + 0.764644i \(0.277085\pi\)
\(812\) 0 0
\(813\) −28786.7 −1.24181
\(814\) −28118.4 −1.21075
\(815\) 0 0
\(816\) 3042.93 0.130544
\(817\) 27057.7 1.15867
\(818\) −58185.0 −2.48703
\(819\) 0 0
\(820\) 0 0
\(821\) 6408.35 0.272416 0.136208 0.990680i \(-0.456509\pi\)
0.136208 + 0.990680i \(0.456509\pi\)
\(822\) −30144.6 −1.27909
\(823\) 20876.0 0.884194 0.442097 0.896967i \(-0.354235\pi\)
0.442097 + 0.896967i \(0.354235\pi\)
\(824\) −6044.78 −0.255558
\(825\) 0 0
\(826\) 0 0
\(827\) 41650.1 1.75129 0.875645 0.482955i \(-0.160437\pi\)
0.875645 + 0.482955i \(0.160437\pi\)
\(828\) −23396.0 −0.981964
\(829\) −17194.7 −0.720380 −0.360190 0.932879i \(-0.617288\pi\)
−0.360190 + 0.932879i \(0.617288\pi\)
\(830\) 0 0
\(831\) 49736.1 2.07621
\(832\) −62764.5 −2.61535
\(833\) 0 0
\(834\) −30194.8 −1.25367
\(835\) 0 0
\(836\) −44513.0 −1.84153
\(837\) −15218.7 −0.628477
\(838\) 25491.1 1.05081
\(839\) −40583.7 −1.66997 −0.834985 0.550273i \(-0.814524\pi\)
−0.834985 + 0.550273i \(0.814524\pi\)
\(840\) 0 0
\(841\) 11865.0 0.486489
\(842\) 9873.42 0.404110
\(843\) −1287.00 −0.0525819
\(844\) −73549.7 −2.99963
\(845\) 0 0
\(846\) 7627.93 0.309993
\(847\) 0 0
\(848\) 3859.39 0.156288
\(849\) −5168.49 −0.208931
\(850\) 0 0
\(851\) 14413.0 0.580576
\(852\) 66821.0 2.68691
\(853\) 23020.1 0.924023 0.462012 0.886874i \(-0.347128\pi\)
0.462012 + 0.886874i \(0.347128\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −454.832 −0.0181610
\(857\) −18075.5 −0.720476 −0.360238 0.932861i \(-0.617304\pi\)
−0.360238 + 0.932861i \(0.617304\pi\)
\(858\) 119259. 4.74525
\(859\) −20308.2 −0.806643 −0.403321 0.915058i \(-0.632144\pi\)
−0.403321 + 0.915058i \(0.632144\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −47148.9 −1.86299
\(863\) 31023.5 1.22370 0.611849 0.790975i \(-0.290426\pi\)
0.611849 + 0.790975i \(0.290426\pi\)
\(864\) −15419.3 −0.607148
\(865\) 0 0
\(866\) −53857.2 −2.11333
\(867\) 1061.17 0.0415677
\(868\) 0 0
\(869\) 25308.7 0.987963
\(870\) 0 0
\(871\) −35918.1 −1.39729
\(872\) 358.363 0.0139171
\(873\) −19472.6 −0.754924
\(874\) 37341.2 1.44518
\(875\) 0 0
\(876\) −64927.5 −2.50422
\(877\) 28344.1 1.09135 0.545674 0.837997i \(-0.316274\pi\)
0.545674 + 0.837997i \(0.316274\pi\)
\(878\) 2904.14 0.111629
\(879\) 21356.3 0.819488
\(880\) 0 0
\(881\) −41264.5 −1.57802 −0.789010 0.614380i \(-0.789406\pi\)
−0.789010 + 0.614380i \(0.789406\pi\)
\(882\) 0 0
\(883\) 7995.59 0.304726 0.152363 0.988325i \(-0.451312\pi\)
0.152363 + 0.988325i \(0.451312\pi\)
\(884\) −67352.5 −2.56257
\(885\) 0 0
\(886\) −3876.84 −0.147003
\(887\) 24438.3 0.925093 0.462547 0.886595i \(-0.346936\pi\)
0.462547 + 0.886595i \(0.346936\pi\)
\(888\) 15358.2 0.580390
\(889\) 0 0
\(890\) 0 0
\(891\) 49176.8 1.84903
\(892\) −21610.1 −0.811167
\(893\) −7439.02 −0.278765
\(894\) −41485.1 −1.55198
\(895\) 0 0
\(896\) 0 0
\(897\) −61129.8 −2.27543
\(898\) −15543.8 −0.577620
\(899\) 36768.0 1.36405
\(900\) 0 0
\(901\) 41638.3 1.53959
\(902\) −53184.0 −1.96323
\(903\) 0 0
\(904\) 1218.26 0.0448218
\(905\) 0 0
\(906\) −61434.7 −2.25279
\(907\) −17241.6 −0.631201 −0.315601 0.948892i \(-0.602206\pi\)
−0.315601 + 0.948892i \(0.602206\pi\)
\(908\) −71456.6 −2.61164
\(909\) 5943.15 0.216856
\(910\) 0 0
\(911\) 17407.8 0.633092 0.316546 0.948577i \(-0.397477\pi\)
0.316546 + 0.948577i \(0.397477\pi\)
\(912\) −2797.64 −0.101578
\(913\) 16779.2 0.608226
\(914\) 7751.87 0.280535
\(915\) 0 0
\(916\) 38799.8 1.39954
\(917\) 0 0
\(918\) −25467.1 −0.915621
\(919\) 7704.64 0.276553 0.138277 0.990394i \(-0.455844\pi\)
0.138277 + 0.990394i \(0.455844\pi\)
\(920\) 0 0
\(921\) −55791.6 −1.99609
\(922\) 10209.3 0.364671
\(923\) 61849.5 2.20564
\(924\) 0 0
\(925\) 0 0
\(926\) −14515.9 −0.515144
\(927\) 4322.78 0.153159
\(928\) 37252.8 1.31776
\(929\) 48184.3 1.70170 0.850849 0.525411i \(-0.176088\pi\)
0.850849 + 0.525411i \(0.176088\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −50237.7 −1.76565
\(933\) 31688.4 1.11193
\(934\) −24840.5 −0.870242
\(935\) 0 0
\(936\) −23075.5 −0.805818
\(937\) 23371.6 0.814853 0.407427 0.913238i \(-0.366426\pi\)
0.407427 + 0.913238i \(0.366426\pi\)
\(938\) 0 0
\(939\) −58934.7 −2.04820
\(940\) 0 0
\(941\) −18048.6 −0.625258 −0.312629 0.949875i \(-0.601210\pi\)
−0.312629 + 0.949875i \(0.601210\pi\)
\(942\) 20805.9 0.719631
\(943\) 27261.1 0.941405
\(944\) 1345.64 0.0463948
\(945\) 0 0
\(946\) 101278. 3.48079
\(947\) −10346.2 −0.355022 −0.177511 0.984119i \(-0.556805\pi\)
−0.177511 + 0.984119i \(0.556805\pi\)
\(948\) −38037.6 −1.30317
\(949\) −60096.9 −2.05567
\(950\) 0 0
\(951\) 51877.3 1.76891
\(952\) 0 0
\(953\) −8691.77 −0.295440 −0.147720 0.989029i \(-0.547193\pi\)
−0.147720 + 0.989029i \(0.547193\pi\)
\(954\) 39254.0 1.33217
\(955\) 0 0
\(956\) −56549.5 −1.91312
\(957\) −66568.9 −2.24856
\(958\) −64316.6 −2.16908
\(959\) 0 0
\(960\) 0 0
\(961\) 7498.41 0.251701
\(962\) 39116.2 1.31097
\(963\) 325.262 0.0108841
\(964\) −45659.6 −1.52552
\(965\) 0 0
\(966\) 0 0
\(967\) −8971.58 −0.298352 −0.149176 0.988811i \(-0.547662\pi\)
−0.149176 + 0.988811i \(0.547662\pi\)
\(968\) −32982.2 −1.09513
\(969\) −30183.3 −1.00065
\(970\) 0 0
\(971\) −29275.1 −0.967541 −0.483771 0.875195i \(-0.660733\pi\)
−0.483771 + 0.875195i \(0.660733\pi\)
\(972\) −47168.5 −1.55651
\(973\) 0 0
\(974\) −24130.5 −0.793831
\(975\) 0 0
\(976\) −1073.47 −0.0352059
\(977\) 16477.5 0.539572 0.269786 0.962920i \(-0.413047\pi\)
0.269786 + 0.962920i \(0.413047\pi\)
\(978\) 96075.2 3.14125
\(979\) 71094.6 2.32093
\(980\) 0 0
\(981\) −256.275 −0.00834071
\(982\) 29817.4 0.968952
\(983\) 45912.9 1.48972 0.744859 0.667222i \(-0.232517\pi\)
0.744859 + 0.667222i \(0.232517\pi\)
\(984\) 29048.9 0.941104
\(985\) 0 0
\(986\) 61528.0 1.98727
\(987\) 0 0
\(988\) 61923.2 1.99397
\(989\) −51913.1 −1.66910
\(990\) 0 0
\(991\) 46124.8 1.47851 0.739255 0.673426i \(-0.235178\pi\)
0.739255 + 0.673426i \(0.235178\pi\)
\(992\) 37781.0 1.20922
\(993\) −8623.22 −0.275579
\(994\) 0 0
\(995\) 0 0
\(996\) −25218.2 −0.802278
\(997\) −30984.5 −0.984240 −0.492120 0.870527i \(-0.663778\pi\)
−0.492120 + 0.870527i \(0.663778\pi\)
\(998\) 6837.47 0.216870
\(999\) 9037.42 0.286218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.4.a.z.1.2 4
5.4 even 2 1225.4.a.bd.1.3 4
7.6 odd 2 175.4.a.g.1.2 4
21.20 even 2 1575.4.a.bl.1.3 4
35.13 even 4 175.4.b.f.99.6 8
35.27 even 4 175.4.b.f.99.3 8
35.34 odd 2 175.4.a.h.1.3 yes 4
105.104 even 2 1575.4.a.bg.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.g.1.2 4 7.6 odd 2
175.4.a.h.1.3 yes 4 35.34 odd 2
175.4.b.f.99.3 8 35.27 even 4
175.4.b.f.99.6 8 35.13 even 4
1225.4.a.z.1.2 4 1.1 even 1 trivial
1225.4.a.bd.1.3 4 5.4 even 2
1575.4.a.bg.1.2 4 105.104 even 2
1575.4.a.bl.1.3 4 21.20 even 2