Properties

Label 1225.4.a.t.1.2
Level $1225$
Weight $4$
Character 1225.1
Self dual yes
Analytic conductor $72.277$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,4,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2773397570\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 175)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.70156\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.70156 q^{2} +5.70156 q^{3} +5.70156 q^{4} +21.1047 q^{6} -8.50781 q^{8} +5.50781 q^{9} -60.0156 q^{11} +32.5078 q^{12} -0.387503 q^{13} -77.1047 q^{16} +35.4922 q^{17} +20.3875 q^{18} +6.08907 q^{19} -222.152 q^{22} -31.5078 q^{23} -48.5078 q^{24} -1.43437 q^{26} -122.539 q^{27} -292.942 q^{29} -130.303 q^{31} -217.345 q^{32} -342.183 q^{33} +131.377 q^{34} +31.4031 q^{36} +219.989 q^{37} +22.5391 q^{38} -2.20937 q^{39} +447.795 q^{41} +210.020 q^{43} -342.183 q^{44} -116.628 q^{46} -457.769 q^{47} -439.617 q^{48} +202.361 q^{51} -2.20937 q^{52} +144.334 q^{53} -453.586 q^{54} +34.7172 q^{57} -1084.34 q^{58} -767.328 q^{59} -667.884 q^{61} -482.325 q^{62} -187.680 q^{64} -1266.61 q^{66} -77.4593 q^{67} +202.361 q^{68} -179.644 q^{69} -906.573 q^{71} -46.8594 q^{72} +1029.72 q^{73} +814.303 q^{74} +34.7172 q^{76} -8.17813 q^{78} -690.764 q^{79} -847.375 q^{81} +1657.54 q^{82} +979.408 q^{83} +777.403 q^{86} -1670.23 q^{87} +510.602 q^{88} +910.927 q^{89} -179.644 q^{92} -742.931 q^{93} -1694.46 q^{94} -1239.21 q^{96} -11.1751 q^{97} -330.555 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 5 q^{3} + 5 q^{4} + 23 q^{6} + 15 q^{8} - 21 q^{9} - 56 q^{11} + 33 q^{12} - 52 q^{13} - 135 q^{16} + 103 q^{17} + 92 q^{18} + 57 q^{19} - 233 q^{22} - 31 q^{23} - 65 q^{24} + 138 q^{26}+ \cdots - 437 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.70156 1.30870 0.654350 0.756192i \(-0.272942\pi\)
0.654350 + 0.756192i \(0.272942\pi\)
\(3\) 5.70156 1.09727 0.548633 0.836063i \(-0.315148\pi\)
0.548633 + 0.836063i \(0.315148\pi\)
\(4\) 5.70156 0.712695
\(5\) 0 0
\(6\) 21.1047 1.43599
\(7\) 0 0
\(8\) −8.50781 −0.375996
\(9\) 5.50781 0.203993
\(10\) 0 0
\(11\) −60.0156 −1.64504 −0.822518 0.568739i \(-0.807431\pi\)
−0.822518 + 0.568739i \(0.807431\pi\)
\(12\) 32.5078 0.782016
\(13\) −0.387503 −0.00826723 −0.00413362 0.999991i \(-0.501316\pi\)
−0.00413362 + 0.999991i \(0.501316\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −77.1047 −1.20476
\(17\) 35.4922 0.506360 0.253180 0.967419i \(-0.418524\pi\)
0.253180 + 0.967419i \(0.418524\pi\)
\(18\) 20.3875 0.266966
\(19\) 6.08907 0.0735225 0.0367612 0.999324i \(-0.488296\pi\)
0.0367612 + 0.999324i \(0.488296\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −222.152 −2.15286
\(23\) −31.5078 −0.285645 −0.142822 0.989748i \(-0.545618\pi\)
−0.142822 + 0.989748i \(0.545618\pi\)
\(24\) −48.5078 −0.412567
\(25\) 0 0
\(26\) −1.43437 −0.0108193
\(27\) −122.539 −0.873432
\(28\) 0 0
\(29\) −292.942 −1.87579 −0.937896 0.346915i \(-0.887229\pi\)
−0.937896 + 0.346915i \(0.887229\pi\)
\(30\) 0 0
\(31\) −130.303 −0.754940 −0.377470 0.926022i \(-0.623206\pi\)
−0.377470 + 0.926022i \(0.623206\pi\)
\(32\) −217.345 −1.20067
\(33\) −342.183 −1.80504
\(34\) 131.377 0.662673
\(35\) 0 0
\(36\) 31.4031 0.145385
\(37\) 219.989 0.977459 0.488729 0.872435i \(-0.337461\pi\)
0.488729 + 0.872435i \(0.337461\pi\)
\(38\) 22.5391 0.0962189
\(39\) −2.20937 −0.00907135
\(40\) 0 0
\(41\) 447.795 1.70570 0.852852 0.522153i \(-0.174871\pi\)
0.852852 + 0.522153i \(0.174871\pi\)
\(42\) 0 0
\(43\) 210.020 0.744832 0.372416 0.928066i \(-0.378529\pi\)
0.372416 + 0.928066i \(0.378529\pi\)
\(44\) −342.183 −1.17241
\(45\) 0 0
\(46\) −116.628 −0.373823
\(47\) −457.769 −1.42069 −0.710345 0.703854i \(-0.751461\pi\)
−0.710345 + 0.703854i \(0.751461\pi\)
\(48\) −439.617 −1.32194
\(49\) 0 0
\(50\) 0 0
\(51\) 202.361 0.555612
\(52\) −2.20937 −0.00589202
\(53\) 144.334 0.374073 0.187036 0.982353i \(-0.440112\pi\)
0.187036 + 0.982353i \(0.440112\pi\)
\(54\) −453.586 −1.14306
\(55\) 0 0
\(56\) 0 0
\(57\) 34.7172 0.0806737
\(58\) −1084.34 −2.45485
\(59\) −767.328 −1.69318 −0.846590 0.532246i \(-0.821348\pi\)
−0.846590 + 0.532246i \(0.821348\pi\)
\(60\) 0 0
\(61\) −667.884 −1.40187 −0.700933 0.713227i \(-0.747233\pi\)
−0.700933 + 0.713227i \(0.747233\pi\)
\(62\) −482.325 −0.987989
\(63\) 0 0
\(64\) −187.680 −0.366562
\(65\) 0 0
\(66\) −1266.61 −2.36226
\(67\) −77.4593 −0.141241 −0.0706206 0.997503i \(-0.522498\pi\)
−0.0706206 + 0.997503i \(0.522498\pi\)
\(68\) 202.361 0.360880
\(69\) −179.644 −0.313428
\(70\) 0 0
\(71\) −906.573 −1.51536 −0.757679 0.652627i \(-0.773667\pi\)
−0.757679 + 0.652627i \(0.773667\pi\)
\(72\) −46.8594 −0.0767005
\(73\) 1029.72 1.65095 0.825477 0.564436i \(-0.190906\pi\)
0.825477 + 0.564436i \(0.190906\pi\)
\(74\) 814.303 1.27920
\(75\) 0 0
\(76\) 34.7172 0.0523991
\(77\) 0 0
\(78\) −8.17813 −0.0118717
\(79\) −690.764 −0.983760 −0.491880 0.870663i \(-0.663690\pi\)
−0.491880 + 0.870663i \(0.663690\pi\)
\(80\) 0 0
\(81\) −847.375 −1.16238
\(82\) 1657.54 2.23225
\(83\) 979.408 1.29523 0.647614 0.761968i \(-0.275767\pi\)
0.647614 + 0.761968i \(0.275767\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 777.403 0.974762
\(87\) −1670.23 −2.05824
\(88\) 510.602 0.618526
\(89\) 910.927 1.08492 0.542461 0.840081i \(-0.317493\pi\)
0.542461 + 0.840081i \(0.317493\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −179.644 −0.203578
\(93\) −742.931 −0.828370
\(94\) −1694.46 −1.85926
\(95\) 0 0
\(96\) −1239.21 −1.31746
\(97\) −11.1751 −0.0116975 −0.00584876 0.999983i \(-0.501862\pi\)
−0.00584876 + 0.999983i \(0.501862\pi\)
\(98\) 0 0
\(99\) −330.555 −0.335576
\(100\) 0 0
\(101\) −675.850 −0.665837 −0.332919 0.942956i \(-0.608033\pi\)
−0.332919 + 0.942956i \(0.608033\pi\)
\(102\) 749.052 0.727129
\(103\) 1528.88 1.46257 0.731286 0.682071i \(-0.238921\pi\)
0.731286 + 0.682071i \(0.238921\pi\)
\(104\) 3.29680 0.00310844
\(105\) 0 0
\(106\) 534.263 0.489549
\(107\) 701.595 0.633886 0.316943 0.948445i \(-0.397344\pi\)
0.316943 + 0.948445i \(0.397344\pi\)
\(108\) −698.664 −0.622491
\(109\) −597.130 −0.524722 −0.262361 0.964970i \(-0.584501\pi\)
−0.262361 + 0.964970i \(0.584501\pi\)
\(110\) 0 0
\(111\) 1254.28 1.07253
\(112\) 0 0
\(113\) 88.1187 0.0733585 0.0366792 0.999327i \(-0.488322\pi\)
0.0366792 + 0.999327i \(0.488322\pi\)
\(114\) 128.508 0.105578
\(115\) 0 0
\(116\) −1670.23 −1.33687
\(117\) −2.13429 −0.00168646
\(118\) −2840.31 −2.21586
\(119\) 0 0
\(120\) 0 0
\(121\) 2270.87 1.70614
\(122\) −2472.22 −1.83462
\(123\) 2553.13 1.87161
\(124\) −742.931 −0.538042
\(125\) 0 0
\(126\) 0 0
\(127\) −2119.35 −1.48080 −0.740401 0.672166i \(-0.765364\pi\)
−0.740401 + 0.672166i \(0.765364\pi\)
\(128\) 1044.05 0.720955
\(129\) 1197.44 0.817279
\(130\) 0 0
\(131\) 264.294 0.176271 0.0881353 0.996109i \(-0.471909\pi\)
0.0881353 + 0.996109i \(0.471909\pi\)
\(132\) −1950.98 −1.28644
\(133\) 0 0
\(134\) −286.720 −0.184842
\(135\) 0 0
\(136\) −301.961 −0.190389
\(137\) 468.227 0.291995 0.145997 0.989285i \(-0.453361\pi\)
0.145997 + 0.989285i \(0.453361\pi\)
\(138\) −664.962 −0.410184
\(139\) −956.908 −0.583913 −0.291956 0.956432i \(-0.594306\pi\)
−0.291956 + 0.956432i \(0.594306\pi\)
\(140\) 0 0
\(141\) −2610.00 −1.55888
\(142\) −3355.74 −1.98315
\(143\) 23.2562 0.0135999
\(144\) −424.678 −0.245763
\(145\) 0 0
\(146\) 3811.57 2.16060
\(147\) 0 0
\(148\) 1254.28 0.696630
\(149\) −382.967 −0.210563 −0.105282 0.994442i \(-0.533574\pi\)
−0.105282 + 0.994442i \(0.533574\pi\)
\(150\) 0 0
\(151\) 1302.98 0.702218 0.351109 0.936335i \(-0.385805\pi\)
0.351109 + 0.936335i \(0.385805\pi\)
\(152\) −51.8046 −0.0276441
\(153\) 195.484 0.103294
\(154\) 0 0
\(155\) 0 0
\(156\) −12.5969 −0.00646511
\(157\) 3203.32 1.62836 0.814182 0.580610i \(-0.197186\pi\)
0.814182 + 0.580610i \(0.197186\pi\)
\(158\) −2556.91 −1.28745
\(159\) 822.931 0.410457
\(160\) 0 0
\(161\) 0 0
\(162\) −3136.61 −1.52121
\(163\) 1368.81 0.657752 0.328876 0.944373i \(-0.393330\pi\)
0.328876 + 0.944373i \(0.393330\pi\)
\(164\) 2553.13 1.21565
\(165\) 0 0
\(166\) 3625.34 1.69507
\(167\) −3073.34 −1.42409 −0.712043 0.702136i \(-0.752230\pi\)
−0.712043 + 0.702136i \(0.752230\pi\)
\(168\) 0 0
\(169\) −2196.85 −0.999932
\(170\) 0 0
\(171\) 33.5374 0.0149981
\(172\) 1197.44 0.530839
\(173\) 2402.16 1.05568 0.527841 0.849343i \(-0.323002\pi\)
0.527841 + 0.849343i \(0.323002\pi\)
\(174\) −6182.45 −2.69362
\(175\) 0 0
\(176\) 4627.49 1.98187
\(177\) −4374.97 −1.85787
\(178\) 3371.85 1.41984
\(179\) −1146.25 −0.478628 −0.239314 0.970942i \(-0.576923\pi\)
−0.239314 + 0.970942i \(0.576923\pi\)
\(180\) 0 0
\(181\) 475.847 0.195411 0.0977056 0.995215i \(-0.468850\pi\)
0.0977056 + 0.995215i \(0.468850\pi\)
\(182\) 0 0
\(183\) −3807.98 −1.53822
\(184\) 268.062 0.107401
\(185\) 0 0
\(186\) −2750.01 −1.08409
\(187\) −2130.09 −0.832980
\(188\) −2610.00 −1.01252
\(189\) 0 0
\(190\) 0 0
\(191\) 990.003 0.375048 0.187524 0.982260i \(-0.439954\pi\)
0.187524 + 0.982260i \(0.439954\pi\)
\(192\) −1070.07 −0.402216
\(193\) 1392.88 0.519492 0.259746 0.965677i \(-0.416361\pi\)
0.259746 + 0.965677i \(0.416361\pi\)
\(194\) −41.3653 −0.0153085
\(195\) 0 0
\(196\) 0 0
\(197\) −3583.39 −1.29597 −0.647985 0.761653i \(-0.724388\pi\)
−0.647985 + 0.761653i \(0.724388\pi\)
\(198\) −1223.57 −0.439168
\(199\) −623.947 −0.222263 −0.111132 0.993806i \(-0.535448\pi\)
−0.111132 + 0.993806i \(0.535448\pi\)
\(200\) 0 0
\(201\) −441.639 −0.154979
\(202\) −2501.70 −0.871381
\(203\) 0 0
\(204\) 1153.77 0.395982
\(205\) 0 0
\(206\) 5659.24 1.91407
\(207\) −173.539 −0.0582696
\(208\) 29.8783 0.00996004
\(209\) −365.439 −0.120947
\(210\) 0 0
\(211\) 2266.48 0.739482 0.369741 0.929135i \(-0.379446\pi\)
0.369741 + 0.929135i \(0.379446\pi\)
\(212\) 822.931 0.266600
\(213\) −5168.88 −1.66275
\(214\) 2597.00 0.829566
\(215\) 0 0
\(216\) 1042.54 0.328406
\(217\) 0 0
\(218\) −2210.31 −0.686703
\(219\) 5871.01 1.81154
\(220\) 0 0
\(221\) −13.7533 −0.00418620
\(222\) 4642.80 1.40362
\(223\) −2118.67 −0.636217 −0.318108 0.948054i \(-0.603048\pi\)
−0.318108 + 0.948054i \(0.603048\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 326.177 0.0960042
\(227\) −2790.62 −0.815948 −0.407974 0.912994i \(-0.633765\pi\)
−0.407974 + 0.912994i \(0.633765\pi\)
\(228\) 197.942 0.0574958
\(229\) 5813.77 1.67766 0.838832 0.544390i \(-0.183239\pi\)
0.838832 + 0.544390i \(0.183239\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2492.30 0.705290
\(233\) 1936.18 0.544392 0.272196 0.962242i \(-0.412250\pi\)
0.272196 + 0.962242i \(0.412250\pi\)
\(234\) −7.90022 −0.00220707
\(235\) 0 0
\(236\) −4374.97 −1.20672
\(237\) −3938.43 −1.07945
\(238\) 0 0
\(239\) −2755.79 −0.745845 −0.372923 0.927862i \(-0.621644\pi\)
−0.372923 + 0.927862i \(0.621644\pi\)
\(240\) 0 0
\(241\) 4025.23 1.07588 0.537942 0.842982i \(-0.319202\pi\)
0.537942 + 0.842982i \(0.319202\pi\)
\(242\) 8405.78 2.23283
\(243\) −1522.81 −0.402009
\(244\) −3807.98 −0.999103
\(245\) 0 0
\(246\) 9450.58 2.44938
\(247\) −2.35953 −0.000607827 0
\(248\) 1108.59 0.283854
\(249\) 5584.15 1.42121
\(250\) 0 0
\(251\) −7166.64 −1.80221 −0.901104 0.433602i \(-0.857242\pi\)
−0.901104 + 0.433602i \(0.857242\pi\)
\(252\) 0 0
\(253\) 1890.96 0.469896
\(254\) −7844.90 −1.93792
\(255\) 0 0
\(256\) 5366.07 1.31008
\(257\) −647.756 −0.157221 −0.0786107 0.996905i \(-0.525048\pi\)
−0.0786107 + 0.996905i \(0.525048\pi\)
\(258\) 4432.41 1.06957
\(259\) 0 0
\(260\) 0 0
\(261\) −1613.47 −0.382649
\(262\) 978.300 0.230685
\(263\) −6131.33 −1.43754 −0.718771 0.695246i \(-0.755295\pi\)
−0.718771 + 0.695246i \(0.755295\pi\)
\(264\) 2911.23 0.678688
\(265\) 0 0
\(266\) 0 0
\(267\) 5193.70 1.19045
\(268\) −441.639 −0.100662
\(269\) 975.631 0.221135 0.110567 0.993869i \(-0.464733\pi\)
0.110567 + 0.993869i \(0.464733\pi\)
\(270\) 0 0
\(271\) −4672.83 −1.04743 −0.523716 0.851893i \(-0.675455\pi\)
−0.523716 + 0.851893i \(0.675455\pi\)
\(272\) −2736.61 −0.610043
\(273\) 0 0
\(274\) 1733.17 0.382134
\(275\) 0 0
\(276\) −1024.25 −0.223379
\(277\) 2390.16 0.518451 0.259226 0.965817i \(-0.416533\pi\)
0.259226 + 0.965817i \(0.416533\pi\)
\(278\) −3542.05 −0.764166
\(279\) −717.685 −0.154002
\(280\) 0 0
\(281\) −3321.28 −0.705092 −0.352546 0.935794i \(-0.614684\pi\)
−0.352546 + 0.935794i \(0.614684\pi\)
\(282\) −9661.07 −2.04010
\(283\) −8260.15 −1.73504 −0.867518 0.497406i \(-0.834286\pi\)
−0.867518 + 0.497406i \(0.834286\pi\)
\(284\) −5168.88 −1.07999
\(285\) 0 0
\(286\) 86.0844 0.0177982
\(287\) 0 0
\(288\) −1197.10 −0.244929
\(289\) −3653.30 −0.743600
\(290\) 0 0
\(291\) −63.7155 −0.0128353
\(292\) 5871.01 1.17663
\(293\) 628.249 0.125265 0.0626326 0.998037i \(-0.480050\pi\)
0.0626326 + 0.998037i \(0.480050\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1871.63 −0.367520
\(297\) 7354.26 1.43683
\(298\) −1417.58 −0.275564
\(299\) 12.2094 0.00236149
\(300\) 0 0
\(301\) 0 0
\(302\) 4823.06 0.918993
\(303\) −3853.40 −0.730601
\(304\) −469.495 −0.0885770
\(305\) 0 0
\(306\) 723.597 0.135181
\(307\) −25.2045 −0.00468565 −0.00234283 0.999997i \(-0.500746\pi\)
−0.00234283 + 0.999997i \(0.500746\pi\)
\(308\) 0 0
\(309\) 8716.99 1.60483
\(310\) 0 0
\(311\) 9436.18 1.72050 0.860252 0.509870i \(-0.170306\pi\)
0.860252 + 0.509870i \(0.170306\pi\)
\(312\) 18.7969 0.00341079
\(313\) 2778.60 0.501776 0.250888 0.968016i \(-0.419277\pi\)
0.250888 + 0.968016i \(0.419277\pi\)
\(314\) 11857.3 2.13104
\(315\) 0 0
\(316\) −3938.43 −0.701121
\(317\) −2980.21 −0.528030 −0.264015 0.964519i \(-0.585047\pi\)
−0.264015 + 0.964519i \(0.585047\pi\)
\(318\) 3046.13 0.537165
\(319\) 17581.1 3.08575
\(320\) 0 0
\(321\) 4000.19 0.695541
\(322\) 0 0
\(323\) 216.114 0.0372289
\(324\) −4831.36 −0.828423
\(325\) 0 0
\(326\) 5066.74 0.860800
\(327\) −3404.57 −0.575759
\(328\) −3809.76 −0.641337
\(329\) 0 0
\(330\) 0 0
\(331\) 2588.16 0.429782 0.214891 0.976638i \(-0.431060\pi\)
0.214891 + 0.976638i \(0.431060\pi\)
\(332\) 5584.15 0.923103
\(333\) 1211.66 0.199395
\(334\) −11376.2 −1.86370
\(335\) 0 0
\(336\) 0 0
\(337\) 5284.64 0.854221 0.427110 0.904199i \(-0.359532\pi\)
0.427110 + 0.904199i \(0.359532\pi\)
\(338\) −8131.78 −1.30861
\(339\) 502.414 0.0804938
\(340\) 0 0
\(341\) 7820.22 1.24190
\(342\) 124.141 0.0196280
\(343\) 0 0
\(344\) −1786.81 −0.280054
\(345\) 0 0
\(346\) 8891.75 1.38157
\(347\) −11787.7 −1.82363 −0.911813 0.410606i \(-0.865317\pi\)
−0.911813 + 0.410606i \(0.865317\pi\)
\(348\) −9522.91 −1.46690
\(349\) −8765.61 −1.34445 −0.672224 0.740347i \(-0.734661\pi\)
−0.672224 + 0.740347i \(0.734661\pi\)
\(350\) 0 0
\(351\) 47.4843 0.00722086
\(352\) 13044.1 1.97515
\(353\) −8578.29 −1.29342 −0.646709 0.762737i \(-0.723855\pi\)
−0.646709 + 0.762737i \(0.723855\pi\)
\(354\) −16194.2 −2.43139
\(355\) 0 0
\(356\) 5193.70 0.773218
\(357\) 0 0
\(358\) −4242.90 −0.626380
\(359\) 3730.38 0.548417 0.274209 0.961670i \(-0.411584\pi\)
0.274209 + 0.961670i \(0.411584\pi\)
\(360\) 0 0
\(361\) −6821.92 −0.994594
\(362\) 1761.38 0.255735
\(363\) 12947.5 1.87209
\(364\) 0 0
\(365\) 0 0
\(366\) −14095.5 −2.01307
\(367\) 515.769 0.0733594 0.0366797 0.999327i \(-0.488322\pi\)
0.0366797 + 0.999327i \(0.488322\pi\)
\(368\) 2429.40 0.344134
\(369\) 2466.37 0.347952
\(370\) 0 0
\(371\) 0 0
\(372\) −4235.87 −0.590375
\(373\) 10922.0 1.51614 0.758071 0.652173i \(-0.226142\pi\)
0.758071 + 0.652173i \(0.226142\pi\)
\(374\) −7884.64 −1.09012
\(375\) 0 0
\(376\) 3894.61 0.534173
\(377\) 113.516 0.0155076
\(378\) 0 0
\(379\) −8403.14 −1.13889 −0.569446 0.822029i \(-0.692842\pi\)
−0.569446 + 0.822029i \(0.692842\pi\)
\(380\) 0 0
\(381\) −12083.6 −1.62483
\(382\) 3664.56 0.490825
\(383\) 3030.68 0.404336 0.202168 0.979351i \(-0.435201\pi\)
0.202168 + 0.979351i \(0.435201\pi\)
\(384\) 5952.74 0.791080
\(385\) 0 0
\(386\) 5155.85 0.679859
\(387\) 1156.75 0.151941
\(388\) −63.7155 −0.00833677
\(389\) 1403.25 0.182899 0.0914497 0.995810i \(-0.470850\pi\)
0.0914497 + 0.995810i \(0.470850\pi\)
\(390\) 0 0
\(391\) −1118.28 −0.144639
\(392\) 0 0
\(393\) 1506.89 0.193416
\(394\) −13264.1 −1.69604
\(395\) 0 0
\(396\) −1884.68 −0.239163
\(397\) −55.9118 −0.00706835 −0.00353417 0.999994i \(-0.501125\pi\)
−0.00353417 + 0.999994i \(0.501125\pi\)
\(398\) −2309.58 −0.290876
\(399\) 0 0
\(400\) 0 0
\(401\) −3730.18 −0.464529 −0.232264 0.972653i \(-0.574613\pi\)
−0.232264 + 0.972653i \(0.574613\pi\)
\(402\) −1634.75 −0.202821
\(403\) 50.4928 0.00624126
\(404\) −3853.40 −0.474539
\(405\) 0 0
\(406\) 0 0
\(407\) −13202.8 −1.60795
\(408\) −1721.65 −0.208908
\(409\) 1968.50 0.237985 0.118993 0.992895i \(-0.462033\pi\)
0.118993 + 0.992895i \(0.462033\pi\)
\(410\) 0 0
\(411\) 2669.62 0.320396
\(412\) 8716.99 1.04237
\(413\) 0 0
\(414\) −642.366 −0.0762574
\(415\) 0 0
\(416\) 84.2220 0.00992625
\(417\) −5455.87 −0.640708
\(418\) −1352.70 −0.158283
\(419\) 13208.4 1.54003 0.770015 0.638026i \(-0.220249\pi\)
0.770015 + 0.638026i \(0.220249\pi\)
\(420\) 0 0
\(421\) −7485.74 −0.866586 −0.433293 0.901253i \(-0.642648\pi\)
−0.433293 + 0.901253i \(0.642648\pi\)
\(422\) 8389.50 0.967760
\(423\) −2521.30 −0.289811
\(424\) −1227.97 −0.140650
\(425\) 0 0
\(426\) −19132.9 −2.17604
\(427\) 0 0
\(428\) 4000.19 0.451767
\(429\) 132.597 0.0149227
\(430\) 0 0
\(431\) 10623.4 1.18726 0.593631 0.804737i \(-0.297694\pi\)
0.593631 + 0.804737i \(0.297694\pi\)
\(432\) 9448.34 1.05228
\(433\) −7268.73 −0.806727 −0.403364 0.915040i \(-0.632159\pi\)
−0.403364 + 0.915040i \(0.632159\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3404.57 −0.373967
\(437\) −191.853 −0.0210013
\(438\) 21731.9 2.37076
\(439\) 743.352 0.0808161 0.0404080 0.999183i \(-0.487134\pi\)
0.0404080 + 0.999183i \(0.487134\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −50.9088 −0.00547847
\(443\) 10857.8 1.16449 0.582246 0.813013i \(-0.302174\pi\)
0.582246 + 0.813013i \(0.302174\pi\)
\(444\) 7151.36 0.764389
\(445\) 0 0
\(446\) −7842.37 −0.832617
\(447\) −2183.51 −0.231044
\(448\) 0 0
\(449\) −11162.9 −1.17329 −0.586645 0.809844i \(-0.699552\pi\)
−0.586645 + 0.809844i \(0.699552\pi\)
\(450\) 0 0
\(451\) −26874.7 −2.80594
\(452\) 502.414 0.0522822
\(453\) 7429.02 0.770520
\(454\) −10329.7 −1.06783
\(455\) 0 0
\(456\) −295.367 −0.0303330
\(457\) 13451.0 1.37683 0.688414 0.725318i \(-0.258307\pi\)
0.688414 + 0.725318i \(0.258307\pi\)
\(458\) 21520.0 2.19556
\(459\) −4349.18 −0.442271
\(460\) 0 0
\(461\) 9139.46 0.923356 0.461678 0.887048i \(-0.347248\pi\)
0.461678 + 0.887048i \(0.347248\pi\)
\(462\) 0 0
\(463\) −13122.5 −1.31718 −0.658588 0.752504i \(-0.728846\pi\)
−0.658588 + 0.752504i \(0.728846\pi\)
\(464\) 22587.2 2.25988
\(465\) 0 0
\(466\) 7166.89 0.712446
\(467\) −11921.2 −1.18126 −0.590629 0.806943i \(-0.701120\pi\)
−0.590629 + 0.806943i \(0.701120\pi\)
\(468\) −12.1688 −0.00120193
\(469\) 0 0
\(470\) 0 0
\(471\) 18264.0 1.78675
\(472\) 6528.28 0.636628
\(473\) −12604.5 −1.22528
\(474\) −14578.4 −1.41267
\(475\) 0 0
\(476\) 0 0
\(477\) 794.966 0.0763082
\(478\) −10200.7 −0.976088
\(479\) −825.281 −0.0787224 −0.0393612 0.999225i \(-0.512532\pi\)
−0.0393612 + 0.999225i \(0.512532\pi\)
\(480\) 0 0
\(481\) −85.2464 −0.00808088
\(482\) 14899.6 1.40801
\(483\) 0 0
\(484\) 12947.5 1.21596
\(485\) 0 0
\(486\) −5636.76 −0.526108
\(487\) −6678.32 −0.621404 −0.310702 0.950507i \(-0.600564\pi\)
−0.310702 + 0.950507i \(0.600564\pi\)
\(488\) 5682.23 0.527096
\(489\) 7804.36 0.721729
\(490\) 0 0
\(491\) −3098.65 −0.284807 −0.142403 0.989809i \(-0.545483\pi\)
−0.142403 + 0.989809i \(0.545483\pi\)
\(492\) 14556.8 1.33389
\(493\) −10397.2 −0.949827
\(494\) −8.73395 −0.000795464 0
\(495\) 0 0
\(496\) 10047.0 0.909522
\(497\) 0 0
\(498\) 20670.1 1.85994
\(499\) −2265.10 −0.203206 −0.101603 0.994825i \(-0.532397\pi\)
−0.101603 + 0.994825i \(0.532397\pi\)
\(500\) 0 0
\(501\) −17522.8 −1.56260
\(502\) −26527.8 −2.35855
\(503\) 9980.43 0.884703 0.442351 0.896842i \(-0.354144\pi\)
0.442351 + 0.896842i \(0.354144\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 6999.51 0.614953
\(507\) −12525.5 −1.09719
\(508\) −12083.6 −1.05536
\(509\) 4956.16 0.431588 0.215794 0.976439i \(-0.430766\pi\)
0.215794 + 0.976439i \(0.430766\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 11510.4 0.993541
\(513\) −746.148 −0.0642169
\(514\) −2397.71 −0.205756
\(515\) 0 0
\(516\) 6827.30 0.582471
\(517\) 27473.3 2.33709
\(518\) 0 0
\(519\) 13696.1 1.15836
\(520\) 0 0
\(521\) −3442.97 −0.289519 −0.144759 0.989467i \(-0.546241\pi\)
−0.144759 + 0.989467i \(0.546241\pi\)
\(522\) −5972.36 −0.500772
\(523\) 11109.9 0.928878 0.464439 0.885605i \(-0.346256\pi\)
0.464439 + 0.885605i \(0.346256\pi\)
\(524\) 1506.89 0.125627
\(525\) 0 0
\(526\) −22695.5 −1.88131
\(527\) −4624.74 −0.382271
\(528\) 26383.9 2.17464
\(529\) −11174.3 −0.918407
\(530\) 0 0
\(531\) −4226.30 −0.345397
\(532\) 0 0
\(533\) −173.522 −0.0141015
\(534\) 19224.8 1.55794
\(535\) 0 0
\(536\) 659.009 0.0531061
\(537\) −6535.39 −0.525182
\(538\) 3611.36 0.289399
\(539\) 0 0
\(540\) 0 0
\(541\) 3680.65 0.292502 0.146251 0.989248i \(-0.453279\pi\)
0.146251 + 0.989248i \(0.453279\pi\)
\(542\) −17296.8 −1.37078
\(543\) 2713.07 0.214418
\(544\) −7714.06 −0.607974
\(545\) 0 0
\(546\) 0 0
\(547\) 14657.4 1.14572 0.572858 0.819655i \(-0.305835\pi\)
0.572858 + 0.819655i \(0.305835\pi\)
\(548\) 2669.62 0.208103
\(549\) −3678.58 −0.285971
\(550\) 0 0
\(551\) −1783.74 −0.137913
\(552\) 1528.37 0.117848
\(553\) 0 0
\(554\) 8847.33 0.678497
\(555\) 0 0
\(556\) −5455.87 −0.416152
\(557\) −6547.61 −0.498081 −0.249040 0.968493i \(-0.580115\pi\)
−0.249040 + 0.968493i \(0.580115\pi\)
\(558\) −2656.55 −0.201543
\(559\) −81.3835 −0.00615770
\(560\) 0 0
\(561\) −12144.8 −0.914001
\(562\) −12293.9 −0.922754
\(563\) 11983.3 0.897047 0.448523 0.893771i \(-0.351950\pi\)
0.448523 + 0.893771i \(0.351950\pi\)
\(564\) −14881.1 −1.11100
\(565\) 0 0
\(566\) −30575.5 −2.27064
\(567\) 0 0
\(568\) 7712.95 0.569768
\(569\) 19164.8 1.41200 0.706002 0.708210i \(-0.250497\pi\)
0.706002 + 0.708210i \(0.250497\pi\)
\(570\) 0 0
\(571\) 14618.8 1.07142 0.535708 0.844403i \(-0.320045\pi\)
0.535708 + 0.844403i \(0.320045\pi\)
\(572\) 132.597 0.00969258
\(573\) 5644.57 0.411527
\(574\) 0 0
\(575\) 0 0
\(576\) −1033.70 −0.0747760
\(577\) −12446.8 −0.898033 −0.449017 0.893523i \(-0.648226\pi\)
−0.449017 + 0.893523i \(0.648226\pi\)
\(578\) −13522.9 −0.973149
\(579\) 7941.62 0.570021
\(580\) 0 0
\(581\) 0 0
\(582\) −235.847 −0.0167976
\(583\) −8662.32 −0.615363
\(584\) −8760.66 −0.620752
\(585\) 0 0
\(586\) 2325.50 0.163935
\(587\) 7467.53 0.525073 0.262537 0.964922i \(-0.415441\pi\)
0.262537 + 0.964922i \(0.415441\pi\)
\(588\) 0 0
\(589\) −793.424 −0.0555050
\(590\) 0 0
\(591\) −20430.9 −1.42202
\(592\) −16962.2 −1.17760
\(593\) −26703.9 −1.84924 −0.924619 0.380892i \(-0.875617\pi\)
−0.924619 + 0.380892i \(0.875617\pi\)
\(594\) 27222.2 1.88037
\(595\) 0 0
\(596\) −2183.51 −0.150067
\(597\) −3557.47 −0.243882
\(598\) 45.1938 0.00309048
\(599\) 6896.60 0.470430 0.235215 0.971943i \(-0.424421\pi\)
0.235215 + 0.971943i \(0.424421\pi\)
\(600\) 0 0
\(601\) −18156.5 −1.23231 −0.616154 0.787626i \(-0.711310\pi\)
−0.616154 + 0.787626i \(0.711310\pi\)
\(602\) 0 0
\(603\) −426.631 −0.0288122
\(604\) 7429.02 0.500468
\(605\) 0 0
\(606\) −14263.6 −0.956137
\(607\) 2074.50 0.138717 0.0693587 0.997592i \(-0.477905\pi\)
0.0693587 + 0.997592i \(0.477905\pi\)
\(608\) −1323.43 −0.0882766
\(609\) 0 0
\(610\) 0 0
\(611\) 177.387 0.0117452
\(612\) 1114.57 0.0736171
\(613\) 12159.4 0.801162 0.400581 0.916261i \(-0.368808\pi\)
0.400581 + 0.916261i \(0.368808\pi\)
\(614\) −93.2959 −0.00613211
\(615\) 0 0
\(616\) 0 0
\(617\) −4359.84 −0.284474 −0.142237 0.989833i \(-0.545430\pi\)
−0.142237 + 0.989833i \(0.545430\pi\)
\(618\) 32266.5 2.10024
\(619\) 29046.6 1.88608 0.943038 0.332684i \(-0.107954\pi\)
0.943038 + 0.332684i \(0.107954\pi\)
\(620\) 0 0
\(621\) 3860.94 0.249491
\(622\) 34928.6 2.25162
\(623\) 0 0
\(624\) 170.353 0.0109288
\(625\) 0 0
\(626\) 10285.2 0.656674
\(627\) −2083.57 −0.132711
\(628\) 18264.0 1.16053
\(629\) 7807.89 0.494946
\(630\) 0 0
\(631\) −14708.4 −0.927946 −0.463973 0.885849i \(-0.653577\pi\)
−0.463973 + 0.885849i \(0.653577\pi\)
\(632\) 5876.89 0.369889
\(633\) 12922.5 0.811408
\(634\) −11031.4 −0.691033
\(635\) 0 0
\(636\) 4691.99 0.292531
\(637\) 0 0
\(638\) 65077.6 4.03832
\(639\) −4993.23 −0.309123
\(640\) 0 0
\(641\) −24048.7 −1.48185 −0.740925 0.671588i \(-0.765612\pi\)
−0.740925 + 0.671588i \(0.765612\pi\)
\(642\) 14806.9 0.910255
\(643\) −19196.1 −1.17732 −0.588661 0.808380i \(-0.700345\pi\)
−0.588661 + 0.808380i \(0.700345\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 799.960 0.0487214
\(647\) −7185.82 −0.436636 −0.218318 0.975878i \(-0.570057\pi\)
−0.218318 + 0.975878i \(0.570057\pi\)
\(648\) 7209.31 0.437050
\(649\) 46051.7 2.78534
\(650\) 0 0
\(651\) 0 0
\(652\) 7804.36 0.468777
\(653\) 403.329 0.0241707 0.0120854 0.999927i \(-0.496153\pi\)
0.0120854 + 0.999927i \(0.496153\pi\)
\(654\) −12602.2 −0.753496
\(655\) 0 0
\(656\) −34527.1 −2.05497
\(657\) 5671.50 0.336783
\(658\) 0 0
\(659\) 20527.9 1.21343 0.606716 0.794919i \(-0.292487\pi\)
0.606716 + 0.794919i \(0.292487\pi\)
\(660\) 0 0
\(661\) 4372.75 0.257307 0.128654 0.991690i \(-0.458934\pi\)
0.128654 + 0.991690i \(0.458934\pi\)
\(662\) 9580.22 0.562456
\(663\) −78.4155 −0.00459337
\(664\) −8332.62 −0.487000
\(665\) 0 0
\(666\) 4485.03 0.260948
\(667\) 9229.97 0.535811
\(668\) −17522.8 −1.01494
\(669\) −12079.7 −0.698099
\(670\) 0 0
\(671\) 40083.5 2.30612
\(672\) 0 0
\(673\) −19902.7 −1.13996 −0.569980 0.821659i \(-0.693049\pi\)
−0.569980 + 0.821659i \(0.693049\pi\)
\(674\) 19561.4 1.11792
\(675\) 0 0
\(676\) −12525.5 −0.712647
\(677\) −9714.40 −0.551484 −0.275742 0.961232i \(-0.588924\pi\)
−0.275742 + 0.961232i \(0.588924\pi\)
\(678\) 1859.72 0.105342
\(679\) 0 0
\(680\) 0 0
\(681\) −15910.9 −0.895312
\(682\) 28947.0 1.62528
\(683\) −88.0227 −0.00493132 −0.00246566 0.999997i \(-0.500785\pi\)
−0.00246566 + 0.999997i \(0.500785\pi\)
\(684\) 191.216 0.0106891
\(685\) 0 0
\(686\) 0 0
\(687\) 33147.6 1.84084
\(688\) −16193.5 −0.897345
\(689\) −55.9300 −0.00309254
\(690\) 0 0
\(691\) −3722.48 −0.204934 −0.102467 0.994736i \(-0.532674\pi\)
−0.102467 + 0.994736i \(0.532674\pi\)
\(692\) 13696.1 0.752380
\(693\) 0 0
\(694\) −43633.0 −2.38658
\(695\) 0 0
\(696\) 14210.0 0.773891
\(697\) 15893.2 0.863700
\(698\) −32446.5 −1.75948
\(699\) 11039.2 0.597343
\(700\) 0 0
\(701\) 13167.2 0.709443 0.354722 0.934972i \(-0.384576\pi\)
0.354722 + 0.934972i \(0.384576\pi\)
\(702\) 175.766 0.00944994
\(703\) 1339.53 0.0718652
\(704\) 11263.7 0.603007
\(705\) 0 0
\(706\) −31753.1 −1.69270
\(707\) 0 0
\(708\) −24944.2 −1.32409
\(709\) −14539.6 −0.770166 −0.385083 0.922882i \(-0.625827\pi\)
−0.385083 + 0.922882i \(0.625827\pi\)
\(710\) 0 0
\(711\) −3804.60 −0.200680
\(712\) −7749.99 −0.407926
\(713\) 4105.57 0.215645
\(714\) 0 0
\(715\) 0 0
\(716\) −6535.39 −0.341116
\(717\) −15712.3 −0.818391
\(718\) 13808.2 0.717713
\(719\) −26509.9 −1.37504 −0.687519 0.726166i \(-0.741300\pi\)
−0.687519 + 0.726166i \(0.741300\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −25251.8 −1.30163
\(723\) 22950.1 1.18053
\(724\) 2713.07 0.139269
\(725\) 0 0
\(726\) 47926.1 2.45001
\(727\) −11761.8 −0.600030 −0.300015 0.953934i \(-0.596992\pi\)
−0.300015 + 0.953934i \(0.596992\pi\)
\(728\) 0 0
\(729\) 14196.7 0.721270
\(730\) 0 0
\(731\) 7454.08 0.377153
\(732\) −21711.5 −1.09628
\(733\) 6458.47 0.325442 0.162721 0.986672i \(-0.447973\pi\)
0.162721 + 0.986672i \(0.447973\pi\)
\(734\) 1909.15 0.0960055
\(735\) 0 0
\(736\) 6848.07 0.342967
\(737\) 4648.77 0.232347
\(738\) 9129.43 0.455364
\(739\) 33663.0 1.67566 0.837830 0.545932i \(-0.183824\pi\)
0.837830 + 0.545932i \(0.183824\pi\)
\(740\) 0 0
\(741\) −13.4530 −0.000666948 0
\(742\) 0 0
\(743\) −19979.4 −0.986506 −0.493253 0.869886i \(-0.664192\pi\)
−0.493253 + 0.869886i \(0.664192\pi\)
\(744\) 6320.72 0.311463
\(745\) 0 0
\(746\) 40428.5 1.98417
\(747\) 5394.39 0.264218
\(748\) −12144.8 −0.593661
\(749\) 0 0
\(750\) 0 0
\(751\) −31850.0 −1.54757 −0.773785 0.633449i \(-0.781639\pi\)
−0.773785 + 0.633449i \(0.781639\pi\)
\(752\) 35296.1 1.71159
\(753\) −40861.1 −1.97750
\(754\) 420.186 0.0202948
\(755\) 0 0
\(756\) 0 0
\(757\) −39396.6 −1.89154 −0.945769 0.324840i \(-0.894690\pi\)
−0.945769 + 0.324840i \(0.894690\pi\)
\(758\) −31104.7 −1.49047
\(759\) 10781.4 0.515601
\(760\) 0 0
\(761\) 7170.87 0.341582 0.170791 0.985307i \(-0.445368\pi\)
0.170791 + 0.985307i \(0.445368\pi\)
\(762\) −44728.2 −2.12642
\(763\) 0 0
\(764\) 5644.57 0.267295
\(765\) 0 0
\(766\) 11218.3 0.529154
\(767\) 297.342 0.0139979
\(768\) 30595.0 1.43750
\(769\) −27056.7 −1.26878 −0.634388 0.773015i \(-0.718748\pi\)
−0.634388 + 0.773015i \(0.718748\pi\)
\(770\) 0 0
\(771\) −3693.22 −0.172514
\(772\) 7941.62 0.370240
\(773\) −40087.8 −1.86527 −0.932637 0.360815i \(-0.882499\pi\)
−0.932637 + 0.360815i \(0.882499\pi\)
\(774\) 4281.79 0.198845
\(775\) 0 0
\(776\) 95.0757 0.00439822
\(777\) 0 0
\(778\) 5194.23 0.239360
\(779\) 2726.65 0.125408
\(780\) 0 0
\(781\) 54408.6 2.49282
\(782\) −4139.39 −0.189289
\(783\) 35896.9 1.63838
\(784\) 0 0
\(785\) 0 0
\(786\) 5577.84 0.253123
\(787\) 23501.4 1.06447 0.532233 0.846598i \(-0.321353\pi\)
0.532233 + 0.846598i \(0.321353\pi\)
\(788\) −20430.9 −0.923632
\(789\) −34958.1 −1.57737
\(790\) 0 0
\(791\) 0 0
\(792\) 2812.30 0.126175
\(793\) 258.807 0.0115896
\(794\) −206.961 −0.00925035
\(795\) 0 0
\(796\) −3557.47 −0.158406
\(797\) 1635.92 0.0727066 0.0363533 0.999339i \(-0.488426\pi\)
0.0363533 + 0.999339i \(0.488426\pi\)
\(798\) 0 0
\(799\) −16247.2 −0.719381
\(800\) 0 0
\(801\) 5017.21 0.221316
\(802\) −13807.5 −0.607929
\(803\) −61799.3 −2.71588
\(804\) −2518.03 −0.110453
\(805\) 0 0
\(806\) 186.902 0.00816794
\(807\) 5562.62 0.242644
\(808\) 5750.00 0.250352
\(809\) −33824.6 −1.46998 −0.734988 0.678080i \(-0.762812\pi\)
−0.734988 + 0.678080i \(0.762812\pi\)
\(810\) 0 0
\(811\) 3636.30 0.157445 0.0787224 0.996897i \(-0.474916\pi\)
0.0787224 + 0.996897i \(0.474916\pi\)
\(812\) 0 0
\(813\) −26642.4 −1.14931
\(814\) −48870.9 −2.10433
\(815\) 0 0
\(816\) −15603.0 −0.669379
\(817\) 1278.83 0.0547619
\(818\) 7286.52 0.311451
\(819\) 0 0
\(820\) 0 0
\(821\) 2417.39 0.102762 0.0513808 0.998679i \(-0.483638\pi\)
0.0513808 + 0.998679i \(0.483638\pi\)
\(822\) 9881.78 0.419302
\(823\) 15752.2 0.667178 0.333589 0.942719i \(-0.391740\pi\)
0.333589 + 0.942719i \(0.391740\pi\)
\(824\) −13007.4 −0.549920
\(825\) 0 0
\(826\) 0 0
\(827\) 4850.49 0.203952 0.101976 0.994787i \(-0.467484\pi\)
0.101976 + 0.994787i \(0.467484\pi\)
\(828\) −989.444 −0.0415284
\(829\) −33160.3 −1.38927 −0.694636 0.719362i \(-0.744434\pi\)
−0.694636 + 0.719362i \(0.744434\pi\)
\(830\) 0 0
\(831\) 13627.7 0.568879
\(832\) 72.7264 0.00303045
\(833\) 0 0
\(834\) −20195.2 −0.838494
\(835\) 0 0
\(836\) −2083.57 −0.0861984
\(837\) 15967.2 0.659388
\(838\) 48891.7 2.01544
\(839\) −14966.6 −0.615857 −0.307929 0.951409i \(-0.599636\pi\)
−0.307929 + 0.951409i \(0.599636\pi\)
\(840\) 0 0
\(841\) 61426.1 2.51860
\(842\) −27708.9 −1.13410
\(843\) −18936.5 −0.773674
\(844\) 12922.5 0.527025
\(845\) 0 0
\(846\) −9332.76 −0.379275
\(847\) 0 0
\(848\) −11128.9 −0.450668
\(849\) −47095.8 −1.90380
\(850\) 0 0
\(851\) −6931.37 −0.279206
\(852\) −29470.7 −1.18504
\(853\) 5806.35 0.233066 0.116533 0.993187i \(-0.462822\pi\)
0.116533 + 0.993187i \(0.462822\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −5969.04 −0.238338
\(857\) 9191.52 0.366367 0.183183 0.983079i \(-0.441360\pi\)
0.183183 + 0.983079i \(0.441360\pi\)
\(858\) 490.816 0.0195293
\(859\) −15029.2 −0.596962 −0.298481 0.954416i \(-0.596480\pi\)
−0.298481 + 0.954416i \(0.596480\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 39323.1 1.55377
\(863\) 17147.5 0.676369 0.338185 0.941080i \(-0.390187\pi\)
0.338185 + 0.941080i \(0.390187\pi\)
\(864\) 26633.3 1.04871
\(865\) 0 0
\(866\) −26905.7 −1.05576
\(867\) −20829.5 −0.815927
\(868\) 0 0
\(869\) 41456.6 1.61832
\(870\) 0 0
\(871\) 30.0157 0.00116767
\(872\) 5080.27 0.197293
\(873\) −61.5504 −0.00238621
\(874\) −710.156 −0.0274844
\(875\) 0 0
\(876\) 33473.9 1.29107
\(877\) 33483.6 1.28924 0.644618 0.764505i \(-0.277016\pi\)
0.644618 + 0.764505i \(0.277016\pi\)
\(878\) 2751.56 0.105764
\(879\) 3582.00 0.137449
\(880\) 0 0
\(881\) 10695.6 0.409019 0.204509 0.978865i \(-0.434440\pi\)
0.204509 + 0.978865i \(0.434440\pi\)
\(882\) 0 0
\(883\) −31934.0 −1.21706 −0.608531 0.793530i \(-0.708241\pi\)
−0.608531 + 0.793530i \(0.708241\pi\)
\(884\) −78.4155 −0.00298348
\(885\) 0 0
\(886\) 40190.9 1.52397
\(887\) 10655.2 0.403345 0.201672 0.979453i \(-0.435362\pi\)
0.201672 + 0.979453i \(0.435362\pi\)
\(888\) −10671.2 −0.403268
\(889\) 0 0
\(890\) 0 0
\(891\) 50855.7 1.91216
\(892\) −12079.7 −0.453429
\(893\) −2787.38 −0.104453
\(894\) −8082.41 −0.302367
\(895\) 0 0
\(896\) 0 0
\(897\) 69.6125 0.00259119
\(898\) −41320.0 −1.53549
\(899\) 38171.3 1.41611
\(900\) 0 0
\(901\) 5122.74 0.189415
\(902\) −99478.4 −3.67214
\(903\) 0 0
\(904\) −749.697 −0.0275825
\(905\) 0 0
\(906\) 27499.0 1.00838
\(907\) 20737.2 0.759171 0.379585 0.925157i \(-0.376067\pi\)
0.379585 + 0.925157i \(0.376067\pi\)
\(908\) −15910.9 −0.581522
\(909\) −3722.45 −0.135826
\(910\) 0 0
\(911\) 11734.8 0.426774 0.213387 0.976968i \(-0.431550\pi\)
0.213387 + 0.976968i \(0.431550\pi\)
\(912\) −2676.86 −0.0971926
\(913\) −58779.8 −2.13070
\(914\) 49789.7 1.80185
\(915\) 0 0
\(916\) 33147.6 1.19566
\(917\) 0 0
\(918\) −16098.8 −0.578800
\(919\) −21922.8 −0.786906 −0.393453 0.919345i \(-0.628720\pi\)
−0.393453 + 0.919345i \(0.628720\pi\)
\(920\) 0 0
\(921\) −143.705 −0.00514141
\(922\) 33830.3 1.20840
\(923\) 351.300 0.0125278
\(924\) 0 0
\(925\) 0 0
\(926\) −48573.6 −1.72379
\(927\) 8420.77 0.298354
\(928\) 63669.6 2.25222
\(929\) 36647.7 1.29427 0.647133 0.762377i \(-0.275968\pi\)
0.647133 + 0.762377i \(0.275968\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 11039.2 0.387986
\(933\) 53801.0 1.88785
\(934\) −44127.1 −1.54591
\(935\) 0 0
\(936\) 18.1582 0.000634101 0
\(937\) 24959.7 0.870222 0.435111 0.900377i \(-0.356709\pi\)
0.435111 + 0.900377i \(0.356709\pi\)
\(938\) 0 0
\(939\) 15842.4 0.550581
\(940\) 0 0
\(941\) −17086.7 −0.591935 −0.295968 0.955198i \(-0.595642\pi\)
−0.295968 + 0.955198i \(0.595642\pi\)
\(942\) 67605.2 2.33832
\(943\) −14109.0 −0.487226
\(944\) 59164.6 2.03988
\(945\) 0 0
\(946\) −46656.3 −1.60352
\(947\) −54034.9 −1.85417 −0.927085 0.374852i \(-0.877693\pi\)
−0.927085 + 0.374852i \(0.877693\pi\)
\(948\) −22455.2 −0.769316
\(949\) −399.020 −0.0136488
\(950\) 0 0
\(951\) −16991.9 −0.579389
\(952\) 0 0
\(953\) 24377.9 0.828622 0.414311 0.910135i \(-0.364023\pi\)
0.414311 + 0.910135i \(0.364023\pi\)
\(954\) 2942.62 0.0998645
\(955\) 0 0
\(956\) −15712.3 −0.531561
\(957\) 100240. 3.38588
\(958\) −3054.83 −0.103024
\(959\) 0 0
\(960\) 0 0
\(961\) −12812.1 −0.430066
\(962\) −315.545 −0.0105754
\(963\) 3864.25 0.129308
\(964\) 22950.1 0.766777
\(965\) 0 0
\(966\) 0 0
\(967\) 32668.1 1.08639 0.543194 0.839607i \(-0.317215\pi\)
0.543194 + 0.839607i \(0.317215\pi\)
\(968\) −19320.2 −0.641502
\(969\) 1232.19 0.0408500
\(970\) 0 0
\(971\) −24623.2 −0.813795 −0.406898 0.913474i \(-0.633389\pi\)
−0.406898 + 0.913474i \(0.633389\pi\)
\(972\) −8682.37 −0.286510
\(973\) 0 0
\(974\) −24720.2 −0.813231
\(975\) 0 0
\(976\) 51497.0 1.68891
\(977\) 18320.6 0.599926 0.299963 0.953951i \(-0.403026\pi\)
0.299963 + 0.953951i \(0.403026\pi\)
\(978\) 28888.3 0.944526
\(979\) −54669.8 −1.78473
\(980\) 0 0
\(981\) −3288.88 −0.107040
\(982\) −11469.8 −0.372727
\(983\) 2176.33 0.0706145 0.0353072 0.999377i \(-0.488759\pi\)
0.0353072 + 0.999377i \(0.488759\pi\)
\(984\) −21721.6 −0.703718
\(985\) 0 0
\(986\) −38485.7 −1.24304
\(987\) 0 0
\(988\) −13.4530 −0.000433196 0
\(989\) −6617.28 −0.212758
\(990\) 0 0
\(991\) −21487.2 −0.688761 −0.344381 0.938830i \(-0.611911\pi\)
−0.344381 + 0.938830i \(0.611911\pi\)
\(992\) 28320.8 0.906437
\(993\) 14756.5 0.471586
\(994\) 0 0
\(995\) 0 0
\(996\) 31838.4 1.01289
\(997\) −19083.0 −0.606182 −0.303091 0.952962i \(-0.598019\pi\)
−0.303091 + 0.952962i \(0.598019\pi\)
\(998\) −8384.41 −0.265936
\(999\) −26957.2 −0.853743
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.4.a.t.1.2 2
5.4 even 2 1225.4.a.r.1.1 2
7.6 odd 2 175.4.a.e.1.2 yes 2
21.20 even 2 1575.4.a.s.1.1 2
35.13 even 4 175.4.b.d.99.1 4
35.27 even 4 175.4.b.d.99.4 4
35.34 odd 2 175.4.a.d.1.1 2
105.104 even 2 1575.4.a.v.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.d.1.1 2 35.34 odd 2
175.4.a.e.1.2 yes 2 7.6 odd 2
175.4.b.d.99.1 4 35.13 even 4
175.4.b.d.99.4 4 35.27 even 4
1225.4.a.r.1.1 2 5.4 even 2
1225.4.a.t.1.2 2 1.1 even 1 trivial
1575.4.a.s.1.1 2 21.20 even 2
1575.4.a.v.1.2 2 105.104 even 2