Properties

Label 1225.4.a.bi.1.2
Level $1225$
Weight $4$
Character 1225.1
Self dual yes
Analytic conductor $72.277$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(72.2773397570\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.1163891200.1
Defining polynomial: \( x^{6} - 2x^{5} - 23x^{4} + 12x^{3} + 154x^{2} + 152x + 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 7 \)
Twist minimal: no (minimal twist has level 245)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.241849\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.65606 q^{2} +0.332888 q^{3} -5.25746 q^{4} -0.551283 q^{6} +21.9552 q^{8} -26.8892 q^{9} +O(q^{10})\) \(q-1.65606 q^{2} +0.332888 q^{3} -5.25746 q^{4} -0.551283 q^{6} +21.9552 q^{8} -26.8892 q^{9} +69.5726 q^{11} -1.75014 q^{12} -68.4326 q^{13} +5.70053 q^{16} -104.332 q^{17} +44.5302 q^{18} +71.8929 q^{19} -115.217 q^{22} +101.031 q^{23} +7.30861 q^{24} +113.329 q^{26} -17.9390 q^{27} -114.661 q^{29} -73.6505 q^{31} -185.082 q^{32} +23.1599 q^{33} +172.780 q^{34} +141.369 q^{36} +200.933 q^{37} -119.059 q^{38} -22.7803 q^{39} +417.308 q^{41} -311.175 q^{43} -365.775 q^{44} -167.313 q^{46} -149.697 q^{47} +1.89763 q^{48} -34.7307 q^{51} +359.781 q^{52} -271.474 q^{53} +29.7082 q^{54} +23.9323 q^{57} +189.885 q^{58} -518.028 q^{59} -219.926 q^{61} +121.970 q^{62} +260.903 q^{64} -38.3542 q^{66} -80.6950 q^{67} +548.520 q^{68} +33.6319 q^{69} -91.0463 q^{71} -590.357 q^{72} -882.282 q^{73} -332.758 q^{74} -377.974 q^{76} +37.7257 q^{78} +599.877 q^{79} +720.036 q^{81} -691.087 q^{82} -70.8820 q^{83} +515.325 q^{86} -38.1691 q^{87} +1527.48 q^{88} +802.592 q^{89} -531.165 q^{92} -24.5173 q^{93} +247.908 q^{94} -61.6114 q^{96} -145.648 q^{97} -1870.75 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - 16 q^{3} + 14 q^{4} + 24 q^{6} + 66 q^{8} + 70 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{2} - 16 q^{3} + 14 q^{4} + 24 q^{6} + 66 q^{8} + 70 q^{9} - 16 q^{11} - 160 q^{12} - 168 q^{13} + 298 q^{16} + 4 q^{17} - 354 q^{18} + 308 q^{19} + 236 q^{22} + 336 q^{23} - 92 q^{24} + 56 q^{26} - 964 q^{27} + 176 q^{29} + 392 q^{31} + 770 q^{32} - 188 q^{33} + 812 q^{34} + 230 q^{36} + 140 q^{37} - 20 q^{38} + 140 q^{39} + 656 q^{41} + 388 q^{43} - 160 q^{44} - 388 q^{46} - 628 q^{47} - 1396 q^{48} + 744 q^{51} - 1520 q^{52} + 676 q^{53} + 2284 q^{54} - 1468 q^{57} + 2012 q^{58} + 996 q^{59} + 740 q^{61} + 364 q^{62} + 1426 q^{64} - 3620 q^{66} - 1768 q^{67} + 2940 q^{68} - 1048 q^{69} - 224 q^{71} - 2858 q^{72} - 2640 q^{73} + 928 q^{74} - 1340 q^{76} - 8 q^{78} + 1636 q^{79} + 4442 q^{81} + 1756 q^{82} - 140 q^{83} + 1180 q^{86} - 1940 q^{87} + 5652 q^{88} - 1904 q^{89} + 1952 q^{92} + 1592 q^{93} - 3332 q^{94} - 6460 q^{96} - 516 q^{97} - 2804 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.65606 −0.585506 −0.292753 0.956188i \(-0.594571\pi\)
−0.292753 + 0.956188i \(0.594571\pi\)
\(3\) 0.332888 0.0640643 0.0320321 0.999487i \(-0.489802\pi\)
0.0320321 + 0.999487i \(0.489802\pi\)
\(4\) −5.25746 −0.657182
\(5\) 0 0
\(6\) −0.551283 −0.0375100
\(7\) 0 0
\(8\) 21.9552 0.970291
\(9\) −26.8892 −0.995896
\(10\) 0 0
\(11\) 69.5726 1.90699 0.953497 0.301402i \(-0.0974546\pi\)
0.953497 + 0.301402i \(0.0974546\pi\)
\(12\) −1.75014 −0.0421019
\(13\) −68.4326 −1.45998 −0.729991 0.683456i \(-0.760476\pi\)
−0.729991 + 0.683456i \(0.760476\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 5.70053 0.0890707
\(17\) −104.332 −1.48848 −0.744240 0.667912i \(-0.767188\pi\)
−0.744240 + 0.667912i \(0.767188\pi\)
\(18\) 44.5302 0.583103
\(19\) 71.8929 0.868072 0.434036 0.900896i \(-0.357089\pi\)
0.434036 + 0.900896i \(0.357089\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −115.217 −1.11656
\(23\) 101.031 0.915929 0.457964 0.888970i \(-0.348579\pi\)
0.457964 + 0.888970i \(0.348579\pi\)
\(24\) 7.30861 0.0621610
\(25\) 0 0
\(26\) 113.329 0.854829
\(27\) −17.9390 −0.127866
\(28\) 0 0
\(29\) −114.661 −0.734205 −0.367102 0.930181i \(-0.619650\pi\)
−0.367102 + 0.930181i \(0.619650\pi\)
\(30\) 0 0
\(31\) −73.6505 −0.426710 −0.213355 0.976975i \(-0.568439\pi\)
−0.213355 + 0.976975i \(0.568439\pi\)
\(32\) −185.082 −1.02244
\(33\) 23.1599 0.122170
\(34\) 172.780 0.871514
\(35\) 0 0
\(36\) 141.369 0.654485
\(37\) 200.933 0.892790 0.446395 0.894836i \(-0.352708\pi\)
0.446395 + 0.894836i \(0.352708\pi\)
\(38\) −119.059 −0.508262
\(39\) −22.7803 −0.0935327
\(40\) 0 0
\(41\) 417.308 1.58957 0.794786 0.606889i \(-0.207583\pi\)
0.794786 + 0.606889i \(0.207583\pi\)
\(42\) 0 0
\(43\) −311.175 −1.10357 −0.551787 0.833985i \(-0.686054\pi\)
−0.551787 + 0.833985i \(0.686054\pi\)
\(44\) −365.775 −1.25324
\(45\) 0 0
\(46\) −167.313 −0.536282
\(47\) −149.697 −0.464586 −0.232293 0.972646i \(-0.574623\pi\)
−0.232293 + 0.972646i \(0.574623\pi\)
\(48\) 1.89763 0.00570625
\(49\) 0 0
\(50\) 0 0
\(51\) −34.7307 −0.0953583
\(52\) 359.781 0.959475
\(53\) −271.474 −0.703582 −0.351791 0.936078i \(-0.614427\pi\)
−0.351791 + 0.936078i \(0.614427\pi\)
\(54\) 29.7082 0.0748661
\(55\) 0 0
\(56\) 0 0
\(57\) 23.9323 0.0556124
\(58\) 189.885 0.429882
\(59\) −518.028 −1.14308 −0.571538 0.820575i \(-0.693653\pi\)
−0.571538 + 0.820575i \(0.693653\pi\)
\(60\) 0 0
\(61\) −219.926 −0.461616 −0.230808 0.972999i \(-0.574137\pi\)
−0.230808 + 0.972999i \(0.574137\pi\)
\(62\) 121.970 0.249842
\(63\) 0 0
\(64\) 260.903 0.509576
\(65\) 0 0
\(66\) −38.3542 −0.0715314
\(67\) −80.6950 −0.147141 −0.0735706 0.997290i \(-0.523439\pi\)
−0.0735706 + 0.997290i \(0.523439\pi\)
\(68\) 548.520 0.978202
\(69\) 33.6319 0.0586783
\(70\) 0 0
\(71\) −91.0463 −0.152186 −0.0760930 0.997101i \(-0.524245\pi\)
−0.0760930 + 0.997101i \(0.524245\pi\)
\(72\) −590.357 −0.966309
\(73\) −882.282 −1.41457 −0.707283 0.706931i \(-0.750079\pi\)
−0.707283 + 0.706931i \(0.750079\pi\)
\(74\) −332.758 −0.522734
\(75\) 0 0
\(76\) −377.974 −0.570481
\(77\) 0 0
\(78\) 37.7257 0.0547640
\(79\) 599.877 0.854322 0.427161 0.904175i \(-0.359514\pi\)
0.427161 + 0.904175i \(0.359514\pi\)
\(80\) 0 0
\(81\) 720.036 0.987704
\(82\) −691.087 −0.930705
\(83\) −70.8820 −0.0937387 −0.0468694 0.998901i \(-0.514924\pi\)
−0.0468694 + 0.998901i \(0.514924\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 515.325 0.646150
\(87\) −38.1691 −0.0470363
\(88\) 1527.48 1.85034
\(89\) 802.592 0.955894 0.477947 0.878389i \(-0.341381\pi\)
0.477947 + 0.878389i \(0.341381\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −531.165 −0.601932
\(93\) −24.5173 −0.0273369
\(94\) 247.908 0.272018
\(95\) 0 0
\(96\) −61.6114 −0.0655020
\(97\) −145.648 −0.152457 −0.0762283 0.997090i \(-0.524288\pi\)
−0.0762283 + 0.997090i \(0.524288\pi\)
\(98\) 0 0
\(99\) −1870.75 −1.89917
\(100\) 0 0
\(101\) −619.435 −0.610259 −0.305129 0.952311i \(-0.598700\pi\)
−0.305129 + 0.952311i \(0.598700\pi\)
\(102\) 57.5163 0.0558329
\(103\) 1822.08 1.74306 0.871528 0.490345i \(-0.163129\pi\)
0.871528 + 0.490345i \(0.163129\pi\)
\(104\) −1502.45 −1.41661
\(105\) 0 0
\(106\) 449.578 0.411952
\(107\) −1089.70 −0.984536 −0.492268 0.870444i \(-0.663832\pi\)
−0.492268 + 0.870444i \(0.663832\pi\)
\(108\) 94.3138 0.0840310
\(109\) 589.667 0.518164 0.259082 0.965855i \(-0.416580\pi\)
0.259082 + 0.965855i \(0.416580\pi\)
\(110\) 0 0
\(111\) 66.8882 0.0571959
\(112\) 0 0
\(113\) 900.358 0.749544 0.374772 0.927117i \(-0.377721\pi\)
0.374772 + 0.927117i \(0.377721\pi\)
\(114\) −39.6333 −0.0325614
\(115\) 0 0
\(116\) 602.823 0.482506
\(117\) 1840.10 1.45399
\(118\) 857.887 0.669279
\(119\) 0 0
\(120\) 0 0
\(121\) 3509.35 2.63663
\(122\) 364.210 0.270279
\(123\) 138.917 0.101835
\(124\) 387.214 0.280426
\(125\) 0 0
\(126\) 0 0
\(127\) 1755.75 1.22676 0.613378 0.789790i \(-0.289810\pi\)
0.613378 + 0.789790i \(0.289810\pi\)
\(128\) 1048.58 0.724082
\(129\) −103.586 −0.0706996
\(130\) 0 0
\(131\) 1809.10 1.20658 0.603289 0.797523i \(-0.293857\pi\)
0.603289 + 0.797523i \(0.293857\pi\)
\(132\) −121.762 −0.0802881
\(133\) 0 0
\(134\) 133.636 0.0861521
\(135\) 0 0
\(136\) −2290.62 −1.44426
\(137\) 18.5134 0.0115453 0.00577265 0.999983i \(-0.498162\pi\)
0.00577265 + 0.999983i \(0.498162\pi\)
\(138\) −55.6965 −0.0343565
\(139\) −625.608 −0.381751 −0.190875 0.981614i \(-0.561133\pi\)
−0.190875 + 0.981614i \(0.561133\pi\)
\(140\) 0 0
\(141\) −49.8323 −0.0297634
\(142\) 150.778 0.0891059
\(143\) −4761.03 −2.78418
\(144\) −153.283 −0.0887052
\(145\) 0 0
\(146\) 1461.11 0.828237
\(147\) 0 0
\(148\) −1056.40 −0.586725
\(149\) −1028.63 −0.565563 −0.282782 0.959184i \(-0.591257\pi\)
−0.282782 + 0.959184i \(0.591257\pi\)
\(150\) 0 0
\(151\) 71.0073 0.0382682 0.0191341 0.999817i \(-0.493909\pi\)
0.0191341 + 0.999817i \(0.493909\pi\)
\(152\) 1578.42 0.842282
\(153\) 2805.39 1.48237
\(154\) 0 0
\(155\) 0 0
\(156\) 119.767 0.0614680
\(157\) 2061.32 1.04784 0.523922 0.851767i \(-0.324468\pi\)
0.523922 + 0.851767i \(0.324468\pi\)
\(158\) −993.434 −0.500211
\(159\) −90.3704 −0.0450745
\(160\) 0 0
\(161\) 0 0
\(162\) −1192.42 −0.578307
\(163\) 1963.80 0.943660 0.471830 0.881690i \(-0.343594\pi\)
0.471830 + 0.881690i \(0.343594\pi\)
\(164\) −2193.98 −1.04464
\(165\) 0 0
\(166\) 117.385 0.0548846
\(167\) −2855.04 −1.32293 −0.661467 0.749974i \(-0.730066\pi\)
−0.661467 + 0.749974i \(0.730066\pi\)
\(168\) 0 0
\(169\) 2486.01 1.13155
\(170\) 0 0
\(171\) −1933.14 −0.864509
\(172\) 1635.99 0.725249
\(173\) 1553.21 0.682590 0.341295 0.939956i \(-0.389134\pi\)
0.341295 + 0.939956i \(0.389134\pi\)
\(174\) 63.2104 0.0275400
\(175\) 0 0
\(176\) 396.601 0.169857
\(177\) −172.445 −0.0732303
\(178\) −1329.14 −0.559682
\(179\) 269.841 0.112675 0.0563376 0.998412i \(-0.482058\pi\)
0.0563376 + 0.998412i \(0.482058\pi\)
\(180\) 0 0
\(181\) 2229.61 0.915613 0.457806 0.889052i \(-0.348635\pi\)
0.457806 + 0.889052i \(0.348635\pi\)
\(182\) 0 0
\(183\) −73.2105 −0.0295731
\(184\) 2218.15 0.888717
\(185\) 0 0
\(186\) 40.6022 0.0160059
\(187\) −7258.63 −2.83852
\(188\) 787.026 0.305318
\(189\) 0 0
\(190\) 0 0
\(191\) −465.920 −0.176507 −0.0882533 0.996098i \(-0.528129\pi\)
−0.0882533 + 0.996098i \(0.528129\pi\)
\(192\) 86.8513 0.0326456
\(193\) 4414.46 1.64642 0.823212 0.567734i \(-0.192180\pi\)
0.823212 + 0.567734i \(0.192180\pi\)
\(194\) 241.202 0.0892643
\(195\) 0 0
\(196\) 0 0
\(197\) 289.812 0.104814 0.0524068 0.998626i \(-0.483311\pi\)
0.0524068 + 0.998626i \(0.483311\pi\)
\(198\) 3098.08 1.11197
\(199\) 4817.73 1.71618 0.858091 0.513498i \(-0.171651\pi\)
0.858091 + 0.513498i \(0.171651\pi\)
\(200\) 0 0
\(201\) −26.8624 −0.00942649
\(202\) 1025.82 0.357310
\(203\) 0 0
\(204\) 182.595 0.0626678
\(205\) 0 0
\(206\) −3017.48 −1.02057
\(207\) −2716.63 −0.912170
\(208\) −390.102 −0.130042
\(209\) 5001.78 1.65541
\(210\) 0 0
\(211\) 2022.01 0.659719 0.329859 0.944030i \(-0.392999\pi\)
0.329859 + 0.944030i \(0.392999\pi\)
\(212\) 1427.26 0.462382
\(213\) −30.3082 −0.00974968
\(214\) 1804.61 0.576452
\(215\) 0 0
\(216\) −393.855 −0.124067
\(217\) 0 0
\(218\) −976.525 −0.303388
\(219\) −293.701 −0.0906231
\(220\) 0 0
\(221\) 7139.69 2.17315
\(222\) −110.771 −0.0334886
\(223\) −4343.86 −1.30442 −0.652211 0.758037i \(-0.726158\pi\)
−0.652211 + 0.758037i \(0.726158\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1491.05 −0.438863
\(227\) 2647.59 0.774127 0.387064 0.922053i \(-0.373489\pi\)
0.387064 + 0.922053i \(0.373489\pi\)
\(228\) −125.823 −0.0365475
\(229\) −1445.09 −0.417006 −0.208503 0.978022i \(-0.566859\pi\)
−0.208503 + 0.978022i \(0.566859\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2517.39 −0.712392
\(233\) 6245.91 1.75615 0.878076 0.478522i \(-0.158827\pi\)
0.878076 + 0.478522i \(0.158827\pi\)
\(234\) −3047.31 −0.851321
\(235\) 0 0
\(236\) 2723.51 0.751209
\(237\) 199.692 0.0547315
\(238\) 0 0
\(239\) 1340.24 0.362731 0.181366 0.983416i \(-0.441948\pi\)
0.181366 + 0.983416i \(0.441948\pi\)
\(240\) 0 0
\(241\) 3369.92 0.900729 0.450364 0.892845i \(-0.351294\pi\)
0.450364 + 0.892845i \(0.351294\pi\)
\(242\) −5811.70 −1.54376
\(243\) 724.045 0.191142
\(244\) 1156.25 0.303366
\(245\) 0 0
\(246\) −230.054 −0.0596249
\(247\) −4919.82 −1.26737
\(248\) −1617.01 −0.414033
\(249\) −23.5958 −0.00600530
\(250\) 0 0
\(251\) −3592.64 −0.903449 −0.451724 0.892158i \(-0.649191\pi\)
−0.451724 + 0.892158i \(0.649191\pi\)
\(252\) 0 0
\(253\) 7028.97 1.74667
\(254\) −2907.64 −0.718273
\(255\) 0 0
\(256\) −3823.74 −0.933531
\(257\) 2.84763 0.000691167 0 0.000345584 1.00000i \(-0.499890\pi\)
0.000345584 1.00000i \(0.499890\pi\)
\(258\) 171.545 0.0413951
\(259\) 0 0
\(260\) 0 0
\(261\) 3083.13 0.731191
\(262\) −2995.98 −0.706459
\(263\) 2817.07 0.660488 0.330244 0.943896i \(-0.392869\pi\)
0.330244 + 0.943896i \(0.392869\pi\)
\(264\) 508.479 0.118541
\(265\) 0 0
\(266\) 0 0
\(267\) 267.173 0.0612386
\(268\) 424.250 0.0966986
\(269\) −1447.43 −0.328072 −0.164036 0.986454i \(-0.552451\pi\)
−0.164036 + 0.986454i \(0.552451\pi\)
\(270\) 0 0
\(271\) 8054.50 1.80545 0.902724 0.430221i \(-0.141564\pi\)
0.902724 + 0.430221i \(0.141564\pi\)
\(272\) −594.746 −0.132580
\(273\) 0 0
\(274\) −30.6593 −0.00675985
\(275\) 0 0
\(276\) −176.818 −0.0385623
\(277\) 571.300 0.123921 0.0619604 0.998079i \(-0.480265\pi\)
0.0619604 + 0.998079i \(0.480265\pi\)
\(278\) 1036.05 0.223518
\(279\) 1980.40 0.424959
\(280\) 0 0
\(281\) −1784.48 −0.378837 −0.189418 0.981896i \(-0.560660\pi\)
−0.189418 + 0.981896i \(0.560660\pi\)
\(282\) 82.5254 0.0174267
\(283\) −3321.05 −0.697582 −0.348791 0.937201i \(-0.613408\pi\)
−0.348791 + 0.937201i \(0.613408\pi\)
\(284\) 478.672 0.100014
\(285\) 0 0
\(286\) 7884.57 1.63015
\(287\) 0 0
\(288\) 4976.70 1.01825
\(289\) 5972.11 1.21557
\(290\) 0 0
\(291\) −48.4843 −0.00976701
\(292\) 4638.56 0.929627
\(293\) 5049.54 1.00682 0.503408 0.864049i \(-0.332079\pi\)
0.503408 + 0.864049i \(0.332079\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 4411.52 0.866266
\(297\) −1248.07 −0.243839
\(298\) 1703.48 0.331141
\(299\) −6913.79 −1.33724
\(300\) 0 0
\(301\) 0 0
\(302\) −117.593 −0.0224063
\(303\) −206.202 −0.0390958
\(304\) 409.828 0.0773198
\(305\) 0 0
\(306\) −4645.91 −0.867938
\(307\) 1535.73 0.285500 0.142750 0.989759i \(-0.454405\pi\)
0.142750 + 0.989759i \(0.454405\pi\)
\(308\) 0 0
\(309\) 606.548 0.111668
\(310\) 0 0
\(311\) −9283.05 −1.69258 −0.846291 0.532720i \(-0.821170\pi\)
−0.846291 + 0.532720i \(0.821170\pi\)
\(312\) −500.147 −0.0907539
\(313\) −6025.43 −1.08811 −0.544054 0.839050i \(-0.683111\pi\)
−0.544054 + 0.839050i \(0.683111\pi\)
\(314\) −3413.68 −0.613519
\(315\) 0 0
\(316\) −3153.83 −0.561445
\(317\) 6977.58 1.23628 0.618139 0.786069i \(-0.287887\pi\)
0.618139 + 0.786069i \(0.287887\pi\)
\(318\) 149.659 0.0263914
\(319\) −7977.24 −1.40012
\(320\) 0 0
\(321\) −362.748 −0.0630736
\(322\) 0 0
\(323\) −7500.71 −1.29211
\(324\) −3785.56 −0.649102
\(325\) 0 0
\(326\) −3252.17 −0.552519
\(327\) 196.293 0.0331958
\(328\) 9162.06 1.54235
\(329\) 0 0
\(330\) 0 0
\(331\) 984.878 0.163546 0.0817731 0.996651i \(-0.473942\pi\)
0.0817731 + 0.996651i \(0.473942\pi\)
\(332\) 372.659 0.0616034
\(333\) −5402.93 −0.889125
\(334\) 4728.13 0.774586
\(335\) 0 0
\(336\) 0 0
\(337\) −51.9653 −0.00839979 −0.00419990 0.999991i \(-0.501337\pi\)
−0.00419990 + 0.999991i \(0.501337\pi\)
\(338\) −4116.99 −0.662529
\(339\) 299.718 0.0480190
\(340\) 0 0
\(341\) −5124.06 −0.813734
\(342\) 3201.40 0.506176
\(343\) 0 0
\(344\) −6831.89 −1.07079
\(345\) 0 0
\(346\) −2572.21 −0.399661
\(347\) 11300.5 1.74825 0.874123 0.485704i \(-0.161437\pi\)
0.874123 + 0.485704i \(0.161437\pi\)
\(348\) 200.672 0.0309114
\(349\) −2016.91 −0.309349 −0.154674 0.987966i \(-0.549433\pi\)
−0.154674 + 0.987966i \(0.549433\pi\)
\(350\) 0 0
\(351\) 1227.61 0.186682
\(352\) −12876.6 −1.94979
\(353\) 7589.41 1.14432 0.572158 0.820143i \(-0.306106\pi\)
0.572158 + 0.820143i \(0.306106\pi\)
\(354\) 285.580 0.0428768
\(355\) 0 0
\(356\) −4219.59 −0.628196
\(357\) 0 0
\(358\) −446.873 −0.0659720
\(359\) 8734.24 1.28405 0.642027 0.766682i \(-0.278094\pi\)
0.642027 + 0.766682i \(0.278094\pi\)
\(360\) 0 0
\(361\) −1690.41 −0.246451
\(362\) −3692.38 −0.536097
\(363\) 1168.22 0.168914
\(364\) 0 0
\(365\) 0 0
\(366\) 121.241 0.0173152
\(367\) 1890.54 0.268898 0.134449 0.990921i \(-0.457074\pi\)
0.134449 + 0.990921i \(0.457074\pi\)
\(368\) 575.928 0.0815825
\(369\) −11221.1 −1.58305
\(370\) 0 0
\(371\) 0 0
\(372\) 128.899 0.0179653
\(373\) −2713.88 −0.376728 −0.188364 0.982099i \(-0.560318\pi\)
−0.188364 + 0.982099i \(0.560318\pi\)
\(374\) 12020.7 1.66197
\(375\) 0 0
\(376\) −3286.63 −0.450784
\(377\) 7846.52 1.07193
\(378\) 0 0
\(379\) 8941.19 1.21182 0.605908 0.795535i \(-0.292810\pi\)
0.605908 + 0.795535i \(0.292810\pi\)
\(380\) 0 0
\(381\) 584.469 0.0785912
\(382\) 771.592 0.103346
\(383\) 9293.88 1.23994 0.619968 0.784627i \(-0.287146\pi\)
0.619968 + 0.784627i \(0.287146\pi\)
\(384\) 349.060 0.0463878
\(385\) 0 0
\(386\) −7310.62 −0.963992
\(387\) 8367.23 1.09904
\(388\) 765.737 0.100192
\(389\) 10454.8 1.36267 0.681333 0.731974i \(-0.261401\pi\)
0.681333 + 0.731974i \(0.261401\pi\)
\(390\) 0 0
\(391\) −10540.7 −1.36334
\(392\) 0 0
\(393\) 602.226 0.0772985
\(394\) −479.947 −0.0613690
\(395\) 0 0
\(396\) 9835.40 1.24810
\(397\) 3626.03 0.458401 0.229200 0.973379i \(-0.426389\pi\)
0.229200 + 0.973379i \(0.426389\pi\)
\(398\) −7978.47 −1.00484
\(399\) 0 0
\(400\) 0 0
\(401\) −8422.52 −1.04888 −0.524440 0.851448i \(-0.675725\pi\)
−0.524440 + 0.851448i \(0.675725\pi\)
\(402\) 44.4857 0.00551927
\(403\) 5040.09 0.622989
\(404\) 3256.65 0.401051
\(405\) 0 0
\(406\) 0 0
\(407\) 13979.5 1.70254
\(408\) −762.519 −0.0925253
\(409\) −14580.7 −1.76276 −0.881379 0.472409i \(-0.843384\pi\)
−0.881379 + 0.472409i \(0.843384\pi\)
\(410\) 0 0
\(411\) 6.16288 0.000739641 0
\(412\) −9579.51 −1.14551
\(413\) 0 0
\(414\) 4498.92 0.534081
\(415\) 0 0
\(416\) 12665.6 1.49275
\(417\) −208.257 −0.0244566
\(418\) −8283.26 −0.969252
\(419\) −2537.53 −0.295863 −0.147931 0.988998i \(-0.547261\pi\)
−0.147931 + 0.988998i \(0.547261\pi\)
\(420\) 0 0
\(421\) 9649.52 1.11708 0.558538 0.829479i \(-0.311363\pi\)
0.558538 + 0.829479i \(0.311363\pi\)
\(422\) −3348.57 −0.386269
\(423\) 4025.23 0.462680
\(424\) −5960.27 −0.682680
\(425\) 0 0
\(426\) 50.1922 0.00570850
\(427\) 0 0
\(428\) 5729.06 0.647020
\(429\) −1584.89 −0.178366
\(430\) 0 0
\(431\) −7262.56 −0.811660 −0.405830 0.913949i \(-0.633017\pi\)
−0.405830 + 0.913949i \(0.633017\pi\)
\(432\) −102.262 −0.0113891
\(433\) −11345.0 −1.25914 −0.629570 0.776944i \(-0.716769\pi\)
−0.629570 + 0.776944i \(0.716769\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3100.15 −0.340528
\(437\) 7263.40 0.795092
\(438\) 486.387 0.0530604
\(439\) 11705.9 1.27265 0.636323 0.771423i \(-0.280455\pi\)
0.636323 + 0.771423i \(0.280455\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −11823.8 −1.27240
\(443\) −15078.0 −1.61710 −0.808551 0.588426i \(-0.799748\pi\)
−0.808551 + 0.588426i \(0.799748\pi\)
\(444\) −351.662 −0.0375881
\(445\) 0 0
\(446\) 7193.70 0.763747
\(447\) −342.419 −0.0362324
\(448\) 0 0
\(449\) 1075.45 0.113037 0.0565185 0.998402i \(-0.482000\pi\)
0.0565185 + 0.998402i \(0.482000\pi\)
\(450\) 0 0
\(451\) 29033.2 3.03131
\(452\) −4733.59 −0.492587
\(453\) 23.6375 0.00245162
\(454\) −4384.58 −0.453257
\(455\) 0 0
\(456\) 525.437 0.0539602
\(457\) 10736.9 1.09902 0.549511 0.835487i \(-0.314814\pi\)
0.549511 + 0.835487i \(0.314814\pi\)
\(458\) 2393.16 0.244159
\(459\) 1871.61 0.190325
\(460\) 0 0
\(461\) 452.568 0.0457228 0.0228614 0.999739i \(-0.492722\pi\)
0.0228614 + 0.999739i \(0.492722\pi\)
\(462\) 0 0
\(463\) −7118.15 −0.714489 −0.357244 0.934011i \(-0.616284\pi\)
−0.357244 + 0.934011i \(0.616284\pi\)
\(464\) −653.626 −0.0653962
\(465\) 0 0
\(466\) −10343.6 −1.02824
\(467\) −973.800 −0.0964927 −0.0482463 0.998835i \(-0.515363\pi\)
−0.0482463 + 0.998835i \(0.515363\pi\)
\(468\) −9674.23 −0.955537
\(469\) 0 0
\(470\) 0 0
\(471\) 686.188 0.0671293
\(472\) −11373.4 −1.10912
\(473\) −21649.2 −2.10451
\(474\) −330.702 −0.0320457
\(475\) 0 0
\(476\) 0 0
\(477\) 7299.72 0.700695
\(478\) −2219.52 −0.212381
\(479\) 9714.00 0.926606 0.463303 0.886200i \(-0.346664\pi\)
0.463303 + 0.886200i \(0.346664\pi\)
\(480\) 0 0
\(481\) −13750.4 −1.30346
\(482\) −5580.80 −0.527383
\(483\) 0 0
\(484\) −18450.3 −1.73274
\(485\) 0 0
\(486\) −1199.06 −0.111915
\(487\) −923.389 −0.0859194 −0.0429597 0.999077i \(-0.513679\pi\)
−0.0429597 + 0.999077i \(0.513679\pi\)
\(488\) −4828.50 −0.447902
\(489\) 653.724 0.0604549
\(490\) 0 0
\(491\) 1289.11 0.118486 0.0592430 0.998244i \(-0.481131\pi\)
0.0592430 + 0.998244i \(0.481131\pi\)
\(492\) −730.348 −0.0669240
\(493\) 11962.7 1.09285
\(494\) 8147.52 0.742053
\(495\) 0 0
\(496\) −419.846 −0.0380074
\(497\) 0 0
\(498\) 39.0760 0.00351614
\(499\) −19338.3 −1.73487 −0.867436 0.497549i \(-0.834234\pi\)
−0.867436 + 0.497549i \(0.834234\pi\)
\(500\) 0 0
\(501\) −950.409 −0.0847528
\(502\) 5949.64 0.528975
\(503\) 1772.84 0.157151 0.0785757 0.996908i \(-0.474963\pi\)
0.0785757 + 0.996908i \(0.474963\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −11640.4 −1.02269
\(507\) 827.563 0.0724919
\(508\) −9230.80 −0.806202
\(509\) 3151.75 0.274458 0.137229 0.990539i \(-0.456180\pi\)
0.137229 + 0.990539i \(0.456180\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −2056.31 −0.177494
\(513\) −1289.69 −0.110997
\(514\) −4.71585 −0.000404683 0
\(515\) 0 0
\(516\) 544.600 0.0464626
\(517\) −10414.8 −0.885964
\(518\) 0 0
\(519\) 517.043 0.0437296
\(520\) 0 0
\(521\) −11029.4 −0.927458 −0.463729 0.885977i \(-0.653489\pi\)
−0.463729 + 0.885977i \(0.653489\pi\)
\(522\) −5105.85 −0.428117
\(523\) −14448.4 −1.20800 −0.604002 0.796983i \(-0.706428\pi\)
−0.604002 + 0.796983i \(0.706428\pi\)
\(524\) −9511.26 −0.792941
\(525\) 0 0
\(526\) −4665.25 −0.386720
\(527\) 7684.08 0.635149
\(528\) 132.023 0.0108818
\(529\) −1959.79 −0.161074
\(530\) 0 0
\(531\) 13929.4 1.13838
\(532\) 0 0
\(533\) −28557.4 −2.32075
\(534\) −442.455 −0.0358556
\(535\) 0 0
\(536\) −1771.67 −0.142770
\(537\) 89.8266 0.00721845
\(538\) 2397.04 0.192089
\(539\) 0 0
\(540\) 0 0
\(541\) −22274.8 −1.77018 −0.885091 0.465418i \(-0.845904\pi\)
−0.885091 + 0.465418i \(0.845904\pi\)
\(542\) −13338.8 −1.05710
\(543\) 742.211 0.0586580
\(544\) 19309.9 1.52188
\(545\) 0 0
\(546\) 0 0
\(547\) −18642.6 −1.45722 −0.728609 0.684930i \(-0.759833\pi\)
−0.728609 + 0.684930i \(0.759833\pi\)
\(548\) −97.3334 −0.00758737
\(549\) 5913.62 0.459721
\(550\) 0 0
\(551\) −8243.28 −0.637343
\(552\) 738.394 0.0569350
\(553\) 0 0
\(554\) −946.108 −0.0725565
\(555\) 0 0
\(556\) 3289.11 0.250880
\(557\) 21431.8 1.63033 0.815165 0.579229i \(-0.196646\pi\)
0.815165 + 0.579229i \(0.196646\pi\)
\(558\) −3279.67 −0.248816
\(559\) 21294.5 1.61120
\(560\) 0 0
\(561\) −2416.31 −0.181848
\(562\) 2955.21 0.221811
\(563\) 6154.85 0.460739 0.230370 0.973103i \(-0.426007\pi\)
0.230370 + 0.973103i \(0.426007\pi\)
\(564\) 261.991 0.0195600
\(565\) 0 0
\(566\) 5499.86 0.408439
\(567\) 0 0
\(568\) −1998.94 −0.147665
\(569\) −8389.99 −0.618149 −0.309074 0.951038i \(-0.600019\pi\)
−0.309074 + 0.951038i \(0.600019\pi\)
\(570\) 0 0
\(571\) −600.502 −0.0440109 −0.0220055 0.999758i \(-0.507005\pi\)
−0.0220055 + 0.999758i \(0.507005\pi\)
\(572\) 25030.9 1.82971
\(573\) −155.099 −0.0113078
\(574\) 0 0
\(575\) 0 0
\(576\) −7015.46 −0.507484
\(577\) −4062.35 −0.293098 −0.146549 0.989203i \(-0.546817\pi\)
−0.146549 + 0.989203i \(0.546817\pi\)
\(578\) −9890.18 −0.711725
\(579\) 1469.52 0.105477
\(580\) 0 0
\(581\) 0 0
\(582\) 80.2931 0.00571865
\(583\) −18887.2 −1.34173
\(584\) −19370.6 −1.37254
\(585\) 0 0
\(586\) −8362.35 −0.589498
\(587\) 8387.50 0.589760 0.294880 0.955534i \(-0.404720\pi\)
0.294880 + 0.955534i \(0.404720\pi\)
\(588\) 0 0
\(589\) −5294.95 −0.370415
\(590\) 0 0
\(591\) 96.4749 0.00671480
\(592\) 1145.43 0.0795214
\(593\) 15342.6 1.06247 0.531236 0.847224i \(-0.321728\pi\)
0.531236 + 0.847224i \(0.321728\pi\)
\(594\) 2066.88 0.142769
\(595\) 0 0
\(596\) 5408.00 0.371678
\(597\) 1603.76 0.109946
\(598\) 11449.7 0.782963
\(599\) −19708.5 −1.34435 −0.672175 0.740392i \(-0.734640\pi\)
−0.672175 + 0.740392i \(0.734640\pi\)
\(600\) 0 0
\(601\) −19002.5 −1.28973 −0.644866 0.764295i \(-0.723087\pi\)
−0.644866 + 0.764295i \(0.723087\pi\)
\(602\) 0 0
\(603\) 2169.82 0.146537
\(604\) −373.318 −0.0251492
\(605\) 0 0
\(606\) 341.484 0.0228908
\(607\) −29453.1 −1.96946 −0.984732 0.174076i \(-0.944306\pi\)
−0.984732 + 0.174076i \(0.944306\pi\)
\(608\) −13306.1 −0.887553
\(609\) 0 0
\(610\) 0 0
\(611\) 10244.2 0.678288
\(612\) −14749.2 −0.974188
\(613\) −9987.27 −0.658045 −0.329023 0.944322i \(-0.606719\pi\)
−0.329023 + 0.944322i \(0.606719\pi\)
\(614\) −2543.26 −0.167162
\(615\) 0 0
\(616\) 0 0
\(617\) 21076.1 1.37519 0.687593 0.726096i \(-0.258667\pi\)
0.687593 + 0.726096i \(0.258667\pi\)
\(618\) −1004.48 −0.0653821
\(619\) −314.668 −0.0204323 −0.0102161 0.999948i \(-0.503252\pi\)
−0.0102161 + 0.999948i \(0.503252\pi\)
\(620\) 0 0
\(621\) −1812.39 −0.117116
\(622\) 15373.3 0.991018
\(623\) 0 0
\(624\) −129.860 −0.00833103
\(625\) 0 0
\(626\) 9978.49 0.637094
\(627\) 1665.03 0.106052
\(628\) −10837.3 −0.688624
\(629\) −20963.7 −1.32890
\(630\) 0 0
\(631\) 3314.96 0.209138 0.104569 0.994518i \(-0.466654\pi\)
0.104569 + 0.994518i \(0.466654\pi\)
\(632\) 13170.4 0.828941
\(633\) 673.101 0.0422644
\(634\) −11555.3 −0.723849
\(635\) 0 0
\(636\) 475.119 0.0296221
\(637\) 0 0
\(638\) 13210.8 0.819782
\(639\) 2448.16 0.151561
\(640\) 0 0
\(641\) 3005.12 0.185172 0.0925858 0.995705i \(-0.470487\pi\)
0.0925858 + 0.995705i \(0.470487\pi\)
\(642\) 600.733 0.0369300
\(643\) −21225.7 −1.30180 −0.650902 0.759162i \(-0.725609\pi\)
−0.650902 + 0.759162i \(0.725609\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 12421.6 0.756537
\(647\) 2740.35 0.166514 0.0832568 0.996528i \(-0.473468\pi\)
0.0832568 + 0.996528i \(0.473468\pi\)
\(648\) 15808.5 0.958360
\(649\) −36040.6 −2.17984
\(650\) 0 0
\(651\) 0 0
\(652\) −10324.6 −0.620157
\(653\) −22790.7 −1.36580 −0.682900 0.730511i \(-0.739282\pi\)
−0.682900 + 0.730511i \(0.739282\pi\)
\(654\) −325.073 −0.0194363
\(655\) 0 0
\(656\) 2378.87 0.141584
\(657\) 23723.8 1.40876
\(658\) 0 0
\(659\) 19405.1 1.14706 0.573532 0.819183i \(-0.305573\pi\)
0.573532 + 0.819183i \(0.305573\pi\)
\(660\) 0 0
\(661\) 15637.3 0.920150 0.460075 0.887880i \(-0.347823\pi\)
0.460075 + 0.887880i \(0.347823\pi\)
\(662\) −1631.02 −0.0957574
\(663\) 2376.71 0.139222
\(664\) −1556.23 −0.0909538
\(665\) 0 0
\(666\) 8947.59 0.520589
\(667\) −11584.2 −0.672479
\(668\) 15010.3 0.869409
\(669\) −1446.02 −0.0835668
\(670\) 0 0
\(671\) −15300.8 −0.880299
\(672\) 0 0
\(673\) 2579.54 0.147747 0.0738735 0.997268i \(-0.476464\pi\)
0.0738735 + 0.997268i \(0.476464\pi\)
\(674\) 86.0578 0.00491813
\(675\) 0 0
\(676\) −13070.1 −0.743634
\(677\) −8159.56 −0.463216 −0.231608 0.972809i \(-0.574399\pi\)
−0.231608 + 0.972809i \(0.574399\pi\)
\(678\) −496.351 −0.0281154
\(679\) 0 0
\(680\) 0 0
\(681\) 881.351 0.0495939
\(682\) 8485.76 0.476446
\(683\) 20529.3 1.15012 0.575059 0.818112i \(-0.304979\pi\)
0.575059 + 0.818112i \(0.304979\pi\)
\(684\) 10163.4 0.568140
\(685\) 0 0
\(686\) 0 0
\(687\) −481.053 −0.0267151
\(688\) −1773.86 −0.0982961
\(689\) 18577.7 1.02722
\(690\) 0 0
\(691\) −917.295 −0.0505001 −0.0252500 0.999681i \(-0.508038\pi\)
−0.0252500 + 0.999681i \(0.508038\pi\)
\(692\) −8165.92 −0.448586
\(693\) 0 0
\(694\) −18714.3 −1.02361
\(695\) 0 0
\(696\) −838.009 −0.0456389
\(697\) −43538.4 −2.36605
\(698\) 3340.13 0.181126
\(699\) 2079.19 0.112507
\(700\) 0 0
\(701\) −10491.3 −0.565266 −0.282633 0.959228i \(-0.591208\pi\)
−0.282633 + 0.959228i \(0.591208\pi\)
\(702\) −2033.01 −0.109303
\(703\) 14445.7 0.775006
\(704\) 18151.7 0.971758
\(705\) 0 0
\(706\) −12568.5 −0.670005
\(707\) 0 0
\(708\) 906.623 0.0481257
\(709\) 23837.6 1.26268 0.631339 0.775507i \(-0.282506\pi\)
0.631339 + 0.775507i \(0.282506\pi\)
\(710\) 0 0
\(711\) −16130.2 −0.850816
\(712\) 17621.0 0.927495
\(713\) −7440.96 −0.390836
\(714\) 0 0
\(715\) 0 0
\(716\) −1418.68 −0.0740481
\(717\) 446.148 0.0232381
\(718\) −14464.4 −0.751822
\(719\) −3926.19 −0.203647 −0.101824 0.994802i \(-0.532468\pi\)
−0.101824 + 0.994802i \(0.532468\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 2799.42 0.144299
\(723\) 1121.80 0.0577045
\(724\) −11722.1 −0.601724
\(725\) 0 0
\(726\) −1934.64 −0.0989000
\(727\) 21071.2 1.07495 0.537474 0.843281i \(-0.319379\pi\)
0.537474 + 0.843281i \(0.319379\pi\)
\(728\) 0 0
\(729\) −19200.0 −0.975459
\(730\) 0 0
\(731\) 32465.4 1.64265
\(732\) 384.901 0.0194349
\(733\) 22840.7 1.15094 0.575470 0.817823i \(-0.304819\pi\)
0.575470 + 0.817823i \(0.304819\pi\)
\(734\) −3130.86 −0.157441
\(735\) 0 0
\(736\) −18699.0 −0.936485
\(737\) −5614.16 −0.280597
\(738\) 18582.8 0.926885
\(739\) 10837.3 0.539456 0.269728 0.962937i \(-0.413066\pi\)
0.269728 + 0.962937i \(0.413066\pi\)
\(740\) 0 0
\(741\) −1637.75 −0.0811931
\(742\) 0 0
\(743\) 21631.9 1.06810 0.534050 0.845453i \(-0.320669\pi\)
0.534050 + 0.845453i \(0.320669\pi\)
\(744\) −538.282 −0.0265247
\(745\) 0 0
\(746\) 4494.36 0.220577
\(747\) 1905.96 0.0933540
\(748\) 38161.9 1.86543
\(749\) 0 0
\(750\) 0 0
\(751\) −16179.2 −0.786133 −0.393067 0.919510i \(-0.628586\pi\)
−0.393067 + 0.919510i \(0.628586\pi\)
\(752\) −853.352 −0.0413811
\(753\) −1195.95 −0.0578788
\(754\) −12994.3 −0.627620
\(755\) 0 0
\(756\) 0 0
\(757\) 40930.9 1.96520 0.982601 0.185727i \(-0.0594641\pi\)
0.982601 + 0.185727i \(0.0594641\pi\)
\(758\) −14807.2 −0.709526
\(759\) 2339.86 0.111899
\(760\) 0 0
\(761\) 3183.97 0.151667 0.0758337 0.997120i \(-0.475838\pi\)
0.0758337 + 0.997120i \(0.475838\pi\)
\(762\) −967.917 −0.0460157
\(763\) 0 0
\(764\) 2449.55 0.115997
\(765\) 0 0
\(766\) −15391.2 −0.725990
\(767\) 35450.0 1.66887
\(768\) −1272.88 −0.0598059
\(769\) 33595.8 1.57542 0.787708 0.616048i \(-0.211267\pi\)
0.787708 + 0.616048i \(0.211267\pi\)
\(770\) 0 0
\(771\) 0.947940 4.42791e−5 0
\(772\) −23208.8 −1.08200
\(773\) −34386.0 −1.59997 −0.799986 0.600019i \(-0.795160\pi\)
−0.799986 + 0.600019i \(0.795160\pi\)
\(774\) −13856.7 −0.643498
\(775\) 0 0
\(776\) −3197.72 −0.147927
\(777\) 0 0
\(778\) −17313.7 −0.797849
\(779\) 30001.5 1.37986
\(780\) 0 0
\(781\) −6334.33 −0.290218
\(782\) 17456.1 0.798245
\(783\) 2056.90 0.0938795
\(784\) 0 0
\(785\) 0 0
\(786\) −997.324 −0.0452588
\(787\) 8212.43 0.371972 0.185986 0.982552i \(-0.440452\pi\)
0.185986 + 0.982552i \(0.440452\pi\)
\(788\) −1523.68 −0.0688816
\(789\) 937.769 0.0423136
\(790\) 0 0
\(791\) 0 0
\(792\) −41072.7 −1.84274
\(793\) 15050.1 0.673951
\(794\) −6004.92 −0.268396
\(795\) 0 0
\(796\) −25329.0 −1.12784
\(797\) −36798.3 −1.63546 −0.817732 0.575600i \(-0.804769\pi\)
−0.817732 + 0.575600i \(0.804769\pi\)
\(798\) 0 0
\(799\) 15618.2 0.691528
\(800\) 0 0
\(801\) −21581.0 −0.951971
\(802\) 13948.2 0.614125
\(803\) −61382.7 −2.69757
\(804\) 141.228 0.00619492
\(805\) 0 0
\(806\) −8346.70 −0.364764
\(807\) −481.832 −0.0210177
\(808\) −13599.8 −0.592128
\(809\) 10186.2 0.442678 0.221339 0.975197i \(-0.428957\pi\)
0.221339 + 0.975197i \(0.428957\pi\)
\(810\) 0 0
\(811\) 21196.9 0.917786 0.458893 0.888492i \(-0.348246\pi\)
0.458893 + 0.888492i \(0.348246\pi\)
\(812\) 0 0
\(813\) 2681.24 0.115665
\(814\) −23150.8 −0.996851
\(815\) 0 0
\(816\) −197.983 −0.00849364
\(817\) −22371.3 −0.957982
\(818\) 24146.5 1.03211
\(819\) 0 0
\(820\) 0 0
\(821\) 7563.94 0.321539 0.160769 0.986992i \(-0.448602\pi\)
0.160769 + 0.986992i \(0.448602\pi\)
\(822\) −10.2061 −0.000433065 0
\(823\) −8399.80 −0.355770 −0.177885 0.984051i \(-0.556925\pi\)
−0.177885 + 0.984051i \(0.556925\pi\)
\(824\) 40004.1 1.69127
\(825\) 0 0
\(826\) 0 0
\(827\) −5479.54 −0.230402 −0.115201 0.993342i \(-0.536751\pi\)
−0.115201 + 0.993342i \(0.536751\pi\)
\(828\) 14282.6 0.599462
\(829\) 9252.56 0.387641 0.193821 0.981037i \(-0.437912\pi\)
0.193821 + 0.981037i \(0.437912\pi\)
\(830\) 0 0
\(831\) 190.179 0.00793890
\(832\) −17854.2 −0.743972
\(833\) 0 0
\(834\) 344.887 0.0143195
\(835\) 0 0
\(836\) −26296.6 −1.08790
\(837\) 1321.22 0.0545615
\(838\) 4202.31 0.173230
\(839\) −34517.6 −1.42036 −0.710178 0.704022i \(-0.751386\pi\)
−0.710178 + 0.704022i \(0.751386\pi\)
\(840\) 0 0
\(841\) −11241.9 −0.460943
\(842\) −15980.2 −0.654055
\(843\) −594.031 −0.0242699
\(844\) −10630.6 −0.433555
\(845\) 0 0
\(846\) −6666.04 −0.270902
\(847\) 0 0
\(848\) −1547.55 −0.0626686
\(849\) −1105.54 −0.0446901
\(850\) 0 0
\(851\) 20300.4 0.817732
\(852\) 159.344 0.00640732
\(853\) 1498.57 0.0601525 0.0300763 0.999548i \(-0.490425\pi\)
0.0300763 + 0.999548i \(0.490425\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −23924.6 −0.955287
\(857\) 9357.02 0.372963 0.186482 0.982458i \(-0.440291\pi\)
0.186482 + 0.982458i \(0.440291\pi\)
\(858\) 2624.67 0.104435
\(859\) −29960.9 −1.19005 −0.595025 0.803707i \(-0.702858\pi\)
−0.595025 + 0.803707i \(0.702858\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 12027.3 0.475232
\(863\) 33941.0 1.33878 0.669389 0.742912i \(-0.266556\pi\)
0.669389 + 0.742912i \(0.266556\pi\)
\(864\) 3320.19 0.130735
\(865\) 0 0
\(866\) 18788.1 0.737235
\(867\) 1988.04 0.0778747
\(868\) 0 0
\(869\) 41735.0 1.62919
\(870\) 0 0
\(871\) 5522.16 0.214824
\(872\) 12946.2 0.502769
\(873\) 3916.35 0.151831
\(874\) −12028.6 −0.465532
\(875\) 0 0
\(876\) 1544.12 0.0595559
\(877\) 39436.6 1.51845 0.759224 0.650830i \(-0.225579\pi\)
0.759224 + 0.650830i \(0.225579\pi\)
\(878\) −19385.7 −0.745142
\(879\) 1680.93 0.0645010
\(880\) 0 0
\(881\) 32411.4 1.23946 0.619732 0.784813i \(-0.287241\pi\)
0.619732 + 0.784813i \(0.287241\pi\)
\(882\) 0 0
\(883\) 17121.4 0.652526 0.326263 0.945279i \(-0.394210\pi\)
0.326263 + 0.945279i \(0.394210\pi\)
\(884\) −37536.6 −1.42816
\(885\) 0 0
\(886\) 24970.1 0.946824
\(887\) 687.797 0.0260360 0.0130180 0.999915i \(-0.495856\pi\)
0.0130180 + 0.999915i \(0.495856\pi\)
\(888\) 1468.54 0.0554967
\(889\) 0 0
\(890\) 0 0
\(891\) 50094.8 1.88355
\(892\) 22837.6 0.857243
\(893\) −10762.2 −0.403294
\(894\) 567.068 0.0212143
\(895\) 0 0
\(896\) 0 0
\(897\) −2301.52 −0.0856693
\(898\) −1781.01 −0.0661839
\(899\) 8444.81 0.313293
\(900\) 0 0
\(901\) 28323.4 1.04727
\(902\) −48080.8 −1.77485
\(903\) 0 0
\(904\) 19767.5 0.727276
\(905\) 0 0
\(906\) −39.1451 −0.00143544
\(907\) −19104.2 −0.699388 −0.349694 0.936864i \(-0.613714\pi\)
−0.349694 + 0.936864i \(0.613714\pi\)
\(908\) −13919.6 −0.508743
\(909\) 16656.1 0.607754
\(910\) 0 0
\(911\) 23135.3 0.841390 0.420695 0.907202i \(-0.361786\pi\)
0.420695 + 0.907202i \(0.361786\pi\)
\(912\) 136.427 0.00495344
\(913\) −4931.45 −0.178759
\(914\) −17781.0 −0.643484
\(915\) 0 0
\(916\) 7597.50 0.274049
\(917\) 0 0
\(918\) −3099.50 −0.111437
\(919\) 47373.9 1.70046 0.850230 0.526412i \(-0.176463\pi\)
0.850230 + 0.526412i \(0.176463\pi\)
\(920\) 0 0
\(921\) 511.224 0.0182903
\(922\) −749.481 −0.0267710
\(923\) 6230.53 0.222189
\(924\) 0 0
\(925\) 0 0
\(926\) 11788.1 0.418338
\(927\) −48994.2 −1.73590
\(928\) 21221.6 0.750682
\(929\) −7617.72 −0.269031 −0.134515 0.990912i \(-0.542948\pi\)
−0.134515 + 0.990912i \(0.542948\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −32837.6 −1.15411
\(933\) −3090.21 −0.108434
\(934\) 1612.67 0.0564971
\(935\) 0 0
\(936\) 40399.6 1.41079
\(937\) 52091.2 1.81616 0.908082 0.418792i \(-0.137546\pi\)
0.908082 + 0.418792i \(0.137546\pi\)
\(938\) 0 0
\(939\) −2005.79 −0.0697088
\(940\) 0 0
\(941\) −56765.1 −1.96651 −0.983257 0.182225i \(-0.941670\pi\)
−0.983257 + 0.182225i \(0.941670\pi\)
\(942\) −1136.37 −0.0393046
\(943\) 42160.9 1.45594
\(944\) −2953.03 −0.101815
\(945\) 0 0
\(946\) 35852.5 1.23220
\(947\) 47629.2 1.63436 0.817181 0.576381i \(-0.195535\pi\)
0.817181 + 0.576381i \(0.195535\pi\)
\(948\) −1049.87 −0.0359686
\(949\) 60376.8 2.06524
\(950\) 0 0
\(951\) 2322.75 0.0792012
\(952\) 0 0
\(953\) −12893.5 −0.438259 −0.219129 0.975696i \(-0.570322\pi\)
−0.219129 + 0.975696i \(0.570322\pi\)
\(954\) −12088.8 −0.410261
\(955\) 0 0
\(956\) −7046.24 −0.238380
\(957\) −2655.52 −0.0896979
\(958\) −16087.0 −0.542534
\(959\) 0 0
\(960\) 0 0
\(961\) −24366.6 −0.817918
\(962\) 22771.5 0.763183
\(963\) 29301.2 0.980496
\(964\) −17717.2 −0.591943
\(965\) 0 0
\(966\) 0 0
\(967\) 28420.0 0.945114 0.472557 0.881300i \(-0.343331\pi\)
0.472557 + 0.881300i \(0.343331\pi\)
\(968\) 77048.4 2.55830
\(969\) −2496.89 −0.0827779
\(970\) 0 0
\(971\) 29273.8 0.967497 0.483749 0.875207i \(-0.339275\pi\)
0.483749 + 0.875207i \(0.339275\pi\)
\(972\) −3806.64 −0.125615
\(973\) 0 0
\(974\) 1529.19 0.0503063
\(975\) 0 0
\(976\) −1253.69 −0.0411165
\(977\) −12055.0 −0.394753 −0.197377 0.980328i \(-0.563242\pi\)
−0.197377 + 0.980328i \(0.563242\pi\)
\(978\) −1082.61 −0.0353967
\(979\) 55838.4 1.82288
\(980\) 0 0
\(981\) −15855.7 −0.516037
\(982\) −2134.84 −0.0693743
\(983\) −10605.1 −0.344099 −0.172049 0.985088i \(-0.555039\pi\)
−0.172049 + 0.985088i \(0.555039\pi\)
\(984\) 3049.94 0.0988094
\(985\) 0 0
\(986\) −19811.0 −0.639870
\(987\) 0 0
\(988\) 25865.7 0.832893
\(989\) −31438.2 −1.01080
\(990\) 0 0
\(991\) 45229.1 1.44980 0.724898 0.688856i \(-0.241887\pi\)
0.724898 + 0.688856i \(0.241887\pi\)
\(992\) 13631.4 0.436287
\(993\) 327.854 0.0104775
\(994\) 0 0
\(995\) 0 0
\(996\) 124.054 0.00394658
\(997\) 49676.8 1.57802 0.789008 0.614383i \(-0.210595\pi\)
0.789008 + 0.614383i \(0.210595\pi\)
\(998\) 32025.4 1.01578
\(999\) −3604.55 −0.114157
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.4.a.bi.1.2 6
5.4 even 2 245.4.a.p.1.5 yes 6
7.6 odd 2 1225.4.a.bj.1.2 6
15.14 odd 2 2205.4.a.ca.1.2 6
35.4 even 6 245.4.e.p.226.2 12
35.9 even 6 245.4.e.p.116.2 12
35.19 odd 6 245.4.e.q.116.2 12
35.24 odd 6 245.4.e.q.226.2 12
35.34 odd 2 245.4.a.o.1.5 6
105.104 even 2 2205.4.a.bz.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
245.4.a.o.1.5 6 35.34 odd 2
245.4.a.p.1.5 yes 6 5.4 even 2
245.4.e.p.116.2 12 35.9 even 6
245.4.e.p.226.2 12 35.4 even 6
245.4.e.q.116.2 12 35.19 odd 6
245.4.e.q.226.2 12 35.24 odd 6
1225.4.a.bi.1.2 6 1.1 even 1 trivial
1225.4.a.bj.1.2 6 7.6 odd 2
2205.4.a.bz.1.2 6 105.104 even 2
2205.4.a.ca.1.2 6 15.14 odd 2