Properties

Label 1225.4.a.be.1.4
Level $1225$
Weight $4$
Character 1225.1
Self dual yes
Analytic conductor $72.277$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,4,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2773397570\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.67516\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.67516 q^{2} -2.49396 q^{3} -5.19383 q^{4} -4.17779 q^{6} -22.1018 q^{8} -20.7802 q^{9} -57.5880 q^{11} +12.9532 q^{12} -45.5159 q^{13} +4.52655 q^{16} +92.0051 q^{17} -34.8101 q^{18} -125.177 q^{19} -96.4692 q^{22} -158.496 q^{23} +55.1211 q^{24} -76.2466 q^{26} +119.162 q^{27} -40.1708 q^{29} -49.5590 q^{31} +184.397 q^{32} +143.622 q^{33} +154.123 q^{34} +107.929 q^{36} -231.307 q^{37} -209.692 q^{38} +113.515 q^{39} -169.556 q^{41} +147.428 q^{43} +299.102 q^{44} -265.507 q^{46} -67.0327 q^{47} -11.2890 q^{48} -229.457 q^{51} +236.402 q^{52} -268.647 q^{53} +199.615 q^{54} +312.187 q^{57} -67.2926 q^{58} +240.843 q^{59} -90.4579 q^{61} -83.0194 q^{62} +272.683 q^{64} +240.591 q^{66} +406.498 q^{67} -477.859 q^{68} +395.283 q^{69} +330.782 q^{71} +459.279 q^{72} +546.255 q^{73} -387.477 q^{74} +650.149 q^{76} +190.156 q^{78} -25.3087 q^{79} +263.879 q^{81} -284.034 q^{82} +376.255 q^{83} +246.965 q^{86} +100.184 q^{87} +1272.80 q^{88} -1026.44 q^{89} +823.203 q^{92} +123.598 q^{93} -112.291 q^{94} -459.879 q^{96} -942.660 q^{97} +1196.69 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{2} + 10 q^{3} + 18 q^{4} - 6 q^{6} - 42 q^{8} + 23 q^{9} + 42 q^{11} + 136 q^{12} + 34 q^{13} + 74 q^{16} + 238 q^{17} + 2 q^{18} + 36 q^{19} - 358 q^{22} - 152 q^{23} + 36 q^{24} + 310 q^{26}+ \cdots + 2652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.67516 0.592259 0.296130 0.955148i \(-0.404304\pi\)
0.296130 + 0.955148i \(0.404304\pi\)
\(3\) −2.49396 −0.479963 −0.239982 0.970777i \(-0.577141\pi\)
−0.239982 + 0.970777i \(0.577141\pi\)
\(4\) −5.19383 −0.649229
\(5\) 0 0
\(6\) −4.17779 −0.284263
\(7\) 0 0
\(8\) −22.1018 −0.976771
\(9\) −20.7802 −0.769635
\(10\) 0 0
\(11\) −57.5880 −1.57849 −0.789247 0.614076i \(-0.789529\pi\)
−0.789247 + 0.614076i \(0.789529\pi\)
\(12\) 12.9532 0.311606
\(13\) −45.5159 −0.971066 −0.485533 0.874218i \(-0.661374\pi\)
−0.485533 + 0.874218i \(0.661374\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.52655 0.0707273
\(17\) 92.0051 1.31262 0.656309 0.754492i \(-0.272117\pi\)
0.656309 + 0.754492i \(0.272117\pi\)
\(18\) −34.8101 −0.455824
\(19\) −125.177 −1.51145 −0.755726 0.654888i \(-0.772716\pi\)
−0.755726 + 0.654888i \(0.772716\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −96.4692 −0.934878
\(23\) −158.496 −1.43690 −0.718451 0.695578i \(-0.755149\pi\)
−0.718451 + 0.695578i \(0.755149\pi\)
\(24\) 55.1211 0.468814
\(25\) 0 0
\(26\) −76.2466 −0.575123
\(27\) 119.162 0.849360
\(28\) 0 0
\(29\) −40.1708 −0.257225 −0.128613 0.991695i \(-0.541052\pi\)
−0.128613 + 0.991695i \(0.541052\pi\)
\(30\) 0 0
\(31\) −49.5590 −0.287131 −0.143566 0.989641i \(-0.545857\pi\)
−0.143566 + 0.989641i \(0.545857\pi\)
\(32\) 184.397 1.01866
\(33\) 143.622 0.757619
\(34\) 154.123 0.777410
\(35\) 0 0
\(36\) 107.929 0.499670
\(37\) −231.307 −1.02775 −0.513874 0.857866i \(-0.671790\pi\)
−0.513874 + 0.857866i \(0.671790\pi\)
\(38\) −209.692 −0.895171
\(39\) 113.515 0.466076
\(40\) 0 0
\(41\) −169.556 −0.645859 −0.322929 0.946423i \(-0.604668\pi\)
−0.322929 + 0.946423i \(0.604668\pi\)
\(42\) 0 0
\(43\) 147.428 0.522849 0.261425 0.965224i \(-0.415808\pi\)
0.261425 + 0.965224i \(0.415808\pi\)
\(44\) 299.102 1.02480
\(45\) 0 0
\(46\) −265.507 −0.851018
\(47\) −67.0327 −0.208037 −0.104018 0.994575i \(-0.533170\pi\)
−0.104018 + 0.994575i \(0.533170\pi\)
\(48\) −11.2890 −0.0339465
\(49\) 0 0
\(50\) 0 0
\(51\) −229.457 −0.630008
\(52\) 236.402 0.630444
\(53\) −268.647 −0.696254 −0.348127 0.937447i \(-0.613182\pi\)
−0.348127 + 0.937447i \(0.613182\pi\)
\(54\) 199.615 0.503041
\(55\) 0 0
\(56\) 0 0
\(57\) 312.187 0.725441
\(58\) −67.2926 −0.152344
\(59\) 240.843 0.531442 0.265721 0.964050i \(-0.414390\pi\)
0.265721 + 0.964050i \(0.414390\pi\)
\(60\) 0 0
\(61\) −90.4579 −0.189868 −0.0949340 0.995484i \(-0.530264\pi\)
−0.0949340 + 0.995484i \(0.530264\pi\)
\(62\) −83.0194 −0.170056
\(63\) 0 0
\(64\) 272.683 0.532583
\(65\) 0 0
\(66\) 240.591 0.448707
\(67\) 406.498 0.741218 0.370609 0.928789i \(-0.379149\pi\)
0.370609 + 0.928789i \(0.379149\pi\)
\(68\) −477.859 −0.852190
\(69\) 395.283 0.689660
\(70\) 0 0
\(71\) 330.782 0.552910 0.276455 0.961027i \(-0.410840\pi\)
0.276455 + 0.961027i \(0.410840\pi\)
\(72\) 459.279 0.751758
\(73\) 546.255 0.875812 0.437906 0.899021i \(-0.355720\pi\)
0.437906 + 0.899021i \(0.355720\pi\)
\(74\) −387.477 −0.608693
\(75\) 0 0
\(76\) 650.149 0.981279
\(77\) 0 0
\(78\) 190.156 0.276038
\(79\) −25.3087 −0.0360436 −0.0180218 0.999838i \(-0.505737\pi\)
−0.0180218 + 0.999838i \(0.505737\pi\)
\(80\) 0 0
\(81\) 263.879 0.361974
\(82\) −284.034 −0.382516
\(83\) 376.255 0.497582 0.248791 0.968557i \(-0.419967\pi\)
0.248791 + 0.968557i \(0.419967\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 246.965 0.309662
\(87\) 100.184 0.123459
\(88\) 1272.80 1.54183
\(89\) −1026.44 −1.22250 −0.611248 0.791439i \(-0.709332\pi\)
−0.611248 + 0.791439i \(0.709332\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 823.203 0.932878
\(93\) 123.598 0.137812
\(94\) −112.291 −0.123212
\(95\) 0 0
\(96\) −459.879 −0.488919
\(97\) −942.660 −0.986728 −0.493364 0.869823i \(-0.664233\pi\)
−0.493364 + 0.869823i \(0.664233\pi\)
\(98\) 0 0
\(99\) 1196.69 1.21487
\(100\) 0 0
\(101\) 604.617 0.595659 0.297830 0.954619i \(-0.403737\pi\)
0.297830 + 0.954619i \(0.403737\pi\)
\(102\) −384.378 −0.373128
\(103\) −300.967 −0.287914 −0.143957 0.989584i \(-0.545983\pi\)
−0.143957 + 0.989584i \(0.545983\pi\)
\(104\) 1005.98 0.948509
\(105\) 0 0
\(106\) −450.027 −0.412363
\(107\) −1511.66 −1.36577 −0.682886 0.730525i \(-0.739276\pi\)
−0.682886 + 0.730525i \(0.739276\pi\)
\(108\) −618.907 −0.551429
\(109\) −1767.09 −1.55281 −0.776406 0.630233i \(-0.782959\pi\)
−0.776406 + 0.630233i \(0.782959\pi\)
\(110\) 0 0
\(111\) 576.871 0.493281
\(112\) 0 0
\(113\) −1045.27 −0.870182 −0.435091 0.900387i \(-0.643284\pi\)
−0.435091 + 0.900387i \(0.643284\pi\)
\(114\) 522.963 0.429649
\(115\) 0 0
\(116\) 208.640 0.166998
\(117\) 945.828 0.747366
\(118\) 403.451 0.314751
\(119\) 0 0
\(120\) 0 0
\(121\) 1985.38 1.49164
\(122\) −151.532 −0.112451
\(123\) 422.866 0.309988
\(124\) 257.401 0.186414
\(125\) 0 0
\(126\) 0 0
\(127\) −260.727 −0.182171 −0.0910857 0.995843i \(-0.529034\pi\)
−0.0910857 + 0.995843i \(0.529034\pi\)
\(128\) −1018.39 −0.703233
\(129\) −367.679 −0.250948
\(130\) 0 0
\(131\) 723.522 0.482553 0.241276 0.970456i \(-0.422434\pi\)
0.241276 + 0.970456i \(0.422434\pi\)
\(132\) −745.950 −0.491868
\(133\) 0 0
\(134\) 680.950 0.438993
\(135\) 0 0
\(136\) −2033.48 −1.28213
\(137\) −773.693 −0.482490 −0.241245 0.970464i \(-0.577556\pi\)
−0.241245 + 0.970464i \(0.577556\pi\)
\(138\) 662.164 0.408457
\(139\) 2952.97 1.80192 0.900961 0.433899i \(-0.142863\pi\)
0.900961 + 0.433899i \(0.142863\pi\)
\(140\) 0 0
\(141\) 167.177 0.0998499
\(142\) 554.114 0.327466
\(143\) 2621.17 1.53282
\(144\) −94.0624 −0.0544343
\(145\) 0 0
\(146\) 915.066 0.518708
\(147\) 0 0
\(148\) 1201.37 0.667244
\(149\) 2514.00 1.38225 0.691124 0.722736i \(-0.257116\pi\)
0.691124 + 0.722736i \(0.257116\pi\)
\(150\) 0 0
\(151\) 101.052 0.0544605 0.0272302 0.999629i \(-0.491331\pi\)
0.0272302 + 0.999629i \(0.491331\pi\)
\(152\) 2766.64 1.47634
\(153\) −1911.88 −1.01024
\(154\) 0 0
\(155\) 0 0
\(156\) −589.578 −0.302590
\(157\) 2338.35 1.18867 0.594333 0.804219i \(-0.297416\pi\)
0.594333 + 0.804219i \(0.297416\pi\)
\(158\) −42.3961 −0.0213472
\(159\) 669.995 0.334176
\(160\) 0 0
\(161\) 0 0
\(162\) 442.040 0.214383
\(163\) 1325.20 0.636798 0.318399 0.947957i \(-0.396855\pi\)
0.318399 + 0.947957i \(0.396855\pi\)
\(164\) 880.646 0.419310
\(165\) 0 0
\(166\) 630.288 0.294698
\(167\) 2086.20 0.966675 0.483338 0.875434i \(-0.339424\pi\)
0.483338 + 0.875434i \(0.339424\pi\)
\(168\) 0 0
\(169\) −125.299 −0.0570317
\(170\) 0 0
\(171\) 2601.20 1.16327
\(172\) −765.715 −0.339449
\(173\) 1918.19 0.842990 0.421495 0.906831i \(-0.361505\pi\)
0.421495 + 0.906831i \(0.361505\pi\)
\(174\) 167.825 0.0731195
\(175\) 0 0
\(176\) −260.675 −0.111643
\(177\) −600.652 −0.255072
\(178\) −1719.45 −0.724035
\(179\) 629.046 0.262665 0.131333 0.991338i \(-0.458074\pi\)
0.131333 + 0.991338i \(0.458074\pi\)
\(180\) 0 0
\(181\) 2800.85 1.15020 0.575099 0.818084i \(-0.304964\pi\)
0.575099 + 0.818084i \(0.304964\pi\)
\(182\) 0 0
\(183\) 225.599 0.0911296
\(184\) 3503.05 1.40352
\(185\) 0 0
\(186\) 207.047 0.0816207
\(187\) −5298.39 −2.07196
\(188\) 348.157 0.135063
\(189\) 0 0
\(190\) 0 0
\(191\) 740.255 0.280434 0.140217 0.990121i \(-0.455220\pi\)
0.140217 + 0.990121i \(0.455220\pi\)
\(192\) −680.060 −0.255620
\(193\) −4082.57 −1.52264 −0.761321 0.648375i \(-0.775449\pi\)
−0.761321 + 0.648375i \(0.775449\pi\)
\(194\) −1579.11 −0.584399
\(195\) 0 0
\(196\) 0 0
\(197\) −3414.89 −1.23503 −0.617515 0.786559i \(-0.711860\pi\)
−0.617515 + 0.786559i \(0.711860\pi\)
\(198\) 2004.65 0.719515
\(199\) 3392.44 1.20846 0.604231 0.796809i \(-0.293480\pi\)
0.604231 + 0.796809i \(0.293480\pi\)
\(200\) 0 0
\(201\) −1013.79 −0.355757
\(202\) 1012.83 0.352785
\(203\) 0 0
\(204\) 1191.76 0.409020
\(205\) 0 0
\(206\) −504.169 −0.170520
\(207\) 3293.58 1.10589
\(208\) −206.030 −0.0686809
\(209\) 7208.70 2.38582
\(210\) 0 0
\(211\) 3398.04 1.10867 0.554337 0.832292i \(-0.312972\pi\)
0.554337 + 0.832292i \(0.312972\pi\)
\(212\) 1395.31 0.452029
\(213\) −824.958 −0.265376
\(214\) −2532.28 −0.808892
\(215\) 0 0
\(216\) −2633.69 −0.829630
\(217\) 0 0
\(218\) −2960.16 −0.919667
\(219\) −1362.34 −0.420358
\(220\) 0 0
\(221\) −4187.70 −1.27464
\(222\) 966.353 0.292150
\(223\) 182.611 0.0548365 0.0274183 0.999624i \(-0.491271\pi\)
0.0274183 + 0.999624i \(0.491271\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1750.99 −0.515373
\(227\) −3152.33 −0.921707 −0.460854 0.887476i \(-0.652457\pi\)
−0.460854 + 0.887476i \(0.652457\pi\)
\(228\) −1621.45 −0.470977
\(229\) −6012.35 −1.73497 −0.867483 0.497466i \(-0.834264\pi\)
−0.867483 + 0.497466i \(0.834264\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 887.848 0.251250
\(233\) 940.660 0.264484 0.132242 0.991217i \(-0.457782\pi\)
0.132242 + 0.991217i \(0.457782\pi\)
\(234\) 1584.42 0.442635
\(235\) 0 0
\(236\) −1250.90 −0.345027
\(237\) 63.1188 0.0172996
\(238\) 0 0
\(239\) 5158.82 1.39622 0.698109 0.715991i \(-0.254025\pi\)
0.698109 + 0.715991i \(0.254025\pi\)
\(240\) 0 0
\(241\) 463.836 0.123976 0.0619882 0.998077i \(-0.480256\pi\)
0.0619882 + 0.998077i \(0.480256\pi\)
\(242\) 3325.83 0.883440
\(243\) −3875.47 −1.02309
\(244\) 469.823 0.123268
\(245\) 0 0
\(246\) 708.370 0.183594
\(247\) 5697.55 1.46772
\(248\) 1095.34 0.280461
\(249\) −938.365 −0.238821
\(250\) 0 0
\(251\) −2290.25 −0.575934 −0.287967 0.957640i \(-0.592979\pi\)
−0.287967 + 0.957640i \(0.592979\pi\)
\(252\) 0 0
\(253\) 9127.48 2.26814
\(254\) −436.760 −0.107893
\(255\) 0 0
\(256\) −3887.43 −0.949079
\(257\) −802.202 −0.194708 −0.0973541 0.995250i \(-0.531038\pi\)
−0.0973541 + 0.995250i \(0.531038\pi\)
\(258\) −615.922 −0.148627
\(259\) 0 0
\(260\) 0 0
\(261\) 834.756 0.197970
\(262\) 1212.02 0.285796
\(263\) 286.978 0.0672845 0.0336423 0.999434i \(-0.489289\pi\)
0.0336423 + 0.999434i \(0.489289\pi\)
\(264\) −3174.31 −0.740020
\(265\) 0 0
\(266\) 0 0
\(267\) 2559.90 0.586753
\(268\) −2111.28 −0.481221
\(269\) −3561.22 −0.807180 −0.403590 0.914940i \(-0.632238\pi\)
−0.403590 + 0.914940i \(0.632238\pi\)
\(270\) 0 0
\(271\) −1928.81 −0.432349 −0.216175 0.976355i \(-0.569358\pi\)
−0.216175 + 0.976355i \(0.569358\pi\)
\(272\) 416.466 0.0928380
\(273\) 0 0
\(274\) −1296.06 −0.285759
\(275\) 0 0
\(276\) −2053.04 −0.447747
\(277\) −6588.69 −1.42916 −0.714578 0.699556i \(-0.753381\pi\)
−0.714578 + 0.699556i \(0.753381\pi\)
\(278\) 4946.70 1.06721
\(279\) 1029.84 0.220986
\(280\) 0 0
\(281\) 815.552 0.173138 0.0865689 0.996246i \(-0.472410\pi\)
0.0865689 + 0.996246i \(0.472410\pi\)
\(282\) 280.049 0.0591371
\(283\) −6513.49 −1.36815 −0.684076 0.729411i \(-0.739794\pi\)
−0.684076 + 0.729411i \(0.739794\pi\)
\(284\) −1718.03 −0.358965
\(285\) 0 0
\(286\) 4390.89 0.907828
\(287\) 0 0
\(288\) −3831.80 −0.783997
\(289\) 3551.94 0.722967
\(290\) 0 0
\(291\) 2350.96 0.473593
\(292\) −2837.16 −0.568603
\(293\) 435.520 0.0868373 0.0434186 0.999057i \(-0.486175\pi\)
0.0434186 + 0.999057i \(0.486175\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 5112.31 1.00387
\(297\) −6862.29 −1.34071
\(298\) 4211.36 0.818650
\(299\) 7214.10 1.39533
\(300\) 0 0
\(301\) 0 0
\(302\) 169.279 0.0322547
\(303\) −1507.89 −0.285895
\(304\) −566.620 −0.106901
\(305\) 0 0
\(306\) −3202.71 −0.598323
\(307\) −4915.99 −0.913910 −0.456955 0.889490i \(-0.651060\pi\)
−0.456955 + 0.889490i \(0.651060\pi\)
\(308\) 0 0
\(309\) 750.601 0.138188
\(310\) 0 0
\(311\) 1831.11 0.333868 0.166934 0.985968i \(-0.446613\pi\)
0.166934 + 0.985968i \(0.446613\pi\)
\(312\) −2508.89 −0.455249
\(313\) −2442.96 −0.441163 −0.220582 0.975369i \(-0.570796\pi\)
−0.220582 + 0.975369i \(0.570796\pi\)
\(314\) 3917.11 0.703998
\(315\) 0 0
\(316\) 131.449 0.0234006
\(317\) −1666.19 −0.295214 −0.147607 0.989046i \(-0.547157\pi\)
−0.147607 + 0.989046i \(0.547157\pi\)
\(318\) 1122.35 0.197919
\(319\) 2313.36 0.406029
\(320\) 0 0
\(321\) 3770.02 0.655521
\(322\) 0 0
\(323\) −11516.9 −1.98396
\(324\) −1370.54 −0.235004
\(325\) 0 0
\(326\) 2219.93 0.377149
\(327\) 4407.05 0.745292
\(328\) 3747.50 0.630856
\(329\) 0 0
\(330\) 0 0
\(331\) −5466.38 −0.907732 −0.453866 0.891070i \(-0.649956\pi\)
−0.453866 + 0.891070i \(0.649956\pi\)
\(332\) −1954.20 −0.323045
\(333\) 4806.60 0.790991
\(334\) 3494.72 0.572522
\(335\) 0 0
\(336\) 0 0
\(337\) −10650.5 −1.72157 −0.860784 0.508970i \(-0.830027\pi\)
−0.860784 + 0.508970i \(0.830027\pi\)
\(338\) −209.896 −0.0337776
\(339\) 2606.86 0.417655
\(340\) 0 0
\(341\) 2854.01 0.453235
\(342\) 4357.43 0.688956
\(343\) 0 0
\(344\) −3258.42 −0.510704
\(345\) 0 0
\(346\) 3213.28 0.499269
\(347\) −4019.13 −0.621782 −0.310891 0.950446i \(-0.600627\pi\)
−0.310891 + 0.950446i \(0.600627\pi\)
\(348\) −520.341 −0.0801529
\(349\) −10544.9 −1.61735 −0.808674 0.588256i \(-0.799815\pi\)
−0.808674 + 0.588256i \(0.799815\pi\)
\(350\) 0 0
\(351\) −5423.76 −0.824784
\(352\) −10619.1 −1.60795
\(353\) 2959.98 0.446300 0.223150 0.974784i \(-0.428366\pi\)
0.223150 + 0.974784i \(0.428366\pi\)
\(354\) −1006.19 −0.151069
\(355\) 0 0
\(356\) 5331.14 0.793680
\(357\) 0 0
\(358\) 1053.75 0.155566
\(359\) 2170.17 0.319045 0.159523 0.987194i \(-0.449005\pi\)
0.159523 + 0.987194i \(0.449005\pi\)
\(360\) 0 0
\(361\) 8810.30 1.28449
\(362\) 4691.88 0.681215
\(363\) −4951.46 −0.715934
\(364\) 0 0
\(365\) 0 0
\(366\) 377.914 0.0539724
\(367\) −1252.20 −0.178105 −0.0890523 0.996027i \(-0.528384\pi\)
−0.0890523 + 0.996027i \(0.528384\pi\)
\(368\) −717.441 −0.101628
\(369\) 3523.40 0.497076
\(370\) 0 0
\(371\) 0 0
\(372\) −641.949 −0.0894718
\(373\) −4646.02 −0.644938 −0.322469 0.946580i \(-0.604513\pi\)
−0.322469 + 0.946580i \(0.604513\pi\)
\(374\) −8875.66 −1.22714
\(375\) 0 0
\(376\) 1481.54 0.203204
\(377\) 1828.41 0.249783
\(378\) 0 0
\(379\) 1434.84 0.194466 0.0972331 0.995262i \(-0.469001\pi\)
0.0972331 + 0.995262i \(0.469001\pi\)
\(380\) 0 0
\(381\) 650.242 0.0874355
\(382\) 1240.05 0.166090
\(383\) −13216.7 −1.76330 −0.881649 0.471905i \(-0.843566\pi\)
−0.881649 + 0.471905i \(0.843566\pi\)
\(384\) 2539.82 0.337526
\(385\) 0 0
\(386\) −6838.97 −0.901799
\(387\) −3063.57 −0.402403
\(388\) 4896.02 0.640612
\(389\) −7755.01 −1.01078 −0.505391 0.862890i \(-0.668652\pi\)
−0.505391 + 0.862890i \(0.668652\pi\)
\(390\) 0 0
\(391\) −14582.5 −1.88610
\(392\) 0 0
\(393\) −1804.44 −0.231607
\(394\) −5720.49 −0.731457
\(395\) 0 0
\(396\) −6215.40 −0.788726
\(397\) −3560.83 −0.450158 −0.225079 0.974341i \(-0.572264\pi\)
−0.225079 + 0.974341i \(0.572264\pi\)
\(398\) 5682.89 0.715723
\(399\) 0 0
\(400\) 0 0
\(401\) −5430.61 −0.676288 −0.338144 0.941094i \(-0.609799\pi\)
−0.338144 + 0.941094i \(0.609799\pi\)
\(402\) −1698.26 −0.210701
\(403\) 2255.73 0.278823
\(404\) −3140.28 −0.386719
\(405\) 0 0
\(406\) 0 0
\(407\) 13320.5 1.62229
\(408\) 5071.42 0.615374
\(409\) 9698.79 1.17255 0.586277 0.810111i \(-0.300593\pi\)
0.586277 + 0.810111i \(0.300593\pi\)
\(410\) 0 0
\(411\) 1929.56 0.231577
\(412\) 1563.17 0.186922
\(413\) 0 0
\(414\) 5517.27 0.654974
\(415\) 0 0
\(416\) −8393.01 −0.989186
\(417\) −7364.58 −0.864856
\(418\) 12075.7 1.41302
\(419\) −13830.9 −1.61261 −0.806307 0.591498i \(-0.798537\pi\)
−0.806307 + 0.591498i \(0.798537\pi\)
\(420\) 0 0
\(421\) 16703.0 1.93362 0.966810 0.255498i \(-0.0822393\pi\)
0.966810 + 0.255498i \(0.0822393\pi\)
\(422\) 5692.26 0.656623
\(423\) 1392.95 0.160112
\(424\) 5937.58 0.680081
\(425\) 0 0
\(426\) −1381.94 −0.157172
\(427\) 0 0
\(428\) 7851.31 0.886699
\(429\) −6537.10 −0.735698
\(430\) 0 0
\(431\) 8174.07 0.913530 0.456765 0.889588i \(-0.349008\pi\)
0.456765 + 0.889588i \(0.349008\pi\)
\(432\) 539.392 0.0600729
\(433\) 14222.8 1.57853 0.789267 0.614051i \(-0.210461\pi\)
0.789267 + 0.614051i \(0.210461\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 9177.96 1.00813
\(437\) 19840.1 2.17181
\(438\) −2282.14 −0.248961
\(439\) −5537.38 −0.602016 −0.301008 0.953622i \(-0.597323\pi\)
−0.301008 + 0.953622i \(0.597323\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −7015.07 −0.754916
\(443\) −3974.09 −0.426218 −0.213109 0.977028i \(-0.568359\pi\)
−0.213109 + 0.977028i \(0.568359\pi\)
\(444\) −2996.17 −0.320252
\(445\) 0 0
\(446\) 305.903 0.0324774
\(447\) −6269.82 −0.663428
\(448\) 0 0
\(449\) −15243.1 −1.60216 −0.801078 0.598559i \(-0.795740\pi\)
−0.801078 + 0.598559i \(0.795740\pi\)
\(450\) 0 0
\(451\) 9764.40 1.01948
\(452\) 5428.95 0.564947
\(453\) −252.021 −0.0261390
\(454\) −5280.67 −0.545890
\(455\) 0 0
\(456\) −6899.89 −0.708590
\(457\) 10768.9 1.10229 0.551145 0.834410i \(-0.314191\pi\)
0.551145 + 0.834410i \(0.314191\pi\)
\(458\) −10071.7 −1.02755
\(459\) 10963.5 1.11489
\(460\) 0 0
\(461\) 332.605 0.0336029 0.0168015 0.999859i \(-0.494652\pi\)
0.0168015 + 0.999859i \(0.494652\pi\)
\(462\) 0 0
\(463\) 8205.35 0.823618 0.411809 0.911270i \(-0.364897\pi\)
0.411809 + 0.911270i \(0.364897\pi\)
\(464\) −181.835 −0.0181929
\(465\) 0 0
\(466\) 1575.76 0.156643
\(467\) −167.628 −0.0166100 −0.00830501 0.999966i \(-0.502644\pi\)
−0.00830501 + 0.999966i \(0.502644\pi\)
\(468\) −4912.47 −0.485212
\(469\) 0 0
\(470\) 0 0
\(471\) −5831.75 −0.570515
\(472\) −5323.06 −0.519097
\(473\) −8490.07 −0.825315
\(474\) 105.734 0.0102459
\(475\) 0 0
\(476\) 0 0
\(477\) 5582.52 0.535862
\(478\) 8641.86 0.826924
\(479\) −6628.58 −0.632292 −0.316146 0.948711i \(-0.602389\pi\)
−0.316146 + 0.948711i \(0.602389\pi\)
\(480\) 0 0
\(481\) 10528.2 0.998010
\(482\) 777.001 0.0734262
\(483\) 0 0
\(484\) −10311.7 −0.968419
\(485\) 0 0
\(486\) −6492.05 −0.605937
\(487\) 20641.6 1.92065 0.960327 0.278875i \(-0.0899614\pi\)
0.960327 + 0.278875i \(0.0899614\pi\)
\(488\) 1999.28 0.185458
\(489\) −3305.01 −0.305640
\(490\) 0 0
\(491\) −16710.8 −1.53594 −0.767972 0.640484i \(-0.778734\pi\)
−0.767972 + 0.640484i \(0.778734\pi\)
\(492\) −2196.30 −0.201253
\(493\) −3695.92 −0.337639
\(494\) 9544.32 0.869270
\(495\) 0 0
\(496\) −224.331 −0.0203080
\(497\) 0 0
\(498\) −1571.91 −0.141444
\(499\) −13728.7 −1.23162 −0.615812 0.787893i \(-0.711172\pi\)
−0.615812 + 0.787893i \(0.711172\pi\)
\(500\) 0 0
\(501\) −5202.90 −0.463969
\(502\) −3836.54 −0.341102
\(503\) −19523.7 −1.73065 −0.865326 0.501209i \(-0.832889\pi\)
−0.865326 + 0.501209i \(0.832889\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 15290.0 1.34333
\(507\) 312.490 0.0273731
\(508\) 1354.17 0.118271
\(509\) 8688.17 0.756574 0.378287 0.925688i \(-0.376513\pi\)
0.378287 + 0.925688i \(0.376513\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1635.04 0.141131
\(513\) −14916.3 −1.28377
\(514\) −1343.82 −0.115318
\(515\) 0 0
\(516\) 1909.66 0.162923
\(517\) 3860.28 0.328385
\(518\) 0 0
\(519\) −4783.89 −0.404604
\(520\) 0 0
\(521\) −6771.36 −0.569402 −0.284701 0.958616i \(-0.591894\pi\)
−0.284701 + 0.958616i \(0.591894\pi\)
\(522\) 1398.35 0.117249
\(523\) −1365.89 −0.114200 −0.0570998 0.998368i \(-0.518185\pi\)
−0.0570998 + 0.998368i \(0.518185\pi\)
\(524\) −3757.85 −0.313287
\(525\) 0 0
\(526\) 480.735 0.0398499
\(527\) −4559.68 −0.376894
\(528\) 650.113 0.0535844
\(529\) 12954.0 1.06469
\(530\) 0 0
\(531\) −5004.75 −0.409016
\(532\) 0 0
\(533\) 7717.51 0.627171
\(534\) 4288.24 0.347510
\(535\) 0 0
\(536\) −8984.34 −0.724001
\(537\) −1568.82 −0.126070
\(538\) −5965.62 −0.478060
\(539\) 0 0
\(540\) 0 0
\(541\) −23250.1 −1.84769 −0.923844 0.382770i \(-0.874970\pi\)
−0.923844 + 0.382770i \(0.874970\pi\)
\(542\) −3231.06 −0.256063
\(543\) −6985.22 −0.552052
\(544\) 16965.5 1.33711
\(545\) 0 0
\(546\) 0 0
\(547\) 11552.7 0.903033 0.451516 0.892263i \(-0.350883\pi\)
0.451516 + 0.892263i \(0.350883\pi\)
\(548\) 4018.43 0.313246
\(549\) 1879.73 0.146129
\(550\) 0 0
\(551\) 5028.47 0.388784
\(552\) −8736.48 −0.673640
\(553\) 0 0
\(554\) −11037.1 −0.846430
\(555\) 0 0
\(556\) −15337.2 −1.16986
\(557\) 16406.2 1.24803 0.624014 0.781413i \(-0.285501\pi\)
0.624014 + 0.781413i \(0.285501\pi\)
\(558\) 1725.16 0.130881
\(559\) −6710.31 −0.507721
\(560\) 0 0
\(561\) 13214.0 0.994465
\(562\) 1366.18 0.102542
\(563\) 13631.9 1.02045 0.510227 0.860040i \(-0.329561\pi\)
0.510227 + 0.860040i \(0.329561\pi\)
\(564\) −868.289 −0.0648255
\(565\) 0 0
\(566\) −10911.2 −0.810300
\(567\) 0 0
\(568\) −7310.88 −0.540067
\(569\) −3086.83 −0.227428 −0.113714 0.993514i \(-0.536275\pi\)
−0.113714 + 0.993514i \(0.536275\pi\)
\(570\) 0 0
\(571\) −3258.06 −0.238784 −0.119392 0.992847i \(-0.538095\pi\)
−0.119392 + 0.992847i \(0.538095\pi\)
\(572\) −13613.9 −0.995152
\(573\) −1846.17 −0.134598
\(574\) 0 0
\(575\) 0 0
\(576\) −5666.39 −0.409895
\(577\) 23758.4 1.71417 0.857083 0.515178i \(-0.172274\pi\)
0.857083 + 0.515178i \(0.172274\pi\)
\(578\) 5950.07 0.428184
\(579\) 10181.8 0.730812
\(580\) 0 0
\(581\) 0 0
\(582\) 3938.23 0.280490
\(583\) 15470.8 1.09903
\(584\) −12073.2 −0.855468
\(585\) 0 0
\(586\) 729.566 0.0514302
\(587\) 596.893 0.0419701 0.0209850 0.999780i \(-0.493320\pi\)
0.0209850 + 0.999780i \(0.493320\pi\)
\(588\) 0 0
\(589\) 6203.66 0.433985
\(590\) 0 0
\(591\) 8516.60 0.592768
\(592\) −1047.02 −0.0726898
\(593\) 19496.3 1.35012 0.675058 0.737765i \(-0.264119\pi\)
0.675058 + 0.737765i \(0.264119\pi\)
\(594\) −11495.5 −0.794047
\(595\) 0 0
\(596\) −13057.3 −0.897396
\(597\) −8460.62 −0.580017
\(598\) 12084.8 0.826395
\(599\) 3797.02 0.259001 0.129501 0.991579i \(-0.458663\pi\)
0.129501 + 0.991579i \(0.458663\pi\)
\(600\) 0 0
\(601\) −5789.33 −0.392931 −0.196466 0.980511i \(-0.562946\pi\)
−0.196466 + 0.980511i \(0.562946\pi\)
\(602\) 0 0
\(603\) −8447.09 −0.570468
\(604\) −524.850 −0.0353573
\(605\) 0 0
\(606\) −2525.96 −0.169324
\(607\) 18536.4 1.23949 0.619745 0.784803i \(-0.287236\pi\)
0.619745 + 0.784803i \(0.287236\pi\)
\(608\) −23082.3 −1.53966
\(609\) 0 0
\(610\) 0 0
\(611\) 3051.06 0.202017
\(612\) 9929.98 0.655876
\(613\) −2163.47 −0.142548 −0.0712738 0.997457i \(-0.522706\pi\)
−0.0712738 + 0.997457i \(0.522706\pi\)
\(614\) −8235.08 −0.541272
\(615\) 0 0
\(616\) 0 0
\(617\) −22964.9 −1.49843 −0.749215 0.662327i \(-0.769569\pi\)
−0.749215 + 0.662327i \(0.769569\pi\)
\(618\) 1257.38 0.0818433
\(619\) 1386.67 0.0900401 0.0450200 0.998986i \(-0.485665\pi\)
0.0450200 + 0.998986i \(0.485665\pi\)
\(620\) 0 0
\(621\) −18886.7 −1.22045
\(622\) 3067.41 0.197736
\(623\) 0 0
\(624\) 513.831 0.0329643
\(625\) 0 0
\(626\) −4092.35 −0.261283
\(627\) −17978.2 −1.14510
\(628\) −12145.0 −0.771716
\(629\) −21281.4 −1.34904
\(630\) 0 0
\(631\) 5969.39 0.376605 0.188303 0.982111i \(-0.439701\pi\)
0.188303 + 0.982111i \(0.439701\pi\)
\(632\) 559.367 0.0352064
\(633\) −8474.57 −0.532123
\(634\) −2791.14 −0.174843
\(635\) 0 0
\(636\) −3479.84 −0.216957
\(637\) 0 0
\(638\) 3875.25 0.240474
\(639\) −6873.70 −0.425539
\(640\) 0 0
\(641\) 30367.1 1.87118 0.935592 0.353084i \(-0.114867\pi\)
0.935592 + 0.353084i \(0.114867\pi\)
\(642\) 6315.40 0.388238
\(643\) 28592.2 1.75360 0.876802 0.480851i \(-0.159672\pi\)
0.876802 + 0.480851i \(0.159672\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −19292.7 −1.17502
\(647\) −14507.9 −0.881555 −0.440778 0.897616i \(-0.645297\pi\)
−0.440778 + 0.897616i \(0.645297\pi\)
\(648\) −5832.21 −0.353566
\(649\) −13869.7 −0.838877
\(650\) 0 0
\(651\) 0 0
\(652\) −6882.89 −0.413428
\(653\) −6999.85 −0.419488 −0.209744 0.977756i \(-0.567263\pi\)
−0.209744 + 0.977756i \(0.567263\pi\)
\(654\) 7382.53 0.441406
\(655\) 0 0
\(656\) −767.504 −0.0456799
\(657\) −11351.3 −0.674056
\(658\) 0 0
\(659\) 7308.92 0.432041 0.216020 0.976389i \(-0.430692\pi\)
0.216020 + 0.976389i \(0.430692\pi\)
\(660\) 0 0
\(661\) 30097.2 1.77102 0.885512 0.464617i \(-0.153808\pi\)
0.885512 + 0.464617i \(0.153808\pi\)
\(662\) −9157.07 −0.537613
\(663\) 10444.0 0.611779
\(664\) −8315.91 −0.486024
\(665\) 0 0
\(666\) 8051.83 0.468472
\(667\) 6366.92 0.369608
\(668\) −10835.4 −0.627594
\(669\) −455.425 −0.0263195
\(670\) 0 0
\(671\) 5209.29 0.299706
\(672\) 0 0
\(673\) 5400.26 0.309309 0.154654 0.987969i \(-0.450574\pi\)
0.154654 + 0.987969i \(0.450574\pi\)
\(674\) −17841.3 −1.01962
\(675\) 0 0
\(676\) 650.781 0.0370267
\(677\) 6431.09 0.365091 0.182546 0.983197i \(-0.441566\pi\)
0.182546 + 0.983197i \(0.441566\pi\)
\(678\) 4366.91 0.247360
\(679\) 0 0
\(680\) 0 0
\(681\) 7861.79 0.442385
\(682\) 4780.92 0.268433
\(683\) 20865.8 1.16897 0.584486 0.811404i \(-0.301296\pi\)
0.584486 + 0.811404i \(0.301296\pi\)
\(684\) −13510.2 −0.755227
\(685\) 0 0
\(686\) 0 0
\(687\) 14994.6 0.832720
\(688\) 667.339 0.0369797
\(689\) 12227.7 0.676109
\(690\) 0 0
\(691\) −18450.3 −1.01575 −0.507873 0.861432i \(-0.669568\pi\)
−0.507873 + 0.861432i \(0.669568\pi\)
\(692\) −9962.76 −0.547294
\(693\) 0 0
\(694\) −6732.70 −0.368256
\(695\) 0 0
\(696\) −2214.26 −0.120591
\(697\) −15600.0 −0.847766
\(698\) −17664.4 −0.957890
\(699\) −2345.97 −0.126942
\(700\) 0 0
\(701\) 12639.3 0.680996 0.340498 0.940245i \(-0.389404\pi\)
0.340498 + 0.940245i \(0.389404\pi\)
\(702\) −9085.69 −0.488486
\(703\) 28954.4 1.55339
\(704\) −15703.3 −0.840680
\(705\) 0 0
\(706\) 4958.45 0.264325
\(707\) 0 0
\(708\) 3119.69 0.165600
\(709\) −23126.8 −1.22503 −0.612514 0.790460i \(-0.709842\pi\)
−0.612514 + 0.790460i \(0.709842\pi\)
\(710\) 0 0
\(711\) 525.918 0.0277404
\(712\) 22686.1 1.19410
\(713\) 7854.92 0.412579
\(714\) 0 0
\(715\) 0 0
\(716\) −3267.16 −0.170530
\(717\) −12865.9 −0.670134
\(718\) 3635.39 0.188957
\(719\) 24093.1 1.24968 0.624841 0.780752i \(-0.285164\pi\)
0.624841 + 0.780752i \(0.285164\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 14758.7 0.760750
\(723\) −1156.79 −0.0595041
\(724\) −14547.2 −0.746741
\(725\) 0 0
\(726\) −8294.49 −0.424019
\(727\) 35983.4 1.83570 0.917849 0.396931i \(-0.129925\pi\)
0.917849 + 0.396931i \(0.129925\pi\)
\(728\) 0 0
\(729\) 2540.55 0.129073
\(730\) 0 0
\(731\) 13564.1 0.686302
\(732\) −1171.72 −0.0591640
\(733\) −1451.50 −0.0731413 −0.0365706 0.999331i \(-0.511643\pi\)
−0.0365706 + 0.999331i \(0.511643\pi\)
\(734\) −2097.64 −0.105484
\(735\) 0 0
\(736\) −29226.3 −1.46371
\(737\) −23409.4 −1.17001
\(738\) 5902.27 0.294398
\(739\) −5891.67 −0.293273 −0.146636 0.989190i \(-0.546845\pi\)
−0.146636 + 0.989190i \(0.546845\pi\)
\(740\) 0 0
\(741\) −14209.5 −0.704451
\(742\) 0 0
\(743\) −7438.65 −0.367292 −0.183646 0.982992i \(-0.558790\pi\)
−0.183646 + 0.982992i \(0.558790\pi\)
\(744\) −2731.75 −0.134611
\(745\) 0 0
\(746\) −7782.84 −0.381970
\(747\) −7818.64 −0.382957
\(748\) 27518.9 1.34518
\(749\) 0 0
\(750\) 0 0
\(751\) 20272.4 0.985018 0.492509 0.870307i \(-0.336080\pi\)
0.492509 + 0.870307i \(0.336080\pi\)
\(752\) −303.427 −0.0147139
\(753\) 5711.80 0.276427
\(754\) 3062.89 0.147936
\(755\) 0 0
\(756\) 0 0
\(757\) 10193.8 0.489432 0.244716 0.969595i \(-0.421305\pi\)
0.244716 + 0.969595i \(0.421305\pi\)
\(758\) 2403.59 0.115174
\(759\) −22763.6 −1.08862
\(760\) 0 0
\(761\) 41117.6 1.95862 0.979311 0.202362i \(-0.0648618\pi\)
0.979311 + 0.202362i \(0.0648618\pi\)
\(762\) 1089.26 0.0517845
\(763\) 0 0
\(764\) −3844.76 −0.182066
\(765\) 0 0
\(766\) −22140.2 −1.04433
\(767\) −10962.2 −0.516065
\(768\) 9695.10 0.455523
\(769\) −11486.6 −0.538642 −0.269321 0.963050i \(-0.586799\pi\)
−0.269321 + 0.963050i \(0.586799\pi\)
\(770\) 0 0
\(771\) 2000.66 0.0934527
\(772\) 21204.2 0.988544
\(773\) −21799.2 −1.01431 −0.507156 0.861854i \(-0.669303\pi\)
−0.507156 + 0.861854i \(0.669303\pi\)
\(774\) −5131.98 −0.238327
\(775\) 0 0
\(776\) 20834.5 0.963807
\(777\) 0 0
\(778\) −12990.9 −0.598645
\(779\) 21224.5 0.976185
\(780\) 0 0
\(781\) −19049.1 −0.872765
\(782\) −24428.0 −1.11706
\(783\) −4786.83 −0.218477
\(784\) 0 0
\(785\) 0 0
\(786\) −3022.72 −0.137172
\(787\) −24080.3 −1.09068 −0.545342 0.838214i \(-0.683600\pi\)
−0.545342 + 0.838214i \(0.683600\pi\)
\(788\) 17736.4 0.801817
\(789\) −715.712 −0.0322941
\(790\) 0 0
\(791\) 0 0
\(792\) −26449.0 −1.18665
\(793\) 4117.28 0.184374
\(794\) −5964.96 −0.266610
\(795\) 0 0
\(796\) −17619.8 −0.784569
\(797\) −17194.3 −0.764184 −0.382092 0.924124i \(-0.624796\pi\)
−0.382092 + 0.924124i \(0.624796\pi\)
\(798\) 0 0
\(799\) −6167.35 −0.273073
\(800\) 0 0
\(801\) 21329.5 0.940876
\(802\) −9097.15 −0.400538
\(803\) −31457.7 −1.38246
\(804\) 5265.46 0.230968
\(805\) 0 0
\(806\) 3778.71 0.165136
\(807\) 8881.55 0.387417
\(808\) −13363.1 −0.581823
\(809\) 33349.1 1.44931 0.724656 0.689111i \(-0.241999\pi\)
0.724656 + 0.689111i \(0.241999\pi\)
\(810\) 0 0
\(811\) −4577.87 −0.198213 −0.0991066 0.995077i \(-0.531598\pi\)
−0.0991066 + 0.995077i \(0.531598\pi\)
\(812\) 0 0
\(813\) 4810.37 0.207512
\(814\) 22314.0 0.960819
\(815\) 0 0
\(816\) −1038.65 −0.0445588
\(817\) −18454.6 −0.790262
\(818\) 16247.0 0.694455
\(819\) 0 0
\(820\) 0 0
\(821\) −5832.52 −0.247937 −0.123969 0.992286i \(-0.539562\pi\)
−0.123969 + 0.992286i \(0.539562\pi\)
\(822\) 3232.33 0.137154
\(823\) −37974.3 −1.60838 −0.804192 0.594369i \(-0.797402\pi\)
−0.804192 + 0.594369i \(0.797402\pi\)
\(824\) 6651.92 0.281226
\(825\) 0 0
\(826\) 0 0
\(827\) −15796.2 −0.664193 −0.332096 0.943245i \(-0.607756\pi\)
−0.332096 + 0.943245i \(0.607756\pi\)
\(828\) −17106.3 −0.717976
\(829\) 12714.1 0.532666 0.266333 0.963881i \(-0.414188\pi\)
0.266333 + 0.963881i \(0.414188\pi\)
\(830\) 0 0
\(831\) 16431.9 0.685942
\(832\) −12411.4 −0.517173
\(833\) 0 0
\(834\) −12336.9 −0.512219
\(835\) 0 0
\(836\) −37440.8 −1.54894
\(837\) −5905.55 −0.243878
\(838\) −23169.0 −0.955085
\(839\) 42924.2 1.76628 0.883140 0.469109i \(-0.155425\pi\)
0.883140 + 0.469109i \(0.155425\pi\)
\(840\) 0 0
\(841\) −22775.3 −0.933835
\(842\) 27980.2 1.14520
\(843\) −2033.95 −0.0830998
\(844\) −17648.8 −0.719784
\(845\) 0 0
\(846\) 2333.42 0.0948281
\(847\) 0 0
\(848\) −1216.04 −0.0492442
\(849\) 16244.4 0.656662
\(850\) 0 0
\(851\) 36661.3 1.47677
\(852\) 4284.69 0.172290
\(853\) −36172.5 −1.45196 −0.725980 0.687716i \(-0.758613\pi\)
−0.725980 + 0.687716i \(0.758613\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 33410.4 1.33405
\(857\) −32039.9 −1.27709 −0.638544 0.769586i \(-0.720463\pi\)
−0.638544 + 0.769586i \(0.720463\pi\)
\(858\) −10950.7 −0.435724
\(859\) 6798.07 0.270020 0.135010 0.990844i \(-0.456893\pi\)
0.135010 + 0.990844i \(0.456893\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 13692.9 0.541046
\(863\) 30179.3 1.19040 0.595200 0.803577i \(-0.297073\pi\)
0.595200 + 0.803577i \(0.297073\pi\)
\(864\) 21973.1 0.865209
\(865\) 0 0
\(866\) 23825.5 0.934901
\(867\) −8858.39 −0.346997
\(868\) 0 0
\(869\) 1457.47 0.0568946
\(870\) 0 0
\(871\) −18502.1 −0.719772
\(872\) 39055.9 1.51674
\(873\) 19588.6 0.759421
\(874\) 33235.4 1.28627
\(875\) 0 0
\(876\) 7075.76 0.272908
\(877\) 1700.51 0.0654758 0.0327379 0.999464i \(-0.489577\pi\)
0.0327379 + 0.999464i \(0.489577\pi\)
\(878\) −9276.02 −0.356549
\(879\) −1086.17 −0.0416787
\(880\) 0 0
\(881\) −1678.46 −0.0641869 −0.0320935 0.999485i \(-0.510217\pi\)
−0.0320935 + 0.999485i \(0.510217\pi\)
\(882\) 0 0
\(883\) −10285.8 −0.392009 −0.196005 0.980603i \(-0.562797\pi\)
−0.196005 + 0.980603i \(0.562797\pi\)
\(884\) 21750.2 0.827532
\(885\) 0 0
\(886\) −6657.24 −0.252432
\(887\) −12167.5 −0.460593 −0.230296 0.973121i \(-0.573970\pi\)
−0.230296 + 0.973121i \(0.573970\pi\)
\(888\) −12749.9 −0.481823
\(889\) 0 0
\(890\) 0 0
\(891\) −15196.3 −0.571374
\(892\) −948.452 −0.0356015
\(893\) 8390.96 0.314438
\(894\) −10503.0 −0.392922
\(895\) 0 0
\(896\) 0 0
\(897\) −17991.7 −0.669705
\(898\) −25534.7 −0.948892
\(899\) 1990.83 0.0738574
\(900\) 0 0
\(901\) −24716.9 −0.913916
\(902\) 16356.9 0.603799
\(903\) 0 0
\(904\) 23102.3 0.849968
\(905\) 0 0
\(906\) −422.176 −0.0154811
\(907\) 50766.0 1.85850 0.929250 0.369452i \(-0.120455\pi\)
0.929250 + 0.369452i \(0.120455\pi\)
\(908\) 16372.7 0.598399
\(909\) −12564.0 −0.458441
\(910\) 0 0
\(911\) 18451.1 0.671033 0.335517 0.942034i \(-0.391089\pi\)
0.335517 + 0.942034i \(0.391089\pi\)
\(912\) 1413.13 0.0513085
\(913\) −21667.8 −0.785431
\(914\) 18039.6 0.652841
\(915\) 0 0
\(916\) 31227.1 1.12639
\(917\) 0 0
\(918\) 18365.6 0.660301
\(919\) 393.861 0.0141374 0.00706870 0.999975i \(-0.497750\pi\)
0.00706870 + 0.999975i \(0.497750\pi\)
\(920\) 0 0
\(921\) 12260.3 0.438643
\(922\) 557.167 0.0199016
\(923\) −15055.9 −0.536912
\(924\) 0 0
\(925\) 0 0
\(926\) 13745.3 0.487795
\(927\) 6254.15 0.221589
\(928\) −7407.39 −0.262025
\(929\) −27452.3 −0.969517 −0.484759 0.874648i \(-0.661093\pi\)
−0.484759 + 0.874648i \(0.661093\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −4885.63 −0.171710
\(933\) −4566.72 −0.160244
\(934\) −280.803 −0.00983744
\(935\) 0 0
\(936\) −20904.5 −0.730006
\(937\) 21608.3 0.753375 0.376688 0.926340i \(-0.377063\pi\)
0.376688 + 0.926340i \(0.377063\pi\)
\(938\) 0 0
\(939\) 6092.64 0.211742
\(940\) 0 0
\(941\) 16708.5 0.578832 0.289416 0.957203i \(-0.406539\pi\)
0.289416 + 0.957203i \(0.406539\pi\)
\(942\) −9769.12 −0.337893
\(943\) 26874.0 0.928036
\(944\) 1090.19 0.0375874
\(945\) 0 0
\(946\) −14222.2 −0.488800
\(947\) −13972.8 −0.479466 −0.239733 0.970839i \(-0.577060\pi\)
−0.239733 + 0.970839i \(0.577060\pi\)
\(948\) −327.828 −0.0112314
\(949\) −24863.3 −0.850471
\(950\) 0 0
\(951\) 4155.42 0.141692
\(952\) 0 0
\(953\) 11155.9 0.379197 0.189598 0.981862i \(-0.439281\pi\)
0.189598 + 0.981862i \(0.439281\pi\)
\(954\) 9351.63 0.317369
\(955\) 0 0
\(956\) −26794.0 −0.906466
\(957\) −5769.42 −0.194879
\(958\) −11104.0 −0.374481
\(959\) 0 0
\(960\) 0 0
\(961\) −27334.9 −0.917556
\(962\) 17636.4 0.591081
\(963\) 31412.5 1.05115
\(964\) −2409.09 −0.0804891
\(965\) 0 0
\(966\) 0 0
\(967\) 1212.55 0.0403238 0.0201619 0.999797i \(-0.493582\pi\)
0.0201619 + 0.999797i \(0.493582\pi\)
\(968\) −43880.4 −1.45699
\(969\) 28722.8 0.952227
\(970\) 0 0
\(971\) 48832.2 1.61390 0.806952 0.590617i \(-0.201115\pi\)
0.806952 + 0.590617i \(0.201115\pi\)
\(972\) 20128.6 0.664222
\(973\) 0 0
\(974\) 34578.0 1.13753
\(975\) 0 0
\(976\) −409.462 −0.0134289
\(977\) −5939.19 −0.194485 −0.0972424 0.995261i \(-0.531002\pi\)
−0.0972424 + 0.995261i \(0.531002\pi\)
\(978\) −5536.43 −0.181018
\(979\) 59110.5 1.92970
\(980\) 0 0
\(981\) 36720.4 1.19510
\(982\) −27993.3 −0.909677
\(983\) −21863.5 −0.709398 −0.354699 0.934980i \(-0.615417\pi\)
−0.354699 + 0.934980i \(0.615417\pi\)
\(984\) −9346.11 −0.302788
\(985\) 0 0
\(986\) −6191.26 −0.199970
\(987\) 0 0
\(988\) −29592.1 −0.952886
\(989\) −23366.7 −0.751283
\(990\) 0 0
\(991\) −44618.5 −1.43023 −0.715113 0.699009i \(-0.753625\pi\)
−0.715113 + 0.699009i \(0.753625\pi\)
\(992\) −9138.55 −0.292489
\(993\) 13632.9 0.435678
\(994\) 0 0
\(995\) 0 0
\(996\) 4873.71 0.155050
\(997\) −37923.9 −1.20468 −0.602338 0.798241i \(-0.705764\pi\)
−0.602338 + 0.798241i \(0.705764\pi\)
\(998\) −22997.8 −0.729441
\(999\) −27563.0 −0.872928
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.4.a.be.1.4 5
5.2 odd 4 245.4.b.d.99.7 10
5.3 odd 4 245.4.b.d.99.4 10
5.4 even 2 1225.4.a.bh.1.2 5
7.6 odd 2 175.4.a.i.1.4 5
21.20 even 2 1575.4.a.bq.1.2 5
35.2 odd 12 245.4.j.f.214.7 20
35.3 even 12 245.4.j.e.79.7 20
35.12 even 12 245.4.j.e.214.7 20
35.13 even 4 35.4.b.a.29.4 10
35.17 even 12 245.4.j.e.79.4 20
35.18 odd 12 245.4.j.f.79.7 20
35.23 odd 12 245.4.j.f.214.4 20
35.27 even 4 35.4.b.a.29.7 yes 10
35.32 odd 12 245.4.j.f.79.4 20
35.33 even 12 245.4.j.e.214.4 20
35.34 odd 2 175.4.a.j.1.2 5
105.62 odd 4 315.4.d.c.64.4 10
105.83 odd 4 315.4.d.c.64.7 10
105.104 even 2 1575.4.a.bn.1.4 5
140.27 odd 4 560.4.g.f.449.7 10
140.83 odd 4 560.4.g.f.449.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.4 10 35.13 even 4
35.4.b.a.29.7 yes 10 35.27 even 4
175.4.a.i.1.4 5 7.6 odd 2
175.4.a.j.1.2 5 35.34 odd 2
245.4.b.d.99.4 10 5.3 odd 4
245.4.b.d.99.7 10 5.2 odd 4
245.4.j.e.79.4 20 35.17 even 12
245.4.j.e.79.7 20 35.3 even 12
245.4.j.e.214.4 20 35.33 even 12
245.4.j.e.214.7 20 35.12 even 12
245.4.j.f.79.4 20 35.32 odd 12
245.4.j.f.79.7 20 35.18 odd 12
245.4.j.f.214.4 20 35.23 odd 12
245.4.j.f.214.7 20 35.2 odd 12
315.4.d.c.64.4 10 105.62 odd 4
315.4.d.c.64.7 10 105.83 odd 4
560.4.g.f.449.4 10 140.83 odd 4
560.4.g.f.449.7 10 140.27 odd 4
1225.4.a.be.1.4 5 1.1 even 1 trivial
1225.4.a.bh.1.2 5 5.4 even 2
1575.4.a.bn.1.4 5 105.104 even 2
1575.4.a.bq.1.2 5 21.20 even 2