Properties

Label 1225.4.a.bd.1.1
Level $1225$
Weight $4$
Character 1225.1
Self dual yes
Analytic conductor $72.277$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,4,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2773397570\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 32x^{2} - 35x + 120 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 175)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.87199\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.87199 q^{2} +4.14916 q^{3} +15.7363 q^{4} -20.2147 q^{6} -37.6910 q^{8} -9.78444 q^{9} +36.9922 q^{11} +65.2924 q^{12} +61.3165 q^{13} +57.7401 q^{16} +44.8345 q^{17} +47.6697 q^{18} +139.701 q^{19} -180.226 q^{22} +217.580 q^{23} -156.386 q^{24} -298.733 q^{26} -152.625 q^{27} -33.8226 q^{29} -124.437 q^{31} +20.2192 q^{32} +153.487 q^{33} -218.433 q^{34} -153.971 q^{36} +237.270 q^{37} -680.620 q^{38} +254.412 q^{39} -195.117 q^{41} -343.725 q^{43} +582.119 q^{44} -1060.05 q^{46} -16.8224 q^{47} +239.573 q^{48} +186.026 q^{51} +964.894 q^{52} +346.965 q^{53} +743.586 q^{54} +579.641 q^{57} +164.783 q^{58} -135.340 q^{59} -490.414 q^{61} +606.255 q^{62} -560.428 q^{64} -747.785 q^{66} +477.969 q^{67} +705.529 q^{68} +902.777 q^{69} +45.2557 q^{71} +368.786 q^{72} -100.781 q^{73} -1155.98 q^{74} +2198.37 q^{76} -1239.49 q^{78} +880.534 q^{79} -369.085 q^{81} +950.609 q^{82} +1155.03 q^{83} +1674.62 q^{86} -140.336 q^{87} -1394.27 q^{88} -619.374 q^{89} +3423.90 q^{92} -516.309 q^{93} +81.9585 q^{94} +83.8929 q^{96} +231.195 q^{97} -361.948 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 3 q^{3} + 36 q^{4} - q^{6} + 27 q^{8} + 61 q^{9} + 100 q^{11} + 165 q^{12} - 44 q^{13} + 160 q^{16} + 53 q^{17} + 433 q^{18} + 29 q^{19} - 152 q^{22} + 295 q^{23} + 21 q^{24} - 700 q^{26}+ \cdots + 2383 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.87199 −1.72251 −0.861254 0.508175i \(-0.830320\pi\)
−0.861254 + 0.508175i \(0.830320\pi\)
\(3\) 4.14916 0.798507 0.399253 0.916841i \(-0.369269\pi\)
0.399253 + 0.916841i \(0.369269\pi\)
\(4\) 15.7363 1.96703
\(5\) 0 0
\(6\) −20.2147 −1.37543
\(7\) 0 0
\(8\) −37.6910 −1.66572
\(9\) −9.78444 −0.362387
\(10\) 0 0
\(11\) 36.9922 1.01396 0.506980 0.861958i \(-0.330762\pi\)
0.506980 + 0.861958i \(0.330762\pi\)
\(12\) 65.2924 1.57069
\(13\) 61.3165 1.30817 0.654083 0.756423i \(-0.273055\pi\)
0.654083 + 0.756423i \(0.273055\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 57.7401 0.902189
\(17\) 44.8345 0.639646 0.319823 0.947477i \(-0.396377\pi\)
0.319823 + 0.947477i \(0.396377\pi\)
\(18\) 47.6697 0.624214
\(19\) 139.701 1.68682 0.843408 0.537273i \(-0.180545\pi\)
0.843408 + 0.537273i \(0.180545\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −180.226 −1.74656
\(23\) 217.580 1.97255 0.986275 0.165110i \(-0.0527979\pi\)
0.986275 + 0.165110i \(0.0527979\pi\)
\(24\) −156.386 −1.33009
\(25\) 0 0
\(26\) −298.733 −2.25333
\(27\) −152.625 −1.08788
\(28\) 0 0
\(29\) −33.8226 −0.216576 −0.108288 0.994120i \(-0.534537\pi\)
−0.108288 + 0.994120i \(0.534537\pi\)
\(30\) 0 0
\(31\) −124.437 −0.720952 −0.360476 0.932769i \(-0.617386\pi\)
−0.360476 + 0.932769i \(0.617386\pi\)
\(32\) 20.2192 0.111697
\(33\) 153.487 0.809655
\(34\) −218.433 −1.10179
\(35\) 0 0
\(36\) −153.971 −0.712827
\(37\) 237.270 1.05424 0.527121 0.849790i \(-0.323271\pi\)
0.527121 + 0.849790i \(0.323271\pi\)
\(38\) −680.620 −2.90556
\(39\) 254.412 1.04458
\(40\) 0 0
\(41\) −195.117 −0.743224 −0.371612 0.928388i \(-0.621195\pi\)
−0.371612 + 0.928388i \(0.621195\pi\)
\(42\) 0 0
\(43\) −343.725 −1.21901 −0.609506 0.792781i \(-0.708632\pi\)
−0.609506 + 0.792781i \(0.708632\pi\)
\(44\) 582.119 1.99450
\(45\) 0 0
\(46\) −1060.05 −3.39773
\(47\) −16.8224 −0.0522085 −0.0261042 0.999659i \(-0.508310\pi\)
−0.0261042 + 0.999659i \(0.508310\pi\)
\(48\) 239.573 0.720404
\(49\) 0 0
\(50\) 0 0
\(51\) 186.026 0.510761
\(52\) 964.894 2.57321
\(53\) 346.965 0.899231 0.449616 0.893222i \(-0.351561\pi\)
0.449616 + 0.893222i \(0.351561\pi\)
\(54\) 743.586 1.87387
\(55\) 0 0
\(56\) 0 0
\(57\) 579.641 1.34694
\(58\) 164.783 0.373054
\(59\) −135.340 −0.298640 −0.149320 0.988789i \(-0.547708\pi\)
−0.149320 + 0.988789i \(0.547708\pi\)
\(60\) 0 0
\(61\) −490.414 −1.02936 −0.514681 0.857382i \(-0.672089\pi\)
−0.514681 + 0.857382i \(0.672089\pi\)
\(62\) 606.255 1.24185
\(63\) 0 0
\(64\) −560.428 −1.09459
\(65\) 0 0
\(66\) −747.785 −1.39464
\(67\) 477.969 0.871540 0.435770 0.900058i \(-0.356476\pi\)
0.435770 + 0.900058i \(0.356476\pi\)
\(68\) 705.529 1.25820
\(69\) 902.777 1.57510
\(70\) 0 0
\(71\) 45.2557 0.0756460 0.0378230 0.999284i \(-0.487958\pi\)
0.0378230 + 0.999284i \(0.487958\pi\)
\(72\) 368.786 0.603636
\(73\) −100.781 −0.161583 −0.0807913 0.996731i \(-0.525745\pi\)
−0.0807913 + 0.996731i \(0.525745\pi\)
\(74\) −1155.98 −1.81594
\(75\) 0 0
\(76\) 2198.37 3.31803
\(77\) 0 0
\(78\) −1239.49 −1.79930
\(79\) 880.534 1.25402 0.627012 0.779010i \(-0.284278\pi\)
0.627012 + 0.779010i \(0.284278\pi\)
\(80\) 0 0
\(81\) −369.085 −0.506289
\(82\) 950.609 1.28021
\(83\) 1155.03 1.52748 0.763739 0.645525i \(-0.223362\pi\)
0.763739 + 0.645525i \(0.223362\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1674.62 2.09976
\(87\) −140.336 −0.172937
\(88\) −1394.27 −1.68898
\(89\) −619.374 −0.737680 −0.368840 0.929493i \(-0.620245\pi\)
−0.368840 + 0.929493i \(0.620245\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3423.90 3.88007
\(93\) −516.309 −0.575685
\(94\) 81.9585 0.0899295
\(95\) 0 0
\(96\) 83.8929 0.0891904
\(97\) 231.195 0.242003 0.121001 0.992652i \(-0.461389\pi\)
0.121001 + 0.992652i \(0.461389\pi\)
\(98\) 0 0
\(99\) −361.948 −0.367446
\(100\) 0 0
\(101\) −1875.99 −1.84820 −0.924101 0.382149i \(-0.875184\pi\)
−0.924101 + 0.382149i \(0.875184\pi\)
\(102\) −906.316 −0.879791
\(103\) −1855.94 −1.77545 −0.887723 0.460377i \(-0.847714\pi\)
−0.887723 + 0.460377i \(0.847714\pi\)
\(104\) −2311.08 −2.17904
\(105\) 0 0
\(106\) −1690.41 −1.54893
\(107\) −218.016 −0.196976 −0.0984879 0.995138i \(-0.531401\pi\)
−0.0984879 + 0.995138i \(0.531401\pi\)
\(108\) −2401.74 −2.13989
\(109\) 847.217 0.744484 0.372242 0.928136i \(-0.378589\pi\)
0.372242 + 0.928136i \(0.378589\pi\)
\(110\) 0 0
\(111\) 984.473 0.841820
\(112\) 0 0
\(113\) 1430.05 1.19051 0.595254 0.803537i \(-0.297051\pi\)
0.595254 + 0.803537i \(0.297051\pi\)
\(114\) −2824.00 −2.32011
\(115\) 0 0
\(116\) −532.242 −0.426012
\(117\) −599.948 −0.474062
\(118\) 659.374 0.514409
\(119\) 0 0
\(120\) 0 0
\(121\) 37.4229 0.0281164
\(122\) 2389.29 1.77308
\(123\) −809.573 −0.593470
\(124\) −1958.17 −1.41814
\(125\) 0 0
\(126\) 0 0
\(127\) −1732.84 −1.21075 −0.605374 0.795941i \(-0.706976\pi\)
−0.605374 + 0.795941i \(0.706976\pi\)
\(128\) 2568.65 1.77374
\(129\) −1426.17 −0.973390
\(130\) 0 0
\(131\) 2429.76 1.62052 0.810262 0.586068i \(-0.199325\pi\)
0.810262 + 0.586068i \(0.199325\pi\)
\(132\) 2415.31 1.59262
\(133\) 0 0
\(134\) −2328.66 −1.50123
\(135\) 0 0
\(136\) −1689.86 −1.06547
\(137\) 1452.84 0.906018 0.453009 0.891506i \(-0.350351\pi\)
0.453009 + 0.891506i \(0.350351\pi\)
\(138\) −4398.32 −2.71311
\(139\) −2927.47 −1.78637 −0.893183 0.449693i \(-0.851533\pi\)
−0.893183 + 0.449693i \(0.851533\pi\)
\(140\) 0 0
\(141\) −69.7989 −0.0416888
\(142\) −220.485 −0.130301
\(143\) 2268.23 1.32643
\(144\) −564.954 −0.326941
\(145\) 0 0
\(146\) 491.004 0.278327
\(147\) 0 0
\(148\) 3733.75 2.07373
\(149\) 901.724 0.495786 0.247893 0.968787i \(-0.420262\pi\)
0.247893 + 0.968787i \(0.420262\pi\)
\(150\) 0 0
\(151\) −1357.63 −0.731669 −0.365834 0.930680i \(-0.619216\pi\)
−0.365834 + 0.930680i \(0.619216\pi\)
\(152\) −5265.46 −2.80977
\(153\) −438.681 −0.231799
\(154\) 0 0
\(155\) 0 0
\(156\) 4003.50 2.05472
\(157\) 2318.72 1.17869 0.589343 0.807883i \(-0.299387\pi\)
0.589343 + 0.807883i \(0.299387\pi\)
\(158\) −4289.95 −2.16006
\(159\) 1439.61 0.718042
\(160\) 0 0
\(161\) 0 0
\(162\) 1798.18 0.872087
\(163\) −1577.42 −0.757996 −0.378998 0.925397i \(-0.623731\pi\)
−0.378998 + 0.925397i \(0.623731\pi\)
\(164\) −3070.42 −1.46195
\(165\) 0 0
\(166\) −5627.28 −2.63109
\(167\) −1038.02 −0.480982 −0.240491 0.970651i \(-0.577309\pi\)
−0.240491 + 0.970651i \(0.577309\pi\)
\(168\) 0 0
\(169\) 1562.72 0.711296
\(170\) 0 0
\(171\) −1366.89 −0.611280
\(172\) −5408.95 −2.39784
\(173\) 482.641 0.212107 0.106054 0.994360i \(-0.466178\pi\)
0.106054 + 0.994360i \(0.466178\pi\)
\(174\) 683.714 0.297886
\(175\) 0 0
\(176\) 2135.93 0.914784
\(177\) −561.547 −0.238466
\(178\) 3017.58 1.27066
\(179\) 2407.19 1.00515 0.502575 0.864534i \(-0.332386\pi\)
0.502575 + 0.864534i \(0.332386\pi\)
\(180\) 0 0
\(181\) −532.600 −0.218717 −0.109359 0.994002i \(-0.534880\pi\)
−0.109359 + 0.994002i \(0.534880\pi\)
\(182\) 0 0
\(183\) −2034.81 −0.821952
\(184\) −8200.83 −3.28572
\(185\) 0 0
\(186\) 2515.45 0.991622
\(187\) 1658.53 0.648575
\(188\) −264.722 −0.102696
\(189\) 0 0
\(190\) 0 0
\(191\) 336.675 0.127544 0.0637721 0.997964i \(-0.479687\pi\)
0.0637721 + 0.997964i \(0.479687\pi\)
\(192\) −2325.31 −0.874035
\(193\) 22.7366 0.00847988 0.00423994 0.999991i \(-0.498650\pi\)
0.00423994 + 0.999991i \(0.498650\pi\)
\(194\) −1126.38 −0.416852
\(195\) 0 0
\(196\) 0 0
\(197\) −1085.33 −0.392520 −0.196260 0.980552i \(-0.562880\pi\)
−0.196260 + 0.980552i \(0.562880\pi\)
\(198\) 1763.41 0.632928
\(199\) 2630.28 0.936963 0.468482 0.883473i \(-0.344801\pi\)
0.468482 + 0.883473i \(0.344801\pi\)
\(200\) 0 0
\(201\) 1983.17 0.695931
\(202\) 9139.82 3.18354
\(203\) 0 0
\(204\) 2927.35 1.00469
\(205\) 0 0
\(206\) 9042.11 3.05822
\(207\) −2128.90 −0.714826
\(208\) 3540.42 1.18021
\(209\) 5167.83 1.71037
\(210\) 0 0
\(211\) 614.178 0.200388 0.100194 0.994968i \(-0.468054\pi\)
0.100194 + 0.994968i \(0.468054\pi\)
\(212\) 5459.93 1.76882
\(213\) 187.773 0.0604039
\(214\) 1062.17 0.339292
\(215\) 0 0
\(216\) 5752.58 1.81210
\(217\) 0 0
\(218\) −4127.63 −1.28238
\(219\) −418.157 −0.129025
\(220\) 0 0
\(221\) 2749.10 0.836762
\(222\) −4796.34 −1.45004
\(223\) −1930.30 −0.579651 −0.289826 0.957079i \(-0.593597\pi\)
−0.289826 + 0.957079i \(0.593597\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −6967.17 −2.05066
\(227\) −765.365 −0.223784 −0.111892 0.993720i \(-0.535691\pi\)
−0.111892 + 0.993720i \(0.535691\pi\)
\(228\) 9121.39 2.64947
\(229\) 5712.66 1.64849 0.824243 0.566237i \(-0.191601\pi\)
0.824243 + 0.566237i \(0.191601\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1274.81 0.360756
\(233\) −864.418 −0.243047 −0.121523 0.992589i \(-0.538778\pi\)
−0.121523 + 0.992589i \(0.538778\pi\)
\(234\) 2922.94 0.816575
\(235\) 0 0
\(236\) −2129.74 −0.587435
\(237\) 3653.48 1.00135
\(238\) 0 0
\(239\) −1816.64 −0.491669 −0.245834 0.969312i \(-0.579062\pi\)
−0.245834 + 0.969312i \(0.579062\pi\)
\(240\) 0 0
\(241\) 2354.53 0.629330 0.314665 0.949203i \(-0.398108\pi\)
0.314665 + 0.949203i \(0.398108\pi\)
\(242\) −182.324 −0.0484307
\(243\) 2589.47 0.683600
\(244\) −7717.28 −2.02479
\(245\) 0 0
\(246\) 3944.23 1.02226
\(247\) 8565.96 2.20664
\(248\) 4690.15 1.20091
\(249\) 4792.39 1.21970
\(250\) 0 0
\(251\) 2983.66 0.750306 0.375153 0.926963i \(-0.377590\pi\)
0.375153 + 0.926963i \(0.377590\pi\)
\(252\) 0 0
\(253\) 8048.78 2.00009
\(254\) 8442.39 2.08552
\(255\) 0 0
\(256\) −8030.99 −1.96069
\(257\) 5121.50 1.24307 0.621537 0.783385i \(-0.286508\pi\)
0.621537 + 0.783385i \(0.286508\pi\)
\(258\) 6948.29 1.67667
\(259\) 0 0
\(260\) 0 0
\(261\) 330.935 0.0784843
\(262\) −11837.7 −2.79137
\(263\) 4663.66 1.09344 0.546718 0.837317i \(-0.315877\pi\)
0.546718 + 0.837317i \(0.315877\pi\)
\(264\) −5785.07 −1.34866
\(265\) 0 0
\(266\) 0 0
\(267\) −2569.88 −0.589043
\(268\) 7521.45 1.71435
\(269\) −5018.86 −1.13757 −0.568783 0.822488i \(-0.692586\pi\)
−0.568783 + 0.822488i \(0.692586\pi\)
\(270\) 0 0
\(271\) 2512.66 0.563222 0.281611 0.959529i \(-0.409131\pi\)
0.281611 + 0.959529i \(0.409131\pi\)
\(272\) 2588.75 0.577081
\(273\) 0 0
\(274\) −7078.21 −1.56062
\(275\) 0 0
\(276\) 14206.3 3.09827
\(277\) 6286.82 1.36368 0.681839 0.731503i \(-0.261181\pi\)
0.681839 + 0.731503i \(0.261181\pi\)
\(278\) 14262.6 3.07703
\(279\) 1217.54 0.261263
\(280\) 0 0
\(281\) 8804.33 1.86912 0.934560 0.355807i \(-0.115794\pi\)
0.934560 + 0.355807i \(0.115794\pi\)
\(282\) 340.059 0.0718093
\(283\) −485.298 −0.101936 −0.0509681 0.998700i \(-0.516231\pi\)
−0.0509681 + 0.998700i \(0.516231\pi\)
\(284\) 712.157 0.148798
\(285\) 0 0
\(286\) −11050.8 −2.28478
\(287\) 0 0
\(288\) −197.834 −0.0404773
\(289\) −2902.86 −0.590854
\(290\) 0 0
\(291\) 959.265 0.193241
\(292\) −1585.92 −0.317838
\(293\) −4004.48 −0.798444 −0.399222 0.916854i \(-0.630720\pi\)
−0.399222 + 0.916854i \(0.630720\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −8942.96 −1.75608
\(297\) −5645.92 −1.10306
\(298\) −4393.19 −0.853995
\(299\) 13341.3 2.58042
\(300\) 0 0
\(301\) 0 0
\(302\) 6614.33 1.26031
\(303\) −7783.81 −1.47580
\(304\) 8066.32 1.52183
\(305\) 0 0
\(306\) 2137.25 0.399276
\(307\) −3154.13 −0.586370 −0.293185 0.956056i \(-0.594715\pi\)
−0.293185 + 0.956056i \(0.594715\pi\)
\(308\) 0 0
\(309\) −7700.59 −1.41771
\(310\) 0 0
\(311\) 1738.29 0.316944 0.158472 0.987363i \(-0.449343\pi\)
0.158472 + 0.987363i \(0.449343\pi\)
\(312\) −9589.06 −1.73998
\(313\) −5092.30 −0.919597 −0.459799 0.888023i \(-0.652078\pi\)
−0.459799 + 0.888023i \(0.652078\pi\)
\(314\) −11296.8 −2.03030
\(315\) 0 0
\(316\) 13856.3 2.46671
\(317\) −4874.67 −0.863686 −0.431843 0.901949i \(-0.642137\pi\)
−0.431843 + 0.901949i \(0.642137\pi\)
\(318\) −7013.78 −1.23683
\(319\) −1251.17 −0.219600
\(320\) 0 0
\(321\) −904.584 −0.157287
\(322\) 0 0
\(323\) 6263.41 1.07896
\(324\) −5808.02 −0.995888
\(325\) 0 0
\(326\) 7685.19 1.30565
\(327\) 3515.24 0.594475
\(328\) 7354.17 1.23801
\(329\) 0 0
\(330\) 0 0
\(331\) −2448.46 −0.406585 −0.203292 0.979118i \(-0.565164\pi\)
−0.203292 + 0.979118i \(0.565164\pi\)
\(332\) 18175.8 3.00460
\(333\) −2321.56 −0.382043
\(334\) 5057.20 0.828496
\(335\) 0 0
\(336\) 0 0
\(337\) −6271.50 −1.01374 −0.506870 0.862023i \(-0.669197\pi\)
−0.506870 + 0.862023i \(0.669197\pi\)
\(338\) −7613.54 −1.22521
\(339\) 5933.50 0.950629
\(340\) 0 0
\(341\) −4603.19 −0.731017
\(342\) 6659.48 1.05293
\(343\) 0 0
\(344\) 12955.3 2.03054
\(345\) 0 0
\(346\) −2351.42 −0.365356
\(347\) 417.338 0.0645645 0.0322822 0.999479i \(-0.489722\pi\)
0.0322822 + 0.999479i \(0.489722\pi\)
\(348\) −2208.36 −0.340174
\(349\) −5971.08 −0.915829 −0.457915 0.888996i \(-0.651403\pi\)
−0.457915 + 0.888996i \(0.651403\pi\)
\(350\) 0 0
\(351\) −9358.42 −1.42312
\(352\) 747.954 0.113256
\(353\) 12012.6 1.81124 0.905620 0.424089i \(-0.139406\pi\)
0.905620 + 0.424089i \(0.139406\pi\)
\(354\) 2735.85 0.410759
\(355\) 0 0
\(356\) −9746.64 −1.45104
\(357\) 0 0
\(358\) −11727.8 −1.73138
\(359\) 6312.46 0.928020 0.464010 0.885830i \(-0.346410\pi\)
0.464010 + 0.885830i \(0.346410\pi\)
\(360\) 0 0
\(361\) 12657.3 1.84535
\(362\) 2594.82 0.376743
\(363\) 155.274 0.0224511
\(364\) 0 0
\(365\) 0 0
\(366\) 9913.55 1.41582
\(367\) −12228.6 −1.73932 −0.869659 0.493652i \(-0.835662\pi\)
−0.869659 + 0.493652i \(0.835662\pi\)
\(368\) 12563.1 1.77961
\(369\) 1909.11 0.269335
\(370\) 0 0
\(371\) 0 0
\(372\) −8124.77 −1.13239
\(373\) 7876.24 1.09334 0.546671 0.837348i \(-0.315895\pi\)
0.546671 + 0.837348i \(0.315895\pi\)
\(374\) −8080.33 −1.11718
\(375\) 0 0
\(376\) 634.053 0.0869649
\(377\) −2073.89 −0.283317
\(378\) 0 0
\(379\) 5992.79 0.812214 0.406107 0.913826i \(-0.366886\pi\)
0.406107 + 0.913826i \(0.366886\pi\)
\(380\) 0 0
\(381\) −7189.85 −0.966790
\(382\) −1640.28 −0.219696
\(383\) −7373.61 −0.983743 −0.491872 0.870668i \(-0.663687\pi\)
−0.491872 + 0.870668i \(0.663687\pi\)
\(384\) 10657.7 1.41634
\(385\) 0 0
\(386\) −110.772 −0.0146067
\(387\) 3363.15 0.441754
\(388\) 3638.14 0.476028
\(389\) 1896.88 0.247238 0.123619 0.992330i \(-0.460550\pi\)
0.123619 + 0.992330i \(0.460550\pi\)
\(390\) 0 0
\(391\) 9755.12 1.26173
\(392\) 0 0
\(393\) 10081.5 1.29400
\(394\) 5287.71 0.676119
\(395\) 0 0
\(396\) −5695.71 −0.722778
\(397\) 791.156 0.100018 0.0500088 0.998749i \(-0.484075\pi\)
0.0500088 + 0.998749i \(0.484075\pi\)
\(398\) −12814.7 −1.61393
\(399\) 0 0
\(400\) 0 0
\(401\) 4410.55 0.549258 0.274629 0.961550i \(-0.411445\pi\)
0.274629 + 0.961550i \(0.411445\pi\)
\(402\) −9661.99 −1.19875
\(403\) −7630.03 −0.943124
\(404\) −29521.1 −3.63548
\(405\) 0 0
\(406\) 0 0
\(407\) 8777.14 1.06896
\(408\) −7011.51 −0.850787
\(409\) 4403.73 0.532397 0.266199 0.963918i \(-0.414232\pi\)
0.266199 + 0.963918i \(0.414232\pi\)
\(410\) 0 0
\(411\) 6028.07 0.723461
\(412\) −29205.5 −3.49236
\(413\) 0 0
\(414\) 10372.0 1.23129
\(415\) 0 0
\(416\) 1239.77 0.146117
\(417\) −12146.6 −1.42643
\(418\) −25177.6 −2.94612
\(419\) 14272.6 1.66411 0.832057 0.554691i \(-0.187163\pi\)
0.832057 + 0.554691i \(0.187163\pi\)
\(420\) 0 0
\(421\) −15530.4 −1.79788 −0.898939 0.438074i \(-0.855661\pi\)
−0.898939 + 0.438074i \(0.855661\pi\)
\(422\) −2992.27 −0.345169
\(423\) 164.598 0.0189197
\(424\) −13077.5 −1.49787
\(425\) 0 0
\(426\) −914.830 −0.104046
\(427\) 0 0
\(428\) −3430.76 −0.387458
\(429\) 9411.27 1.05916
\(430\) 0 0
\(431\) −5260.75 −0.587938 −0.293969 0.955815i \(-0.594976\pi\)
−0.293969 + 0.955815i \(0.594976\pi\)
\(432\) −8812.56 −0.981469
\(433\) −6610.65 −0.733690 −0.366845 0.930282i \(-0.619562\pi\)
−0.366845 + 0.930282i \(0.619562\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 13332.0 1.46442
\(437\) 30396.1 3.32733
\(438\) 2037.26 0.222246
\(439\) 8870.46 0.964383 0.482191 0.876066i \(-0.339841\pi\)
0.482191 + 0.876066i \(0.339841\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −13393.6 −1.44133
\(443\) −13221.8 −1.41802 −0.709012 0.705196i \(-0.750859\pi\)
−0.709012 + 0.705196i \(0.750859\pi\)
\(444\) 15491.9 1.65589
\(445\) 0 0
\(446\) 9404.38 0.998454
\(447\) 3741.40 0.395889
\(448\) 0 0
\(449\) 4192.70 0.440681 0.220341 0.975423i \(-0.429283\pi\)
0.220341 + 0.975423i \(0.429283\pi\)
\(450\) 0 0
\(451\) −7217.82 −0.753600
\(452\) 22503.6 2.34177
\(453\) −5633.01 −0.584243
\(454\) 3728.85 0.385470
\(455\) 0 0
\(456\) −21847.3 −2.24362
\(457\) −4701.78 −0.481270 −0.240635 0.970616i \(-0.577356\pi\)
−0.240635 + 0.970616i \(0.577356\pi\)
\(458\) −27832.0 −2.83953
\(459\) −6842.86 −0.695855
\(460\) 0 0
\(461\) 1949.82 0.196989 0.0984946 0.995138i \(-0.468597\pi\)
0.0984946 + 0.995138i \(0.468597\pi\)
\(462\) 0 0
\(463\) 7315.85 0.734333 0.367166 0.930155i \(-0.380328\pi\)
0.367166 + 0.930155i \(0.380328\pi\)
\(464\) −1952.92 −0.195392
\(465\) 0 0
\(466\) 4211.43 0.418650
\(467\) 1897.54 0.188025 0.0940126 0.995571i \(-0.470031\pi\)
0.0940126 + 0.995571i \(0.470031\pi\)
\(468\) −9440.94 −0.932495
\(469\) 0 0
\(470\) 0 0
\(471\) 9620.74 0.941189
\(472\) 5101.10 0.497451
\(473\) −12715.1 −1.23603
\(474\) −17799.7 −1.72483
\(475\) 0 0
\(476\) 0 0
\(477\) −3394.85 −0.325869
\(478\) 8850.66 0.846903
\(479\) −10534.4 −1.00486 −0.502429 0.864619i \(-0.667560\pi\)
−0.502429 + 0.864619i \(0.667560\pi\)
\(480\) 0 0
\(481\) 14548.6 1.37912
\(482\) −11471.2 −1.08403
\(483\) 0 0
\(484\) 588.897 0.0553058
\(485\) 0 0
\(486\) −12615.9 −1.17751
\(487\) 11937.0 1.11071 0.555355 0.831614i \(-0.312583\pi\)
0.555355 + 0.831614i \(0.312583\pi\)
\(488\) 18484.2 1.71463
\(489\) −6544.99 −0.605265
\(490\) 0 0
\(491\) 100.060 0.00919683 0.00459841 0.999989i \(-0.498536\pi\)
0.00459841 + 0.999989i \(0.498536\pi\)
\(492\) −12739.7 −1.16737
\(493\) −1516.42 −0.138532
\(494\) −41733.3 −3.80095
\(495\) 0 0
\(496\) −7184.99 −0.650435
\(497\) 0 0
\(498\) −23348.5 −2.10095
\(499\) −15611.7 −1.40055 −0.700275 0.713874i \(-0.746939\pi\)
−0.700275 + 0.713874i \(0.746939\pi\)
\(500\) 0 0
\(501\) −4306.90 −0.384068
\(502\) −14536.3 −1.29241
\(503\) −2270.39 −0.201256 −0.100628 0.994924i \(-0.532085\pi\)
−0.100628 + 0.994924i \(0.532085\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −39213.6 −3.44517
\(507\) 6483.97 0.567975
\(508\) −27268.5 −2.38158
\(509\) 2579.79 0.224651 0.112325 0.993671i \(-0.464170\pi\)
0.112325 + 0.993671i \(0.464170\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 18577.7 1.60357
\(513\) −21321.8 −1.83505
\(514\) −24951.9 −2.14121
\(515\) 0 0
\(516\) −22442.6 −1.91469
\(517\) −622.297 −0.0529373
\(518\) 0 0
\(519\) 2002.56 0.169369
\(520\) 0 0
\(521\) −12793.9 −1.07584 −0.537918 0.842997i \(-0.680789\pi\)
−0.537918 + 0.842997i \(0.680789\pi\)
\(522\) −1612.31 −0.135190
\(523\) 11273.4 0.942548 0.471274 0.881987i \(-0.343794\pi\)
0.471274 + 0.881987i \(0.343794\pi\)
\(524\) 38235.3 3.18763
\(525\) 0 0
\(526\) −22721.3 −1.88345
\(527\) −5579.07 −0.461154
\(528\) 8862.33 0.730461
\(529\) 35174.2 2.89095
\(530\) 0 0
\(531\) 1324.22 0.108223
\(532\) 0 0
\(533\) −11963.9 −0.972260
\(534\) 12520.4 1.01463
\(535\) 0 0
\(536\) −18015.1 −1.45175
\(537\) 9987.83 0.802619
\(538\) 24451.8 1.95947
\(539\) 0 0
\(540\) 0 0
\(541\) 10282.9 0.817183 0.408591 0.912717i \(-0.366020\pi\)
0.408591 + 0.912717i \(0.366020\pi\)
\(542\) −12241.6 −0.970154
\(543\) −2209.85 −0.174647
\(544\) 906.520 0.0714462
\(545\) 0 0
\(546\) 0 0
\(547\) −2160.94 −0.168912 −0.0844562 0.996427i \(-0.526915\pi\)
−0.0844562 + 0.996427i \(0.526915\pi\)
\(548\) 22862.3 1.78217
\(549\) 4798.42 0.373027
\(550\) 0 0
\(551\) −4725.04 −0.365324
\(552\) −34026.6 −2.62367
\(553\) 0 0
\(554\) −30629.3 −2.34895
\(555\) 0 0
\(556\) −46067.5 −3.51384
\(557\) 15648.4 1.19038 0.595190 0.803585i \(-0.297077\pi\)
0.595190 + 0.803585i \(0.297077\pi\)
\(558\) −5931.86 −0.450028
\(559\) −21076.0 −1.59467
\(560\) 0 0
\(561\) 6881.51 0.517892
\(562\) −42894.6 −3.21957
\(563\) 21951.6 1.64325 0.821623 0.570031i \(-0.193069\pi\)
0.821623 + 0.570031i \(0.193069\pi\)
\(564\) −1098.37 −0.0820033
\(565\) 0 0
\(566\) 2364.36 0.175586
\(567\) 0 0
\(568\) −1705.74 −0.126005
\(569\) 14019.2 1.03289 0.516445 0.856321i \(-0.327255\pi\)
0.516445 + 0.856321i \(0.327255\pi\)
\(570\) 0 0
\(571\) −21706.3 −1.59086 −0.795430 0.606045i \(-0.792755\pi\)
−0.795430 + 0.606045i \(0.792755\pi\)
\(572\) 35693.5 2.60913
\(573\) 1396.92 0.101845
\(574\) 0 0
\(575\) 0 0
\(576\) 5483.48 0.396664
\(577\) −12569.0 −0.906853 −0.453427 0.891294i \(-0.649799\pi\)
−0.453427 + 0.891294i \(0.649799\pi\)
\(578\) 14142.7 1.01775
\(579\) 94.3379 0.00677124
\(580\) 0 0
\(581\) 0 0
\(582\) −4673.53 −0.332859
\(583\) 12835.0 0.911785
\(584\) 3798.54 0.269152
\(585\) 0 0
\(586\) 19509.8 1.37533
\(587\) 1330.20 0.0935322 0.0467661 0.998906i \(-0.485108\pi\)
0.0467661 + 0.998906i \(0.485108\pi\)
\(588\) 0 0
\(589\) −17383.9 −1.21611
\(590\) 0 0
\(591\) −4503.20 −0.313430
\(592\) 13700.0 0.951126
\(593\) −9866.91 −0.683281 −0.341640 0.939831i \(-0.610982\pi\)
−0.341640 + 0.939831i \(0.610982\pi\)
\(594\) 27506.9 1.90003
\(595\) 0 0
\(596\) 14189.8 0.975228
\(597\) 10913.5 0.748172
\(598\) −64998.6 −4.44480
\(599\) 4185.17 0.285478 0.142739 0.989760i \(-0.454409\pi\)
0.142739 + 0.989760i \(0.454409\pi\)
\(600\) 0 0
\(601\) −10599.8 −0.719426 −0.359713 0.933063i \(-0.617125\pi\)
−0.359713 + 0.933063i \(0.617125\pi\)
\(602\) 0 0
\(603\) −4676.66 −0.315834
\(604\) −21364.0 −1.43922
\(605\) 0 0
\(606\) 37922.6 2.54208
\(607\) 13290.1 0.888679 0.444340 0.895858i \(-0.353438\pi\)
0.444340 + 0.895858i \(0.353438\pi\)
\(608\) 2824.64 0.188412
\(609\) 0 0
\(610\) 0 0
\(611\) −1031.49 −0.0682973
\(612\) −6903.20 −0.455957
\(613\) 21327.1 1.40521 0.702606 0.711579i \(-0.252020\pi\)
0.702606 + 0.711579i \(0.252020\pi\)
\(614\) 15366.9 1.01003
\(615\) 0 0
\(616\) 0 0
\(617\) 13741.6 0.896622 0.448311 0.893878i \(-0.352026\pi\)
0.448311 + 0.893878i \(0.352026\pi\)
\(618\) 37517.2 2.44201
\(619\) −19444.3 −1.26257 −0.631285 0.775551i \(-0.717472\pi\)
−0.631285 + 0.775551i \(0.717472\pi\)
\(620\) 0 0
\(621\) −33208.1 −2.14589
\(622\) −8468.94 −0.545938
\(623\) 0 0
\(624\) 14689.8 0.942407
\(625\) 0 0
\(626\) 24809.6 1.58401
\(627\) 21442.2 1.36574
\(628\) 36488.0 2.31852
\(629\) 10637.9 0.674341
\(630\) 0 0
\(631\) −27425.6 −1.73026 −0.865130 0.501547i \(-0.832764\pi\)
−0.865130 + 0.501547i \(0.832764\pi\)
\(632\) −33188.2 −2.08886
\(633\) 2548.33 0.160011
\(634\) 23749.3 1.48771
\(635\) 0 0
\(636\) 22654.1 1.41241
\(637\) 0 0
\(638\) 6095.70 0.378262
\(639\) −442.802 −0.0274131
\(640\) 0 0
\(641\) −10053.8 −0.619502 −0.309751 0.950818i \(-0.600246\pi\)
−0.309751 + 0.950818i \(0.600246\pi\)
\(642\) 4407.12 0.270927
\(643\) 4044.18 0.248036 0.124018 0.992280i \(-0.460422\pi\)
0.124018 + 0.992280i \(0.460422\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −30515.3 −1.85853
\(647\) −1486.90 −0.0903491 −0.0451746 0.998979i \(-0.514384\pi\)
−0.0451746 + 0.998979i \(0.514384\pi\)
\(648\) 13911.2 0.843338
\(649\) −5006.52 −0.302809
\(650\) 0 0
\(651\) 0 0
\(652\) −24822.8 −1.49100
\(653\) 4269.30 0.255851 0.127925 0.991784i \(-0.459168\pi\)
0.127925 + 0.991784i \(0.459168\pi\)
\(654\) −17126.2 −1.02399
\(655\) 0 0
\(656\) −11266.1 −0.670528
\(657\) 986.086 0.0585554
\(658\) 0 0
\(659\) 1607.29 0.0950094 0.0475047 0.998871i \(-0.484873\pi\)
0.0475047 + 0.998871i \(0.484873\pi\)
\(660\) 0 0
\(661\) −8001.31 −0.470824 −0.235412 0.971896i \(-0.575644\pi\)
−0.235412 + 0.971896i \(0.575644\pi\)
\(662\) 11928.9 0.700345
\(663\) 11406.5 0.668160
\(664\) −43534.1 −2.54436
\(665\) 0 0
\(666\) 11310.6 0.658073
\(667\) −7359.14 −0.427207
\(668\) −16334.5 −0.946109
\(669\) −8009.12 −0.462855
\(670\) 0 0
\(671\) −18141.5 −1.04373
\(672\) 0 0
\(673\) 3347.96 0.191760 0.0958800 0.995393i \(-0.469433\pi\)
0.0958800 + 0.995393i \(0.469433\pi\)
\(674\) 30554.7 1.74617
\(675\) 0 0
\(676\) 24591.4 1.39914
\(677\) 7.91810 0.000449508 0 0.000224754 1.00000i \(-0.499928\pi\)
0.000224754 1.00000i \(0.499928\pi\)
\(678\) −28907.9 −1.63747
\(679\) 0 0
\(680\) 0 0
\(681\) −3175.62 −0.178693
\(682\) 22426.7 1.25918
\(683\) 32136.0 1.80036 0.900182 0.435513i \(-0.143433\pi\)
0.900182 + 0.435513i \(0.143433\pi\)
\(684\) −21509.8 −1.20241
\(685\) 0 0
\(686\) 0 0
\(687\) 23702.8 1.31633
\(688\) −19846.7 −1.09978
\(689\) 21274.7 1.17634
\(690\) 0 0
\(691\) 6196.84 0.341156 0.170578 0.985344i \(-0.445437\pi\)
0.170578 + 0.985344i \(0.445437\pi\)
\(692\) 7594.98 0.417222
\(693\) 0 0
\(694\) −2033.27 −0.111213
\(695\) 0 0
\(696\) 5289.39 0.288066
\(697\) −8747.99 −0.475400
\(698\) 29091.0 1.57752
\(699\) −3586.61 −0.194075
\(700\) 0 0
\(701\) 1651.38 0.0889755 0.0444878 0.999010i \(-0.485834\pi\)
0.0444878 + 0.999010i \(0.485834\pi\)
\(702\) 45594.1 2.45134
\(703\) 33146.8 1.77831
\(704\) −20731.5 −1.10987
\(705\) 0 0
\(706\) −58525.4 −3.11988
\(707\) 0 0
\(708\) −8836.66 −0.469071
\(709\) 15399.8 0.815728 0.407864 0.913043i \(-0.366274\pi\)
0.407864 + 0.913043i \(0.366274\pi\)
\(710\) 0 0
\(711\) −8615.53 −0.454441
\(712\) 23344.8 1.22877
\(713\) −27075.0 −1.42211
\(714\) 0 0
\(715\) 0 0
\(716\) 37880.2 1.97716
\(717\) −7537.54 −0.392601
\(718\) −30754.3 −1.59852
\(719\) −3507.31 −0.181920 −0.0909600 0.995855i \(-0.528994\pi\)
−0.0909600 + 0.995855i \(0.528994\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −61666.0 −3.17863
\(723\) 9769.32 0.502524
\(724\) −8381.14 −0.430225
\(725\) 0 0
\(726\) −756.492 −0.0386722
\(727\) −22516.7 −1.14869 −0.574346 0.818613i \(-0.694744\pi\)
−0.574346 + 0.818613i \(0.694744\pi\)
\(728\) 0 0
\(729\) 20709.4 1.05215
\(730\) 0 0
\(731\) −15410.7 −0.779736
\(732\) −32020.3 −1.61681
\(733\) 10964.7 0.552509 0.276255 0.961084i \(-0.410907\pi\)
0.276255 + 0.961084i \(0.410907\pi\)
\(734\) 59577.8 2.99599
\(735\) 0 0
\(736\) 4399.31 0.220327
\(737\) 17681.1 0.883707
\(738\) −9301.17 −0.463931
\(739\) 3029.33 0.150793 0.0753963 0.997154i \(-0.475978\pi\)
0.0753963 + 0.997154i \(0.475978\pi\)
\(740\) 0 0
\(741\) 35541.6 1.76201
\(742\) 0 0
\(743\) −8921.04 −0.440486 −0.220243 0.975445i \(-0.570685\pi\)
−0.220243 + 0.975445i \(0.570685\pi\)
\(744\) 19460.2 0.958932
\(745\) 0 0
\(746\) −38373.0 −1.88329
\(747\) −11301.3 −0.553537
\(748\) 26099.1 1.27577
\(749\) 0 0
\(750\) 0 0
\(751\) −6202.64 −0.301382 −0.150691 0.988581i \(-0.548150\pi\)
−0.150691 + 0.988581i \(0.548150\pi\)
\(752\) −971.326 −0.0471019
\(753\) 12379.7 0.599124
\(754\) 10104.0 0.488016
\(755\) 0 0
\(756\) 0 0
\(757\) −12099.3 −0.580922 −0.290461 0.956887i \(-0.593809\pi\)
−0.290461 + 0.956887i \(0.593809\pi\)
\(758\) −29196.8 −1.39905
\(759\) 33395.7 1.59708
\(760\) 0 0
\(761\) −29332.7 −1.39725 −0.698626 0.715487i \(-0.746205\pi\)
−0.698626 + 0.715487i \(0.746205\pi\)
\(762\) 35028.9 1.66530
\(763\) 0 0
\(764\) 5298.01 0.250884
\(765\) 0 0
\(766\) 35924.1 1.69451
\(767\) −8298.57 −0.390670
\(768\) −33321.9 −1.56563
\(769\) 13280.1 0.622748 0.311374 0.950287i \(-0.399211\pi\)
0.311374 + 0.950287i \(0.399211\pi\)
\(770\) 0 0
\(771\) 21249.9 0.992604
\(772\) 357.789 0.0166802
\(773\) −11248.1 −0.523370 −0.261685 0.965153i \(-0.584278\pi\)
−0.261685 + 0.965153i \(0.584278\pi\)
\(774\) −16385.3 −0.760925
\(775\) 0 0
\(776\) −8713.96 −0.403110
\(777\) 0 0
\(778\) −9241.57 −0.425869
\(779\) −27258.0 −1.25368
\(780\) 0 0
\(781\) 1674.11 0.0767021
\(782\) −47526.8 −2.17335
\(783\) 5162.17 0.235608
\(784\) 0 0
\(785\) 0 0
\(786\) −49116.7 −2.22893
\(787\) 436.193 0.0197568 0.00987839 0.999951i \(-0.496856\pi\)
0.00987839 + 0.999951i \(0.496856\pi\)
\(788\) −17079.0 −0.772100
\(789\) 19350.3 0.873116
\(790\) 0 0
\(791\) 0 0
\(792\) 13642.2 0.612063
\(793\) −30070.5 −1.34657
\(794\) −3854.50 −0.172281
\(795\) 0 0
\(796\) 41390.8 1.84304
\(797\) 24034.0 1.06816 0.534082 0.845433i \(-0.320657\pi\)
0.534082 + 0.845433i \(0.320657\pi\)
\(798\) 0 0
\(799\) −754.224 −0.0333949
\(800\) 0 0
\(801\) 6060.23 0.267325
\(802\) −21488.1 −0.946101
\(803\) −3728.11 −0.163838
\(804\) 31207.7 1.36892
\(805\) 0 0
\(806\) 37173.4 1.62454
\(807\) −20824.1 −0.908354
\(808\) 70708.1 3.07859
\(809\) 16188.0 0.703509 0.351754 0.936092i \(-0.385585\pi\)
0.351754 + 0.936092i \(0.385585\pi\)
\(810\) 0 0
\(811\) −3732.42 −0.161607 −0.0808033 0.996730i \(-0.525749\pi\)
−0.0808033 + 0.996730i \(0.525749\pi\)
\(812\) 0 0
\(813\) 10425.4 0.449737
\(814\) −42762.1 −1.84129
\(815\) 0 0
\(816\) 10741.1 0.460803
\(817\) −48018.6 −2.05625
\(818\) −21454.9 −0.917058
\(819\) 0 0
\(820\) 0 0
\(821\) 37226.4 1.58247 0.791237 0.611510i \(-0.209438\pi\)
0.791237 + 0.611510i \(0.209438\pi\)
\(822\) −29368.7 −1.24617
\(823\) 21355.7 0.904511 0.452256 0.891888i \(-0.350620\pi\)
0.452256 + 0.891888i \(0.350620\pi\)
\(824\) 69952.2 2.95740
\(825\) 0 0
\(826\) 0 0
\(827\) −18852.9 −0.792718 −0.396359 0.918096i \(-0.629726\pi\)
−0.396359 + 0.918096i \(0.629726\pi\)
\(828\) −33501.0 −1.40609
\(829\) 43227.9 1.81106 0.905528 0.424286i \(-0.139475\pi\)
0.905528 + 0.424286i \(0.139475\pi\)
\(830\) 0 0
\(831\) 26085.1 1.08891
\(832\) −34363.5 −1.43190
\(833\) 0 0
\(834\) 59177.9 2.45703
\(835\) 0 0
\(836\) 81322.4 3.36435
\(837\) 18992.1 0.784306
\(838\) −69536.1 −2.86645
\(839\) −30311.3 −1.24727 −0.623637 0.781714i \(-0.714346\pi\)
−0.623637 + 0.781714i \(0.714346\pi\)
\(840\) 0 0
\(841\) −23245.0 −0.953095
\(842\) 75664.0 3.09686
\(843\) 36530.6 1.49250
\(844\) 9664.88 0.394169
\(845\) 0 0
\(846\) −801.918 −0.0325893
\(847\) 0 0
\(848\) 20033.8 0.811276
\(849\) −2013.58 −0.0813968
\(850\) 0 0
\(851\) 51625.3 2.07955
\(852\) 2954.85 0.118816
\(853\) 22797.0 0.915071 0.457535 0.889191i \(-0.348732\pi\)
0.457535 + 0.889191i \(0.348732\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 8217.25 0.328107
\(857\) 11280.3 0.449625 0.224813 0.974402i \(-0.427823\pi\)
0.224813 + 0.974402i \(0.427823\pi\)
\(858\) −45851.6 −1.82442
\(859\) −43369.3 −1.72263 −0.861315 0.508071i \(-0.830359\pi\)
−0.861315 + 0.508071i \(0.830359\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 25630.3 1.01273
\(863\) 9846.22 0.388377 0.194189 0.980964i \(-0.437793\pi\)
0.194189 + 0.980964i \(0.437793\pi\)
\(864\) −3085.95 −0.121512
\(865\) 0 0
\(866\) 32207.0 1.26379
\(867\) −12044.5 −0.471801
\(868\) 0 0
\(869\) 32572.9 1.27153
\(870\) 0 0
\(871\) 29307.4 1.14012
\(872\) −31932.5 −1.24010
\(873\) −2262.11 −0.0876985
\(874\) −148090. −5.73136
\(875\) 0 0
\(876\) −6580.23 −0.253796
\(877\) −15229.8 −0.586400 −0.293200 0.956051i \(-0.594720\pi\)
−0.293200 + 0.956051i \(0.594720\pi\)
\(878\) −43216.8 −1.66116
\(879\) −16615.2 −0.637563
\(880\) 0 0
\(881\) −27891.7 −1.06662 −0.533311 0.845919i \(-0.679052\pi\)
−0.533311 + 0.845919i \(0.679052\pi\)
\(882\) 0 0
\(883\) 18300.3 0.697456 0.348728 0.937224i \(-0.386614\pi\)
0.348728 + 0.937224i \(0.386614\pi\)
\(884\) 43260.6 1.64594
\(885\) 0 0
\(886\) 64416.3 2.44256
\(887\) 19104.8 0.723197 0.361598 0.932334i \(-0.382231\pi\)
0.361598 + 0.932334i \(0.382231\pi\)
\(888\) −37105.8 −1.40224
\(889\) 0 0
\(890\) 0 0
\(891\) −13653.3 −0.513357
\(892\) −30375.7 −1.14019
\(893\) −2350.10 −0.0880661
\(894\) −18228.1 −0.681921
\(895\) 0 0
\(896\) 0 0
\(897\) 55355.2 2.06048
\(898\) −20426.8 −0.759077
\(899\) 4208.78 0.156141
\(900\) 0 0
\(901\) 15556.0 0.575189
\(902\) 35165.1 1.29808
\(903\) 0 0
\(904\) −53899.9 −1.98306
\(905\) 0 0
\(906\) 27444.0 1.00636
\(907\) −29518.8 −1.08066 −0.540328 0.841455i \(-0.681700\pi\)
−0.540328 + 0.841455i \(0.681700\pi\)
\(908\) −12044.0 −0.440191
\(909\) 18355.5 0.669764
\(910\) 0 0
\(911\) −30322.2 −1.10277 −0.551383 0.834253i \(-0.685900\pi\)
−0.551383 + 0.834253i \(0.685900\pi\)
\(912\) 33468.5 1.21519
\(913\) 42727.0 1.54880
\(914\) 22907.0 0.828991
\(915\) 0 0
\(916\) 89895.9 3.24263
\(917\) 0 0
\(918\) 33338.3 1.19862
\(919\) −37780.9 −1.35612 −0.678062 0.735005i \(-0.737180\pi\)
−0.678062 + 0.735005i \(0.737180\pi\)
\(920\) 0 0
\(921\) −13087.0 −0.468220
\(922\) −9499.48 −0.339315
\(923\) 2774.93 0.0989575
\(924\) 0 0
\(925\) 0 0
\(926\) −35642.7 −1.26489
\(927\) 18159.3 0.643398
\(928\) −683.867 −0.0241908
\(929\) −48493.3 −1.71261 −0.856305 0.516470i \(-0.827246\pi\)
−0.856305 + 0.516470i \(0.827246\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −13602.7 −0.478081
\(933\) 7212.46 0.253082
\(934\) −9244.81 −0.323875
\(935\) 0 0
\(936\) 22612.7 0.789656
\(937\) −18661.7 −0.650641 −0.325320 0.945604i \(-0.605472\pi\)
−0.325320 + 0.945604i \(0.605472\pi\)
\(938\) 0 0
\(939\) −21128.8 −0.734305
\(940\) 0 0
\(941\) 31270.1 1.08329 0.541644 0.840608i \(-0.317802\pi\)
0.541644 + 0.840608i \(0.317802\pi\)
\(942\) −46872.1 −1.62121
\(943\) −42453.7 −1.46605
\(944\) −7814.53 −0.269429
\(945\) 0 0
\(946\) 61948.0 2.12907
\(947\) −22405.3 −0.768823 −0.384412 0.923162i \(-0.625596\pi\)
−0.384412 + 0.923162i \(0.625596\pi\)
\(948\) 57492.2 1.96968
\(949\) −6179.55 −0.211377
\(950\) 0 0
\(951\) −20225.8 −0.689660
\(952\) 0 0
\(953\) 21777.9 0.740247 0.370123 0.928983i \(-0.379315\pi\)
0.370123 + 0.928983i \(0.379315\pi\)
\(954\) 16539.7 0.561313
\(955\) 0 0
\(956\) −28587.2 −0.967129
\(957\) −5191.32 −0.175352
\(958\) 51323.3 1.73088
\(959\) 0 0
\(960\) 0 0
\(961\) −14306.5 −0.480229
\(962\) −70880.5 −2.37555
\(963\) 2133.16 0.0713814
\(964\) 37051.5 1.23791
\(965\) 0 0
\(966\) 0 0
\(967\) −14432.2 −0.479945 −0.239973 0.970780i \(-0.577138\pi\)
−0.239973 + 0.970780i \(0.577138\pi\)
\(968\) −1410.51 −0.0468341
\(969\) 25987.9 0.861561
\(970\) 0 0
\(971\) −6672.57 −0.220528 −0.110264 0.993902i \(-0.535170\pi\)
−0.110264 + 0.993902i \(0.535170\pi\)
\(972\) 40748.6 1.34466
\(973\) 0 0
\(974\) −58156.7 −1.91321
\(975\) 0 0
\(976\) −28316.5 −0.928678
\(977\) −33300.2 −1.09045 −0.545224 0.838290i \(-0.683556\pi\)
−0.545224 + 0.838290i \(0.683556\pi\)
\(978\) 31887.1 1.04257
\(979\) −22912.0 −0.747979
\(980\) 0 0
\(981\) −8289.55 −0.269791
\(982\) −487.491 −0.0158416
\(983\) −17243.3 −0.559486 −0.279743 0.960075i \(-0.590249\pi\)
−0.279743 + 0.960075i \(0.590249\pi\)
\(984\) 30513.6 0.988557
\(985\) 0 0
\(986\) 7387.99 0.238622
\(987\) 0 0
\(988\) 134796. 4.34053
\(989\) −74787.8 −2.40456
\(990\) 0 0
\(991\) −32266.7 −1.03429 −0.517147 0.855897i \(-0.673006\pi\)
−0.517147 + 0.855897i \(0.673006\pi\)
\(992\) −2516.02 −0.0805278
\(993\) −10159.1 −0.324661
\(994\) 0 0
\(995\) 0 0
\(996\) 75414.4 2.39919
\(997\) 14339.8 0.455514 0.227757 0.973718i \(-0.426861\pi\)
0.227757 + 0.973718i \(0.426861\pi\)
\(998\) 76059.8 2.41246
\(999\) −36213.3 −1.14688
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.4.a.bd.1.1 4
5.4 even 2 1225.4.a.z.1.4 4
7.6 odd 2 175.4.a.h.1.1 yes 4
21.20 even 2 1575.4.a.bg.1.4 4
35.13 even 4 175.4.b.f.99.8 8
35.27 even 4 175.4.b.f.99.1 8
35.34 odd 2 175.4.a.g.1.4 4
105.104 even 2 1575.4.a.bl.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.g.1.4 4 35.34 odd 2
175.4.a.h.1.1 yes 4 7.6 odd 2
175.4.b.f.99.1 8 35.27 even 4
175.4.b.f.99.8 8 35.13 even 4
1225.4.a.z.1.4 4 5.4 even 2
1225.4.a.bd.1.1 4 1.1 even 1 trivial
1575.4.a.bg.1.4 4 21.20 even 2
1575.4.a.bl.1.1 4 105.104 even 2