Properties

Label 1225.4.a.b.1.1
Level $1225$
Weight $4$
Character 1225.1
Self dual yes
Analytic conductor $72.277$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,4,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2773397570\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{2} +2.00000 q^{3} +1.00000 q^{4} -6.00000 q^{6} +21.0000 q^{8} -23.0000 q^{9} +O(q^{10})\) \(q-3.00000 q^{2} +2.00000 q^{3} +1.00000 q^{4} -6.00000 q^{6} +21.0000 q^{8} -23.0000 q^{9} -45.0000 q^{11} +2.00000 q^{12} -59.0000 q^{13} -71.0000 q^{16} +54.0000 q^{17} +69.0000 q^{18} -121.000 q^{19} +135.000 q^{22} -69.0000 q^{23} +42.0000 q^{24} +177.000 q^{26} -100.000 q^{27} -162.000 q^{29} -88.0000 q^{31} +45.0000 q^{32} -90.0000 q^{33} -162.000 q^{34} -23.0000 q^{36} +259.000 q^{37} +363.000 q^{38} -118.000 q^{39} +195.000 q^{41} +286.000 q^{43} -45.0000 q^{44} +207.000 q^{46} -45.0000 q^{47} -142.000 q^{48} +108.000 q^{51} -59.0000 q^{52} -597.000 q^{53} +300.000 q^{54} -242.000 q^{57} +486.000 q^{58} -360.000 q^{59} +392.000 q^{61} +264.000 q^{62} +433.000 q^{64} +270.000 q^{66} +280.000 q^{67} +54.0000 q^{68} -138.000 q^{69} +48.0000 q^{71} -483.000 q^{72} -668.000 q^{73} -777.000 q^{74} -121.000 q^{76} +354.000 q^{78} +782.000 q^{79} +421.000 q^{81} -585.000 q^{82} -768.000 q^{83} -858.000 q^{86} -324.000 q^{87} -945.000 q^{88} -1194.00 q^{89} -69.0000 q^{92} -176.000 q^{93} +135.000 q^{94} +90.0000 q^{96} -902.000 q^{97} +1035.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.00000 −1.06066 −0.530330 0.847791i \(-0.677932\pi\)
−0.530330 + 0.847791i \(0.677932\pi\)
\(3\) 2.00000 0.384900 0.192450 0.981307i \(-0.438357\pi\)
0.192450 + 0.981307i \(0.438357\pi\)
\(4\) 1.00000 0.125000
\(5\) 0 0
\(6\) −6.00000 −0.408248
\(7\) 0 0
\(8\) 21.0000 0.928078
\(9\) −23.0000 −0.851852
\(10\) 0 0
\(11\) −45.0000 −1.23346 −0.616728 0.787177i \(-0.711542\pi\)
−0.616728 + 0.787177i \(0.711542\pi\)
\(12\) 2.00000 0.0481125
\(13\) −59.0000 −1.25874 −0.629371 0.777105i \(-0.716688\pi\)
−0.629371 + 0.777105i \(0.716688\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −71.0000 −1.10938
\(17\) 54.0000 0.770407 0.385204 0.922832i \(-0.374131\pi\)
0.385204 + 0.922832i \(0.374131\pi\)
\(18\) 69.0000 0.903525
\(19\) −121.000 −1.46102 −0.730508 0.682904i \(-0.760717\pi\)
−0.730508 + 0.682904i \(0.760717\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 135.000 1.30828
\(23\) −69.0000 −0.625543 −0.312772 0.949828i \(-0.601257\pi\)
−0.312772 + 0.949828i \(0.601257\pi\)
\(24\) 42.0000 0.357217
\(25\) 0 0
\(26\) 177.000 1.33510
\(27\) −100.000 −0.712778
\(28\) 0 0
\(29\) −162.000 −1.03733 −0.518666 0.854977i \(-0.673571\pi\)
−0.518666 + 0.854977i \(0.673571\pi\)
\(30\) 0 0
\(31\) −88.0000 −0.509847 −0.254924 0.966961i \(-0.582050\pi\)
−0.254924 + 0.966961i \(0.582050\pi\)
\(32\) 45.0000 0.248592
\(33\) −90.0000 −0.474757
\(34\) −162.000 −0.817140
\(35\) 0 0
\(36\) −23.0000 −0.106481
\(37\) 259.000 1.15079 0.575396 0.817875i \(-0.304848\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(38\) 363.000 1.54964
\(39\) −118.000 −0.484490
\(40\) 0 0
\(41\) 195.000 0.742778 0.371389 0.928477i \(-0.378882\pi\)
0.371389 + 0.928477i \(0.378882\pi\)
\(42\) 0 0
\(43\) 286.000 1.01429 0.507146 0.861860i \(-0.330700\pi\)
0.507146 + 0.861860i \(0.330700\pi\)
\(44\) −45.0000 −0.154182
\(45\) 0 0
\(46\) 207.000 0.663489
\(47\) −45.0000 −0.139658 −0.0698290 0.997559i \(-0.522245\pi\)
−0.0698290 + 0.997559i \(0.522245\pi\)
\(48\) −142.000 −0.426999
\(49\) 0 0
\(50\) 0 0
\(51\) 108.000 0.296530
\(52\) −59.0000 −0.157343
\(53\) −597.000 −1.54725 −0.773625 0.633644i \(-0.781559\pi\)
−0.773625 + 0.633644i \(0.781559\pi\)
\(54\) 300.000 0.756015
\(55\) 0 0
\(56\) 0 0
\(57\) −242.000 −0.562345
\(58\) 486.000 1.10026
\(59\) −360.000 −0.794373 −0.397187 0.917738i \(-0.630013\pi\)
−0.397187 + 0.917738i \(0.630013\pi\)
\(60\) 0 0
\(61\) 392.000 0.822794 0.411397 0.911456i \(-0.365041\pi\)
0.411397 + 0.911456i \(0.365041\pi\)
\(62\) 264.000 0.540775
\(63\) 0 0
\(64\) 433.000 0.845703
\(65\) 0 0
\(66\) 270.000 0.503556
\(67\) 280.000 0.510559 0.255279 0.966867i \(-0.417833\pi\)
0.255279 + 0.966867i \(0.417833\pi\)
\(68\) 54.0000 0.0963009
\(69\) −138.000 −0.240772
\(70\) 0 0
\(71\) 48.0000 0.0802331 0.0401166 0.999195i \(-0.487227\pi\)
0.0401166 + 0.999195i \(0.487227\pi\)
\(72\) −483.000 −0.790585
\(73\) −668.000 −1.07101 −0.535503 0.844533i \(-0.679878\pi\)
−0.535503 + 0.844533i \(0.679878\pi\)
\(74\) −777.000 −1.22060
\(75\) 0 0
\(76\) −121.000 −0.182627
\(77\) 0 0
\(78\) 354.000 0.513880
\(79\) 782.000 1.11369 0.556847 0.830615i \(-0.312011\pi\)
0.556847 + 0.830615i \(0.312011\pi\)
\(80\) 0 0
\(81\) 421.000 0.577503
\(82\) −585.000 −0.787835
\(83\) −768.000 −1.01565 −0.507825 0.861460i \(-0.669550\pi\)
−0.507825 + 0.861460i \(0.669550\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −858.000 −1.07582
\(87\) −324.000 −0.399269
\(88\) −945.000 −1.14474
\(89\) −1194.00 −1.42206 −0.711032 0.703159i \(-0.751772\pi\)
−0.711032 + 0.703159i \(0.751772\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −69.0000 −0.0781929
\(93\) −176.000 −0.196240
\(94\) 135.000 0.148130
\(95\) 0 0
\(96\) 90.0000 0.0956832
\(97\) −902.000 −0.944167 −0.472084 0.881554i \(-0.656498\pi\)
−0.472084 + 0.881554i \(0.656498\pi\)
\(98\) 0 0
\(99\) 1035.00 1.05072
\(100\) 0 0
\(101\) 684.000 0.673867 0.336933 0.941528i \(-0.390610\pi\)
0.336933 + 0.941528i \(0.390610\pi\)
\(102\) −324.000 −0.314517
\(103\) 1516.00 1.45025 0.725126 0.688616i \(-0.241782\pi\)
0.725126 + 0.688616i \(0.241782\pi\)
\(104\) −1239.00 −1.16821
\(105\) 0 0
\(106\) 1791.00 1.64111
\(107\) 732.000 0.661356 0.330678 0.943744i \(-0.392723\pi\)
0.330678 + 0.943744i \(0.392723\pi\)
\(108\) −100.000 −0.0890973
\(109\) −1600.00 −1.40598 −0.702992 0.711198i \(-0.748153\pi\)
−0.702992 + 0.711198i \(0.748153\pi\)
\(110\) 0 0
\(111\) 518.000 0.442940
\(112\) 0 0
\(113\) 1392.00 1.15883 0.579417 0.815031i \(-0.303280\pi\)
0.579417 + 0.815031i \(0.303280\pi\)
\(114\) 726.000 0.596457
\(115\) 0 0
\(116\) −162.000 −0.129667
\(117\) 1357.00 1.07226
\(118\) 1080.00 0.842560
\(119\) 0 0
\(120\) 0 0
\(121\) 694.000 0.521412
\(122\) −1176.00 −0.872705
\(123\) 390.000 0.285895
\(124\) −88.0000 −0.0637309
\(125\) 0 0
\(126\) 0 0
\(127\) −803.000 −0.561061 −0.280530 0.959845i \(-0.590510\pi\)
−0.280530 + 0.959845i \(0.590510\pi\)
\(128\) −1659.00 −1.14560
\(129\) 572.000 0.390401
\(130\) 0 0
\(131\) 2019.00 1.34657 0.673286 0.739382i \(-0.264882\pi\)
0.673286 + 0.739382i \(0.264882\pi\)
\(132\) −90.0000 −0.0593447
\(133\) 0 0
\(134\) −840.000 −0.541529
\(135\) 0 0
\(136\) 1134.00 0.714998
\(137\) −60.0000 −0.0374171 −0.0187086 0.999825i \(-0.505955\pi\)
−0.0187086 + 0.999825i \(0.505955\pi\)
\(138\) 414.000 0.255377
\(139\) −1708.00 −1.04224 −0.521118 0.853485i \(-0.674485\pi\)
−0.521118 + 0.853485i \(0.674485\pi\)
\(140\) 0 0
\(141\) −90.0000 −0.0537544
\(142\) −144.000 −0.0851001
\(143\) 2655.00 1.55260
\(144\) 1633.00 0.945023
\(145\) 0 0
\(146\) 2004.00 1.13597
\(147\) 0 0
\(148\) 259.000 0.143849
\(149\) −1086.00 −0.597105 −0.298552 0.954393i \(-0.596504\pi\)
−0.298552 + 0.954393i \(0.596504\pi\)
\(150\) 0 0
\(151\) −2866.00 −1.54458 −0.772291 0.635269i \(-0.780889\pi\)
−0.772291 + 0.635269i \(0.780889\pi\)
\(152\) −2541.00 −1.35594
\(153\) −1242.00 −0.656273
\(154\) 0 0
\(155\) 0 0
\(156\) −118.000 −0.0605613
\(157\) 229.000 0.116409 0.0582044 0.998305i \(-0.481462\pi\)
0.0582044 + 0.998305i \(0.481462\pi\)
\(158\) −2346.00 −1.18125
\(159\) −1194.00 −0.595537
\(160\) 0 0
\(161\) 0 0
\(162\) −1263.00 −0.612535
\(163\) 1228.00 0.590088 0.295044 0.955484i \(-0.404666\pi\)
0.295044 + 0.955484i \(0.404666\pi\)
\(164\) 195.000 0.0928472
\(165\) 0 0
\(166\) 2304.00 1.07726
\(167\) 1929.00 0.893835 0.446918 0.894575i \(-0.352522\pi\)
0.446918 + 0.894575i \(0.352522\pi\)
\(168\) 0 0
\(169\) 1284.00 0.584433
\(170\) 0 0
\(171\) 2783.00 1.24457
\(172\) 286.000 0.126787
\(173\) 699.000 0.307191 0.153595 0.988134i \(-0.450915\pi\)
0.153595 + 0.988134i \(0.450915\pi\)
\(174\) 972.000 0.423489
\(175\) 0 0
\(176\) 3195.00 1.36836
\(177\) −720.000 −0.305754
\(178\) 3582.00 1.50833
\(179\) 3117.00 1.30154 0.650770 0.759275i \(-0.274446\pi\)
0.650770 + 0.759275i \(0.274446\pi\)
\(180\) 0 0
\(181\) −1798.00 −0.738366 −0.369183 0.929357i \(-0.620362\pi\)
−0.369183 + 0.929357i \(0.620362\pi\)
\(182\) 0 0
\(183\) 784.000 0.316694
\(184\) −1449.00 −0.580553
\(185\) 0 0
\(186\) 528.000 0.208144
\(187\) −2430.00 −0.950263
\(188\) −45.0000 −0.0174572
\(189\) 0 0
\(190\) 0 0
\(191\) −2388.00 −0.904658 −0.452329 0.891851i \(-0.649407\pi\)
−0.452329 + 0.891851i \(0.649407\pi\)
\(192\) 866.000 0.325511
\(193\) −272.000 −0.101446 −0.0507228 0.998713i \(-0.516152\pi\)
−0.0507228 + 0.998713i \(0.516152\pi\)
\(194\) 2706.00 1.00144
\(195\) 0 0
\(196\) 0 0
\(197\) 2109.00 0.762741 0.381371 0.924422i \(-0.375452\pi\)
0.381371 + 0.924422i \(0.375452\pi\)
\(198\) −3105.00 −1.11446
\(199\) 1424.00 0.507260 0.253630 0.967301i \(-0.418375\pi\)
0.253630 + 0.967301i \(0.418375\pi\)
\(200\) 0 0
\(201\) 560.000 0.196514
\(202\) −2052.00 −0.714744
\(203\) 0 0
\(204\) 108.000 0.0370662
\(205\) 0 0
\(206\) −4548.00 −1.53822
\(207\) 1587.00 0.532870
\(208\) 4189.00 1.39642
\(209\) 5445.00 1.80210
\(210\) 0 0
\(211\) −3625.00 −1.18273 −0.591363 0.806405i \(-0.701410\pi\)
−0.591363 + 0.806405i \(0.701410\pi\)
\(212\) −597.000 −0.193406
\(213\) 96.0000 0.0308817
\(214\) −2196.00 −0.701474
\(215\) 0 0
\(216\) −2100.00 −0.661513
\(217\) 0 0
\(218\) 4800.00 1.49127
\(219\) −1336.00 −0.412231
\(220\) 0 0
\(221\) −3186.00 −0.969745
\(222\) −1554.00 −0.469809
\(223\) 4960.00 1.48944 0.744722 0.667374i \(-0.232582\pi\)
0.744722 + 0.667374i \(0.232582\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4176.00 −1.22913
\(227\) 1500.00 0.438584 0.219292 0.975659i \(-0.429625\pi\)
0.219292 + 0.975659i \(0.429625\pi\)
\(228\) −242.000 −0.0702932
\(229\) 6092.00 1.75795 0.878975 0.476867i \(-0.158228\pi\)
0.878975 + 0.476867i \(0.158228\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3402.00 −0.962725
\(233\) −138.000 −0.0388012 −0.0194006 0.999812i \(-0.506176\pi\)
−0.0194006 + 0.999812i \(0.506176\pi\)
\(234\) −4071.00 −1.13731
\(235\) 0 0
\(236\) −360.000 −0.0992966
\(237\) 1564.00 0.428661
\(238\) 0 0
\(239\) −5502.00 −1.48910 −0.744550 0.667567i \(-0.767336\pi\)
−0.744550 + 0.667567i \(0.767336\pi\)
\(240\) 0 0
\(241\) 3551.00 0.949129 0.474564 0.880221i \(-0.342606\pi\)
0.474564 + 0.880221i \(0.342606\pi\)
\(242\) −2082.00 −0.553041
\(243\) 3542.00 0.935059
\(244\) 392.000 0.102849
\(245\) 0 0
\(246\) −1170.00 −0.303238
\(247\) 7139.00 1.83904
\(248\) −1848.00 −0.473178
\(249\) −1536.00 −0.390924
\(250\) 0 0
\(251\) 7065.00 1.77665 0.888324 0.459216i \(-0.151870\pi\)
0.888324 + 0.459216i \(0.151870\pi\)
\(252\) 0 0
\(253\) 3105.00 0.771580
\(254\) 2409.00 0.595095
\(255\) 0 0
\(256\) 1513.00 0.369385
\(257\) 4080.00 0.990286 0.495143 0.868812i \(-0.335116\pi\)
0.495143 + 0.868812i \(0.335116\pi\)
\(258\) −1716.00 −0.414083
\(259\) 0 0
\(260\) 0 0
\(261\) 3726.00 0.883654
\(262\) −6057.00 −1.42825
\(263\) 3288.00 0.770900 0.385450 0.922729i \(-0.374046\pi\)
0.385450 + 0.922729i \(0.374046\pi\)
\(264\) −1890.00 −0.440612
\(265\) 0 0
\(266\) 0 0
\(267\) −2388.00 −0.547353
\(268\) 280.000 0.0638199
\(269\) −3264.00 −0.739813 −0.369906 0.929069i \(-0.620610\pi\)
−0.369906 + 0.929069i \(0.620610\pi\)
\(270\) 0 0
\(271\) −2752.00 −0.616871 −0.308436 0.951245i \(-0.599805\pi\)
−0.308436 + 0.951245i \(0.599805\pi\)
\(272\) −3834.00 −0.854671
\(273\) 0 0
\(274\) 180.000 0.0396869
\(275\) 0 0
\(276\) −138.000 −0.0300965
\(277\) 4690.00 1.01731 0.508655 0.860971i \(-0.330143\pi\)
0.508655 + 0.860971i \(0.330143\pi\)
\(278\) 5124.00 1.10546
\(279\) 2024.00 0.434314
\(280\) 0 0
\(281\) 7821.00 1.66036 0.830181 0.557494i \(-0.188237\pi\)
0.830181 + 0.557494i \(0.188237\pi\)
\(282\) 270.000 0.0570151
\(283\) 658.000 0.138212 0.0691061 0.997609i \(-0.477985\pi\)
0.0691061 + 0.997609i \(0.477985\pi\)
\(284\) 48.0000 0.0100291
\(285\) 0 0
\(286\) −7965.00 −1.64678
\(287\) 0 0
\(288\) −1035.00 −0.211764
\(289\) −1997.00 −0.406473
\(290\) 0 0
\(291\) −1804.00 −0.363410
\(292\) −668.000 −0.133876
\(293\) 5997.00 1.19573 0.597864 0.801597i \(-0.296016\pi\)
0.597864 + 0.801597i \(0.296016\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 5439.00 1.06803
\(297\) 4500.00 0.879180
\(298\) 3258.00 0.633325
\(299\) 4071.00 0.787398
\(300\) 0 0
\(301\) 0 0
\(302\) 8598.00 1.63828
\(303\) 1368.00 0.259371
\(304\) 8591.00 1.62081
\(305\) 0 0
\(306\) 3726.00 0.696082
\(307\) 6226.00 1.15745 0.578724 0.815523i \(-0.303551\pi\)
0.578724 + 0.815523i \(0.303551\pi\)
\(308\) 0 0
\(309\) 3032.00 0.558202
\(310\) 0 0
\(311\) 4680.00 0.853307 0.426653 0.904415i \(-0.359692\pi\)
0.426653 + 0.904415i \(0.359692\pi\)
\(312\) −2478.00 −0.449645
\(313\) −1028.00 −0.185642 −0.0928211 0.995683i \(-0.529588\pi\)
−0.0928211 + 0.995683i \(0.529588\pi\)
\(314\) −687.000 −0.123470
\(315\) 0 0
\(316\) 782.000 0.139212
\(317\) −8622.00 −1.52763 −0.763817 0.645433i \(-0.776677\pi\)
−0.763817 + 0.645433i \(0.776677\pi\)
\(318\) 3582.00 0.631662
\(319\) 7290.00 1.27950
\(320\) 0 0
\(321\) 1464.00 0.254556
\(322\) 0 0
\(323\) −6534.00 −1.12558
\(324\) 421.000 0.0721879
\(325\) 0 0
\(326\) −3684.00 −0.625883
\(327\) −3200.00 −0.541163
\(328\) 4095.00 0.689355
\(329\) 0 0
\(330\) 0 0
\(331\) −1999.00 −0.331949 −0.165974 0.986130i \(-0.553077\pi\)
−0.165974 + 0.986130i \(0.553077\pi\)
\(332\) −768.000 −0.126956
\(333\) −5957.00 −0.980305
\(334\) −5787.00 −0.948056
\(335\) 0 0
\(336\) 0 0
\(337\) −5114.00 −0.826639 −0.413319 0.910586i \(-0.635631\pi\)
−0.413319 + 0.910586i \(0.635631\pi\)
\(338\) −3852.00 −0.619885
\(339\) 2784.00 0.446036
\(340\) 0 0
\(341\) 3960.00 0.628874
\(342\) −8349.00 −1.32006
\(343\) 0 0
\(344\) 6006.00 0.941342
\(345\) 0 0
\(346\) −2097.00 −0.325825
\(347\) −4320.00 −0.668328 −0.334164 0.942515i \(-0.608454\pi\)
−0.334164 + 0.942515i \(0.608454\pi\)
\(348\) −324.000 −0.0499087
\(349\) 7922.00 1.21506 0.607529 0.794298i \(-0.292161\pi\)
0.607529 + 0.794298i \(0.292161\pi\)
\(350\) 0 0
\(351\) 5900.00 0.897204
\(352\) −2025.00 −0.306627
\(353\) −828.000 −0.124844 −0.0624221 0.998050i \(-0.519882\pi\)
−0.0624221 + 0.998050i \(0.519882\pi\)
\(354\) 2160.00 0.324301
\(355\) 0 0
\(356\) −1194.00 −0.177758
\(357\) 0 0
\(358\) −9351.00 −1.38049
\(359\) −1350.00 −0.198469 −0.0992344 0.995064i \(-0.531639\pi\)
−0.0992344 + 0.995064i \(0.531639\pi\)
\(360\) 0 0
\(361\) 7782.00 1.13457
\(362\) 5394.00 0.783156
\(363\) 1388.00 0.200692
\(364\) 0 0
\(365\) 0 0
\(366\) −2352.00 −0.335904
\(367\) −2801.00 −0.398395 −0.199198 0.979959i \(-0.563834\pi\)
−0.199198 + 0.979959i \(0.563834\pi\)
\(368\) 4899.00 0.693962
\(369\) −4485.00 −0.632737
\(370\) 0 0
\(371\) 0 0
\(372\) −176.000 −0.0245300
\(373\) −6602.00 −0.916457 −0.458229 0.888834i \(-0.651516\pi\)
−0.458229 + 0.888834i \(0.651516\pi\)
\(374\) 7290.00 1.00791
\(375\) 0 0
\(376\) −945.000 −0.129613
\(377\) 9558.00 1.30573
\(378\) 0 0
\(379\) −8305.00 −1.12559 −0.562796 0.826596i \(-0.690274\pi\)
−0.562796 + 0.826596i \(0.690274\pi\)
\(380\) 0 0
\(381\) −1606.00 −0.215952
\(382\) 7164.00 0.959534
\(383\) −945.000 −0.126076 −0.0630382 0.998011i \(-0.520079\pi\)
−0.0630382 + 0.998011i \(0.520079\pi\)
\(384\) −3318.00 −0.440940
\(385\) 0 0
\(386\) 816.000 0.107599
\(387\) −6578.00 −0.864027
\(388\) −902.000 −0.118021
\(389\) 12036.0 1.56876 0.784382 0.620278i \(-0.212980\pi\)
0.784382 + 0.620278i \(0.212980\pi\)
\(390\) 0 0
\(391\) −3726.00 −0.481923
\(392\) 0 0
\(393\) 4038.00 0.518296
\(394\) −6327.00 −0.809009
\(395\) 0 0
\(396\) 1035.00 0.131340
\(397\) 2698.00 0.341080 0.170540 0.985351i \(-0.445449\pi\)
0.170540 + 0.985351i \(0.445449\pi\)
\(398\) −4272.00 −0.538030
\(399\) 0 0
\(400\) 0 0
\(401\) 7053.00 0.878329 0.439165 0.898407i \(-0.355274\pi\)
0.439165 + 0.898407i \(0.355274\pi\)
\(402\) −1680.00 −0.208435
\(403\) 5192.00 0.641767
\(404\) 684.000 0.0842333
\(405\) 0 0
\(406\) 0 0
\(407\) −11655.0 −1.41945
\(408\) 2268.00 0.275203
\(409\) −10870.0 −1.31415 −0.657074 0.753826i \(-0.728206\pi\)
−0.657074 + 0.753826i \(0.728206\pi\)
\(410\) 0 0
\(411\) −120.000 −0.0144019
\(412\) 1516.00 0.181281
\(413\) 0 0
\(414\) −4761.00 −0.565194
\(415\) 0 0
\(416\) −2655.00 −0.312914
\(417\) −3416.00 −0.401156
\(418\) −16335.0 −1.91141
\(419\) −9729.00 −1.13435 −0.567175 0.823597i \(-0.691964\pi\)
−0.567175 + 0.823597i \(0.691964\pi\)
\(420\) 0 0
\(421\) −12550.0 −1.45285 −0.726425 0.687246i \(-0.758819\pi\)
−0.726425 + 0.687246i \(0.758819\pi\)
\(422\) 10875.0 1.25447
\(423\) 1035.00 0.118968
\(424\) −12537.0 −1.43597
\(425\) 0 0
\(426\) −288.000 −0.0327550
\(427\) 0 0
\(428\) 732.000 0.0826695
\(429\) 5310.00 0.597597
\(430\) 0 0
\(431\) 2988.00 0.333937 0.166969 0.985962i \(-0.446602\pi\)
0.166969 + 0.985962i \(0.446602\pi\)
\(432\) 7100.00 0.790738
\(433\) −16616.0 −1.84414 −0.922072 0.387019i \(-0.873505\pi\)
−0.922072 + 0.387019i \(0.873505\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1600.00 −0.175748
\(437\) 8349.00 0.913929
\(438\) 4008.00 0.437237
\(439\) 7346.00 0.798646 0.399323 0.916810i \(-0.369245\pi\)
0.399323 + 0.916810i \(0.369245\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 9558.00 1.02857
\(443\) −12.0000 −0.00128699 −0.000643496 1.00000i \(-0.500205\pi\)
−0.000643496 1.00000i \(0.500205\pi\)
\(444\) 518.000 0.0553675
\(445\) 0 0
\(446\) −14880.0 −1.57979
\(447\) −2172.00 −0.229826
\(448\) 0 0
\(449\) 9669.00 1.01628 0.508138 0.861275i \(-0.330334\pi\)
0.508138 + 0.861275i \(0.330334\pi\)
\(450\) 0 0
\(451\) −8775.00 −0.916183
\(452\) 1392.00 0.144854
\(453\) −5732.00 −0.594510
\(454\) −4500.00 −0.465188
\(455\) 0 0
\(456\) −5082.00 −0.521900
\(457\) 9634.00 0.986126 0.493063 0.869994i \(-0.335877\pi\)
0.493063 + 0.869994i \(0.335877\pi\)
\(458\) −18276.0 −1.86459
\(459\) −5400.00 −0.549129
\(460\) 0 0
\(461\) −342.000 −0.0345521 −0.0172761 0.999851i \(-0.505499\pi\)
−0.0172761 + 0.999851i \(0.505499\pi\)
\(462\) 0 0
\(463\) −2411.00 −0.242006 −0.121003 0.992652i \(-0.538611\pi\)
−0.121003 + 0.992652i \(0.538611\pi\)
\(464\) 11502.0 1.15079
\(465\) 0 0
\(466\) 414.000 0.0411549
\(467\) 1206.00 0.119501 0.0597506 0.998213i \(-0.480969\pi\)
0.0597506 + 0.998213i \(0.480969\pi\)
\(468\) 1357.00 0.134033
\(469\) 0 0
\(470\) 0 0
\(471\) 458.000 0.0448058
\(472\) −7560.00 −0.737240
\(473\) −12870.0 −1.25109
\(474\) −4692.00 −0.454664
\(475\) 0 0
\(476\) 0 0
\(477\) 13731.0 1.31803
\(478\) 16506.0 1.57943
\(479\) −432.000 −0.0412079 −0.0206039 0.999788i \(-0.506559\pi\)
−0.0206039 + 0.999788i \(0.506559\pi\)
\(480\) 0 0
\(481\) −15281.0 −1.44855
\(482\) −10653.0 −1.00670
\(483\) 0 0
\(484\) 694.000 0.0651766
\(485\) 0 0
\(486\) −10626.0 −0.991780
\(487\) 11896.0 1.10690 0.553449 0.832883i \(-0.313311\pi\)
0.553449 + 0.832883i \(0.313311\pi\)
\(488\) 8232.00 0.763617
\(489\) 2456.00 0.227125
\(490\) 0 0
\(491\) −12276.0 −1.12833 −0.564163 0.825663i \(-0.690801\pi\)
−0.564163 + 0.825663i \(0.690801\pi\)
\(492\) 390.000 0.0357369
\(493\) −8748.00 −0.799169
\(494\) −21417.0 −1.95060
\(495\) 0 0
\(496\) 6248.00 0.565612
\(497\) 0 0
\(498\) 4608.00 0.414637
\(499\) −10876.0 −0.975705 −0.487852 0.872926i \(-0.662220\pi\)
−0.487852 + 0.872926i \(0.662220\pi\)
\(500\) 0 0
\(501\) 3858.00 0.344037
\(502\) −21195.0 −1.88442
\(503\) −12000.0 −1.06372 −0.531862 0.846831i \(-0.678508\pi\)
−0.531862 + 0.846831i \(0.678508\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −9315.00 −0.818384
\(507\) 2568.00 0.224948
\(508\) −803.000 −0.0701326
\(509\) −11682.0 −1.01728 −0.508640 0.860979i \(-0.669852\pi\)
−0.508640 + 0.860979i \(0.669852\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 8733.00 0.753804
\(513\) 12100.0 1.04138
\(514\) −12240.0 −1.05036
\(515\) 0 0
\(516\) 572.000 0.0488002
\(517\) 2025.00 0.172262
\(518\) 0 0
\(519\) 1398.00 0.118238
\(520\) 0 0
\(521\) 9609.00 0.808019 0.404010 0.914755i \(-0.367616\pi\)
0.404010 + 0.914755i \(0.367616\pi\)
\(522\) −11178.0 −0.937256
\(523\) −21188.0 −1.77148 −0.885742 0.464177i \(-0.846350\pi\)
−0.885742 + 0.464177i \(0.846350\pi\)
\(524\) 2019.00 0.168321
\(525\) 0 0
\(526\) −9864.00 −0.817663
\(527\) −4752.00 −0.392790
\(528\) 6390.00 0.526684
\(529\) −7406.00 −0.608696
\(530\) 0 0
\(531\) 8280.00 0.676688
\(532\) 0 0
\(533\) −11505.0 −0.934966
\(534\) 7164.00 0.580555
\(535\) 0 0
\(536\) 5880.00 0.473838
\(537\) 6234.00 0.500963
\(538\) 9792.00 0.784690
\(539\) 0 0
\(540\) 0 0
\(541\) 8072.00 0.641483 0.320742 0.947167i \(-0.396068\pi\)
0.320742 + 0.947167i \(0.396068\pi\)
\(542\) 8256.00 0.654291
\(543\) −3596.00 −0.284197
\(544\) 2430.00 0.191517
\(545\) 0 0
\(546\) 0 0
\(547\) −344.000 −0.0268892 −0.0134446 0.999910i \(-0.504280\pi\)
−0.0134446 + 0.999910i \(0.504280\pi\)
\(548\) −60.0000 −0.00467714
\(549\) −9016.00 −0.700899
\(550\) 0 0
\(551\) 19602.0 1.51556
\(552\) −2898.00 −0.223455
\(553\) 0 0
\(554\) −14070.0 −1.07902
\(555\) 0 0
\(556\) −1708.00 −0.130279
\(557\) −18363.0 −1.39689 −0.698443 0.715666i \(-0.746123\pi\)
−0.698443 + 0.715666i \(0.746123\pi\)
\(558\) −6072.00 −0.460660
\(559\) −16874.0 −1.27673
\(560\) 0 0
\(561\) −4860.00 −0.365756
\(562\) −23463.0 −1.76108
\(563\) 6294.00 0.471155 0.235578 0.971856i \(-0.424302\pi\)
0.235578 + 0.971856i \(0.424302\pi\)
\(564\) −90.0000 −0.00671930
\(565\) 0 0
\(566\) −1974.00 −0.146596
\(567\) 0 0
\(568\) 1008.00 0.0744626
\(569\) 11733.0 0.864452 0.432226 0.901765i \(-0.357728\pi\)
0.432226 + 0.901765i \(0.357728\pi\)
\(570\) 0 0
\(571\) 1052.00 0.0771013 0.0385506 0.999257i \(-0.487726\pi\)
0.0385506 + 0.999257i \(0.487726\pi\)
\(572\) 2655.00 0.194075
\(573\) −4776.00 −0.348203
\(574\) 0 0
\(575\) 0 0
\(576\) −9959.00 −0.720414
\(577\) 13156.0 0.949205 0.474603 0.880200i \(-0.342592\pi\)
0.474603 + 0.880200i \(0.342592\pi\)
\(578\) 5991.00 0.431129
\(579\) −544.000 −0.0390464
\(580\) 0 0
\(581\) 0 0
\(582\) 5412.00 0.385455
\(583\) 26865.0 1.90846
\(584\) −14028.0 −0.993977
\(585\) 0 0
\(586\) −17991.0 −1.26826
\(587\) 13368.0 0.939960 0.469980 0.882677i \(-0.344261\pi\)
0.469980 + 0.882677i \(0.344261\pi\)
\(588\) 0 0
\(589\) 10648.0 0.744895
\(590\) 0 0
\(591\) 4218.00 0.293579
\(592\) −18389.0 −1.27666
\(593\) −26664.0 −1.84647 −0.923237 0.384231i \(-0.874467\pi\)
−0.923237 + 0.384231i \(0.874467\pi\)
\(594\) −13500.0 −0.932511
\(595\) 0 0
\(596\) −1086.00 −0.0746381
\(597\) 2848.00 0.195244
\(598\) −12213.0 −0.835162
\(599\) 7614.00 0.519365 0.259682 0.965694i \(-0.416382\pi\)
0.259682 + 0.965694i \(0.416382\pi\)
\(600\) 0 0
\(601\) 6410.00 0.435057 0.217529 0.976054i \(-0.430200\pi\)
0.217529 + 0.976054i \(0.430200\pi\)
\(602\) 0 0
\(603\) −6440.00 −0.434921
\(604\) −2866.00 −0.193073
\(605\) 0 0
\(606\) −4104.00 −0.275105
\(607\) 21469.0 1.43558 0.717792 0.696257i \(-0.245153\pi\)
0.717792 + 0.696257i \(0.245153\pi\)
\(608\) −5445.00 −0.363197
\(609\) 0 0
\(610\) 0 0
\(611\) 2655.00 0.175793
\(612\) −1242.00 −0.0820341
\(613\) −3737.00 −0.246225 −0.123113 0.992393i \(-0.539288\pi\)
−0.123113 + 0.992393i \(0.539288\pi\)
\(614\) −18678.0 −1.22766
\(615\) 0 0
\(616\) 0 0
\(617\) −18078.0 −1.17957 −0.589784 0.807561i \(-0.700787\pi\)
−0.589784 + 0.807561i \(0.700787\pi\)
\(618\) −9096.00 −0.592063
\(619\) 12287.0 0.797829 0.398915 0.916988i \(-0.369387\pi\)
0.398915 + 0.916988i \(0.369387\pi\)
\(620\) 0 0
\(621\) 6900.00 0.445874
\(622\) −14040.0 −0.905069
\(623\) 0 0
\(624\) 8378.00 0.537481
\(625\) 0 0
\(626\) 3084.00 0.196903
\(627\) 10890.0 0.693628
\(628\) 229.000 0.0145511
\(629\) 13986.0 0.886579
\(630\) 0 0
\(631\) −9580.00 −0.604396 −0.302198 0.953245i \(-0.597720\pi\)
−0.302198 + 0.953245i \(0.597720\pi\)
\(632\) 16422.0 1.03360
\(633\) −7250.00 −0.455232
\(634\) 25866.0 1.62030
\(635\) 0 0
\(636\) −1194.00 −0.0744421
\(637\) 0 0
\(638\) −21870.0 −1.35712
\(639\) −1104.00 −0.0683467
\(640\) 0 0
\(641\) 10779.0 0.664189 0.332094 0.943246i \(-0.392245\pi\)
0.332094 + 0.943246i \(0.392245\pi\)
\(642\) −4392.00 −0.269998
\(643\) −8882.00 −0.544746 −0.272373 0.962192i \(-0.587809\pi\)
−0.272373 + 0.962192i \(0.587809\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 19602.0 1.19386
\(647\) 11019.0 0.669554 0.334777 0.942297i \(-0.391339\pi\)
0.334777 + 0.942297i \(0.391339\pi\)
\(648\) 8841.00 0.535968
\(649\) 16200.0 0.979824
\(650\) 0 0
\(651\) 0 0
\(652\) 1228.00 0.0737610
\(653\) −22323.0 −1.33777 −0.668887 0.743364i \(-0.733229\pi\)
−0.668887 + 0.743364i \(0.733229\pi\)
\(654\) 9600.00 0.573990
\(655\) 0 0
\(656\) −13845.0 −0.824019
\(657\) 15364.0 0.912339
\(658\) 0 0
\(659\) −11856.0 −0.700826 −0.350413 0.936595i \(-0.613959\pi\)
−0.350413 + 0.936595i \(0.613959\pi\)
\(660\) 0 0
\(661\) −33244.0 −1.95619 −0.978095 0.208158i \(-0.933253\pi\)
−0.978095 + 0.208158i \(0.933253\pi\)
\(662\) 5997.00 0.352085
\(663\) −6372.00 −0.373255
\(664\) −16128.0 −0.942602
\(665\) 0 0
\(666\) 17871.0 1.03977
\(667\) 11178.0 0.648896
\(668\) 1929.00 0.111729
\(669\) 9920.00 0.573288
\(670\) 0 0
\(671\) −17640.0 −1.01488
\(672\) 0 0
\(673\) 12322.0 0.705763 0.352881 0.935668i \(-0.385202\pi\)
0.352881 + 0.935668i \(0.385202\pi\)
\(674\) 15342.0 0.876783
\(675\) 0 0
\(676\) 1284.00 0.0730542
\(677\) 12597.0 0.715129 0.357564 0.933889i \(-0.383607\pi\)
0.357564 + 0.933889i \(0.383607\pi\)
\(678\) −8352.00 −0.473092
\(679\) 0 0
\(680\) 0 0
\(681\) 3000.00 0.168811
\(682\) −11880.0 −0.667022
\(683\) 8340.00 0.467235 0.233617 0.972329i \(-0.424944\pi\)
0.233617 + 0.972329i \(0.424944\pi\)
\(684\) 2783.00 0.155571
\(685\) 0 0
\(686\) 0 0
\(687\) 12184.0 0.676636
\(688\) −20306.0 −1.12523
\(689\) 35223.0 1.94759
\(690\) 0 0
\(691\) −20200.0 −1.11208 −0.556038 0.831157i \(-0.687679\pi\)
−0.556038 + 0.831157i \(0.687679\pi\)
\(692\) 699.000 0.0383988
\(693\) 0 0
\(694\) 12960.0 0.708869
\(695\) 0 0
\(696\) −6804.00 −0.370553
\(697\) 10530.0 0.572241
\(698\) −23766.0 −1.28876
\(699\) −276.000 −0.0149346
\(700\) 0 0
\(701\) 474.000 0.0255388 0.0127694 0.999918i \(-0.495935\pi\)
0.0127694 + 0.999918i \(0.495935\pi\)
\(702\) −17700.0 −0.951629
\(703\) −31339.0 −1.68133
\(704\) −19485.0 −1.04314
\(705\) 0 0
\(706\) 2484.00 0.132417
\(707\) 0 0
\(708\) −720.000 −0.0382193
\(709\) −25126.0 −1.33093 −0.665463 0.746431i \(-0.731766\pi\)
−0.665463 + 0.746431i \(0.731766\pi\)
\(710\) 0 0
\(711\) −17986.0 −0.948703
\(712\) −25074.0 −1.31979
\(713\) 6072.00 0.318932
\(714\) 0 0
\(715\) 0 0
\(716\) 3117.00 0.162692
\(717\) −11004.0 −0.573155
\(718\) 4050.00 0.210508
\(719\) −7296.00 −0.378435 −0.189218 0.981935i \(-0.560595\pi\)
−0.189218 + 0.981935i \(0.560595\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −23346.0 −1.20339
\(723\) 7102.00 0.365320
\(724\) −1798.00 −0.0922958
\(725\) 0 0
\(726\) −4164.00 −0.212866
\(727\) 15421.0 0.786703 0.393352 0.919388i \(-0.371316\pi\)
0.393352 + 0.919388i \(0.371316\pi\)
\(728\) 0 0
\(729\) −4283.00 −0.217599
\(730\) 0 0
\(731\) 15444.0 0.781419
\(732\) 784.000 0.0395867
\(733\) 29167.0 1.46972 0.734862 0.678217i \(-0.237247\pi\)
0.734862 + 0.678217i \(0.237247\pi\)
\(734\) 8403.00 0.422562
\(735\) 0 0
\(736\) −3105.00 −0.155505
\(737\) −12600.0 −0.629752
\(738\) 13455.0 0.671118
\(739\) −13381.0 −0.666073 −0.333037 0.942914i \(-0.608073\pi\)
−0.333037 + 0.942914i \(0.608073\pi\)
\(740\) 0 0
\(741\) 14278.0 0.707848
\(742\) 0 0
\(743\) −5487.00 −0.270927 −0.135463 0.990782i \(-0.543252\pi\)
−0.135463 + 0.990782i \(0.543252\pi\)
\(744\) −3696.00 −0.182126
\(745\) 0 0
\(746\) 19806.0 0.972050
\(747\) 17664.0 0.865183
\(748\) −2430.00 −0.118783
\(749\) 0 0
\(750\) 0 0
\(751\) 6638.00 0.322535 0.161268 0.986911i \(-0.448442\pi\)
0.161268 + 0.986911i \(0.448442\pi\)
\(752\) 3195.00 0.154933
\(753\) 14130.0 0.683832
\(754\) −28674.0 −1.38494
\(755\) 0 0
\(756\) 0 0
\(757\) −14846.0 −0.712797 −0.356398 0.934334i \(-0.615995\pi\)
−0.356398 + 0.934334i \(0.615995\pi\)
\(758\) 24915.0 1.19387
\(759\) 6210.00 0.296981
\(760\) 0 0
\(761\) −3651.00 −0.173914 −0.0869571 0.996212i \(-0.527714\pi\)
−0.0869571 + 0.996212i \(0.527714\pi\)
\(762\) 4818.00 0.229052
\(763\) 0 0
\(764\) −2388.00 −0.113082
\(765\) 0 0
\(766\) 2835.00 0.133724
\(767\) 21240.0 0.999911
\(768\) 3026.00 0.142176
\(769\) 29855.0 1.40000 0.699999 0.714144i \(-0.253184\pi\)
0.699999 + 0.714144i \(0.253184\pi\)
\(770\) 0 0
\(771\) 8160.00 0.381161
\(772\) −272.000 −0.0126807
\(773\) 6519.00 0.303327 0.151664 0.988432i \(-0.451537\pi\)
0.151664 + 0.988432i \(0.451537\pi\)
\(774\) 19734.0 0.916439
\(775\) 0 0
\(776\) −18942.0 −0.876261
\(777\) 0 0
\(778\) −36108.0 −1.66393
\(779\) −23595.0 −1.08521
\(780\) 0 0
\(781\) −2160.00 −0.0989640
\(782\) 11178.0 0.511157
\(783\) 16200.0 0.739388
\(784\) 0 0
\(785\) 0 0
\(786\) −12114.0 −0.549735
\(787\) −35114.0 −1.59044 −0.795222 0.606319i \(-0.792646\pi\)
−0.795222 + 0.606319i \(0.792646\pi\)
\(788\) 2109.00 0.0953427
\(789\) 6576.00 0.296720
\(790\) 0 0
\(791\) 0 0
\(792\) 21735.0 0.975151
\(793\) −23128.0 −1.03569
\(794\) −8094.00 −0.361770
\(795\) 0 0
\(796\) 1424.00 0.0634075
\(797\) −20910.0 −0.929323 −0.464661 0.885488i \(-0.653824\pi\)
−0.464661 + 0.885488i \(0.653824\pi\)
\(798\) 0 0
\(799\) −2430.00 −0.107594
\(800\) 0 0
\(801\) 27462.0 1.21139
\(802\) −21159.0 −0.931609
\(803\) 30060.0 1.32104
\(804\) 560.000 0.0245643
\(805\) 0 0
\(806\) −15576.0 −0.680696
\(807\) −6528.00 −0.284754
\(808\) 14364.0 0.625401
\(809\) 4431.00 0.192566 0.0962829 0.995354i \(-0.469305\pi\)
0.0962829 + 0.995354i \(0.469305\pi\)
\(810\) 0 0
\(811\) −9577.00 −0.414666 −0.207333 0.978270i \(-0.566478\pi\)
−0.207333 + 0.978270i \(0.566478\pi\)
\(812\) 0 0
\(813\) −5504.00 −0.237434
\(814\) 34965.0 1.50556
\(815\) 0 0
\(816\) −7668.00 −0.328963
\(817\) −34606.0 −1.48190
\(818\) 32610.0 1.39387
\(819\) 0 0
\(820\) 0 0
\(821\) −10938.0 −0.464968 −0.232484 0.972600i \(-0.574685\pi\)
−0.232484 + 0.972600i \(0.574685\pi\)
\(822\) 360.000 0.0152755
\(823\) −11540.0 −0.488772 −0.244386 0.969678i \(-0.578586\pi\)
−0.244386 + 0.969678i \(0.578586\pi\)
\(824\) 31836.0 1.34595
\(825\) 0 0
\(826\) 0 0
\(827\) 18762.0 0.788898 0.394449 0.918918i \(-0.370935\pi\)
0.394449 + 0.918918i \(0.370935\pi\)
\(828\) 1587.00 0.0666088
\(829\) −39610.0 −1.65948 −0.829742 0.558147i \(-0.811512\pi\)
−0.829742 + 0.558147i \(0.811512\pi\)
\(830\) 0 0
\(831\) 9380.00 0.391563
\(832\) −25547.0 −1.06452
\(833\) 0 0
\(834\) 10248.0 0.425491
\(835\) 0 0
\(836\) 5445.00 0.225262
\(837\) 8800.00 0.363408
\(838\) 29187.0 1.20316
\(839\) 39162.0 1.61147 0.805734 0.592277i \(-0.201771\pi\)
0.805734 + 0.592277i \(0.201771\pi\)
\(840\) 0 0
\(841\) 1855.00 0.0760589
\(842\) 37650.0 1.54098
\(843\) 15642.0 0.639074
\(844\) −3625.00 −0.147841
\(845\) 0 0
\(846\) −3105.00 −0.126185
\(847\) 0 0
\(848\) 42387.0 1.71648
\(849\) 1316.00 0.0531979
\(850\) 0 0
\(851\) −17871.0 −0.719871
\(852\) 96.0000 0.00386022
\(853\) 11527.0 0.462693 0.231346 0.972871i \(-0.425687\pi\)
0.231346 + 0.972871i \(0.425687\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 15372.0 0.613790
\(857\) 41826.0 1.66715 0.833576 0.552405i \(-0.186290\pi\)
0.833576 + 0.552405i \(0.186290\pi\)
\(858\) −15930.0 −0.633848
\(859\) 35192.0 1.39783 0.698915 0.715205i \(-0.253667\pi\)
0.698915 + 0.715205i \(0.253667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −8964.00 −0.354194
\(863\) 9063.00 0.357483 0.178742 0.983896i \(-0.442797\pi\)
0.178742 + 0.983896i \(0.442797\pi\)
\(864\) −4500.00 −0.177191
\(865\) 0 0
\(866\) 49848.0 1.95601
\(867\) −3994.00 −0.156451
\(868\) 0 0
\(869\) −35190.0 −1.37369
\(870\) 0 0
\(871\) −16520.0 −0.642662
\(872\) −33600.0 −1.30486
\(873\) 20746.0 0.804291
\(874\) −25047.0 −0.969368
\(875\) 0 0
\(876\) −1336.00 −0.0515288
\(877\) −28439.0 −1.09500 −0.547501 0.836805i \(-0.684421\pi\)
−0.547501 + 0.836805i \(0.684421\pi\)
\(878\) −22038.0 −0.847092
\(879\) 11994.0 0.460236
\(880\) 0 0
\(881\) −9303.00 −0.355762 −0.177881 0.984052i \(-0.556924\pi\)
−0.177881 + 0.984052i \(0.556924\pi\)
\(882\) 0 0
\(883\) 14728.0 0.561310 0.280655 0.959809i \(-0.409448\pi\)
0.280655 + 0.959809i \(0.409448\pi\)
\(884\) −3186.00 −0.121218
\(885\) 0 0
\(886\) 36.0000 0.00136506
\(887\) 17016.0 0.644128 0.322064 0.946718i \(-0.395623\pi\)
0.322064 + 0.946718i \(0.395623\pi\)
\(888\) 10878.0 0.411083
\(889\) 0 0
\(890\) 0 0
\(891\) −18945.0 −0.712325
\(892\) 4960.00 0.186181
\(893\) 5445.00 0.204043
\(894\) 6516.00 0.243767
\(895\) 0 0
\(896\) 0 0
\(897\) 8142.00 0.303070
\(898\) −29007.0 −1.07792
\(899\) 14256.0 0.528881
\(900\) 0 0
\(901\) −32238.0 −1.19201
\(902\) 26325.0 0.971759
\(903\) 0 0
\(904\) 29232.0 1.07549
\(905\) 0 0
\(906\) 17196.0 0.630573
\(907\) 24922.0 0.912372 0.456186 0.889884i \(-0.349215\pi\)
0.456186 + 0.889884i \(0.349215\pi\)
\(908\) 1500.00 0.0548230
\(909\) −15732.0 −0.574035
\(910\) 0 0
\(911\) 30714.0 1.11701 0.558507 0.829500i \(-0.311374\pi\)
0.558507 + 0.829500i \(0.311374\pi\)
\(912\) 17182.0 0.623852
\(913\) 34560.0 1.25276
\(914\) −28902.0 −1.04594
\(915\) 0 0
\(916\) 6092.00 0.219744
\(917\) 0 0
\(918\) 16200.0 0.582440
\(919\) 17426.0 0.625496 0.312748 0.949836i \(-0.398750\pi\)
0.312748 + 0.949836i \(0.398750\pi\)
\(920\) 0 0
\(921\) 12452.0 0.445502
\(922\) 1026.00 0.0366481
\(923\) −2832.00 −0.100993
\(924\) 0 0
\(925\) 0 0
\(926\) 7233.00 0.256686
\(927\) −34868.0 −1.23540
\(928\) −7290.00 −0.257873
\(929\) 26649.0 0.941147 0.470573 0.882361i \(-0.344047\pi\)
0.470573 + 0.882361i \(0.344047\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −138.000 −0.00485015
\(933\) 9360.00 0.328438
\(934\) −3618.00 −0.126750
\(935\) 0 0
\(936\) 28497.0 0.995143
\(937\) −27686.0 −0.965274 −0.482637 0.875820i \(-0.660321\pi\)
−0.482637 + 0.875820i \(0.660321\pi\)
\(938\) 0 0
\(939\) −2056.00 −0.0714537
\(940\) 0 0
\(941\) −17808.0 −0.616923 −0.308461 0.951237i \(-0.599814\pi\)
−0.308461 + 0.951237i \(0.599814\pi\)
\(942\) −1374.00 −0.0475237
\(943\) −13455.0 −0.464640
\(944\) 25560.0 0.881258
\(945\) 0 0
\(946\) 38610.0 1.32698
\(947\) 6906.00 0.236974 0.118487 0.992956i \(-0.462196\pi\)
0.118487 + 0.992956i \(0.462196\pi\)
\(948\) 1564.00 0.0535827
\(949\) 39412.0 1.34812
\(950\) 0 0
\(951\) −17244.0 −0.587986
\(952\) 0 0
\(953\) 20940.0 0.711766 0.355883 0.934530i \(-0.384180\pi\)
0.355883 + 0.934530i \(0.384180\pi\)
\(954\) −41193.0 −1.39798
\(955\) 0 0
\(956\) −5502.00 −0.186137
\(957\) 14580.0 0.492481
\(958\) 1296.00 0.0437076
\(959\) 0 0
\(960\) 0 0
\(961\) −22047.0 −0.740056
\(962\) 45843.0 1.53642
\(963\) −16836.0 −0.563377
\(964\) 3551.00 0.118641
\(965\) 0 0
\(966\) 0 0
\(967\) −9176.00 −0.305150 −0.152575 0.988292i \(-0.548757\pi\)
−0.152575 + 0.988292i \(0.548757\pi\)
\(968\) 14574.0 0.483911
\(969\) −13068.0 −0.433235
\(970\) 0 0
\(971\) 29763.0 0.983666 0.491833 0.870689i \(-0.336327\pi\)
0.491833 + 0.870689i \(0.336327\pi\)
\(972\) 3542.00 0.116882
\(973\) 0 0
\(974\) −35688.0 −1.17404
\(975\) 0 0
\(976\) −27832.0 −0.912788
\(977\) 38490.0 1.26039 0.630197 0.776436i \(-0.282974\pi\)
0.630197 + 0.776436i \(0.282974\pi\)
\(978\) −7368.00 −0.240903
\(979\) 53730.0 1.75405
\(980\) 0 0
\(981\) 36800.0 1.19769
\(982\) 36828.0 1.19677
\(983\) 12609.0 0.409120 0.204560 0.978854i \(-0.434424\pi\)
0.204560 + 0.978854i \(0.434424\pi\)
\(984\) 8190.00 0.265333
\(985\) 0 0
\(986\) 26244.0 0.847646
\(987\) 0 0
\(988\) 7139.00 0.229880
\(989\) −19734.0 −0.634484
\(990\) 0 0
\(991\) 19820.0 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) −3960.00 −0.126744
\(993\) −3998.00 −0.127767
\(994\) 0 0
\(995\) 0 0
\(996\) −1536.00 −0.0488655
\(997\) −46034.0 −1.46230 −0.731149 0.682218i \(-0.761016\pi\)
−0.731149 + 0.682218i \(0.761016\pi\)
\(998\) 32628.0 1.03489
\(999\) −25900.0 −0.820260
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.4.a.b.1.1 1
5.4 even 2 245.4.a.e.1.1 1
7.2 even 3 175.4.e.b.151.1 2
7.4 even 3 175.4.e.b.51.1 2
7.6 odd 2 1225.4.a.a.1.1 1
15.14 odd 2 2205.4.a.e.1.1 1
35.2 odd 12 175.4.k.b.74.1 4
35.4 even 6 35.4.e.a.16.1 yes 2
35.9 even 6 35.4.e.a.11.1 2
35.18 odd 12 175.4.k.b.149.1 4
35.19 odd 6 245.4.e.a.116.1 2
35.23 odd 12 175.4.k.b.74.2 4
35.24 odd 6 245.4.e.a.226.1 2
35.32 odd 12 175.4.k.b.149.2 4
35.34 odd 2 245.4.a.f.1.1 1
105.44 odd 6 315.4.j.b.46.1 2
105.74 odd 6 315.4.j.b.226.1 2
105.104 even 2 2205.4.a.g.1.1 1
140.39 odd 6 560.4.q.b.401.1 2
140.79 odd 6 560.4.q.b.81.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.e.a.11.1 2 35.9 even 6
35.4.e.a.16.1 yes 2 35.4 even 6
175.4.e.b.51.1 2 7.4 even 3
175.4.e.b.151.1 2 7.2 even 3
175.4.k.b.74.1 4 35.2 odd 12
175.4.k.b.74.2 4 35.23 odd 12
175.4.k.b.149.1 4 35.18 odd 12
175.4.k.b.149.2 4 35.32 odd 12
245.4.a.e.1.1 1 5.4 even 2
245.4.a.f.1.1 1 35.34 odd 2
245.4.e.a.116.1 2 35.19 odd 6
245.4.e.a.226.1 2 35.24 odd 6
315.4.j.b.46.1 2 105.44 odd 6
315.4.j.b.226.1 2 105.74 odd 6
560.4.q.b.81.1 2 140.79 odd 6
560.4.q.b.401.1 2 140.39 odd 6
1225.4.a.a.1.1 1 7.6 odd 2
1225.4.a.b.1.1 1 1.1 even 1 trivial
2205.4.a.e.1.1 1 15.14 odd 2
2205.4.a.g.1.1 1 105.104 even 2