Properties

Label 1225.2.b.g
Level $1225$
Weight $2$
Character orbit 1225.b
Analytic conductor $9.782$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1225.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.78167424761\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \zeta_{8} + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{2} + ( \zeta_{8} - \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{3} + ( -1 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{4} - q^{6} + ( -\zeta_{8} - 3 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{8} + ( 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{9} +O(q^{10})\) \( q + ( \zeta_{8} + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{2} + ( \zeta_{8} - \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{3} + ( -1 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{4} - q^{6} + ( -\zeta_{8} - 3 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{8} + ( 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{9} + ( 2 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{11} + ( \zeta_{8} - 3 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{12} + ( 2 \zeta_{8} + 2 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{13} + 3 q^{16} + ( 2 \zeta_{8} + 2 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{17} + ( 2 \zeta_{8} + 4 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{18} + ( -2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{19} -2 \zeta_{8}^{2} q^{22} + ( -\zeta_{8} + \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{23} + ( -1 + 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{24} + ( -6 - 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{26} + ( \zeta_{8} + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{27} + q^{29} -6 q^{31} + ( \zeta_{8} - 3 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{32} + ( 4 \zeta_{8} - 6 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{33} + ( -6 - 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{34} + ( -8 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{36} + ( -2 \zeta_{8} - 4 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{38} -2 q^{39} + ( -5 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{41} + ( \zeta_{8} - 5 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{43} + ( 6 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{44} + q^{46} + 2 \zeta_{8}^{2} q^{47} + ( 3 \zeta_{8} - 3 \zeta_{8}^{2} + 3 \zeta_{8}^{3} ) q^{48} -2 q^{51} + ( -6 \zeta_{8} - 10 \zeta_{8}^{2} - 6 \zeta_{8}^{3} ) q^{52} + ( -2 \zeta_{8} + 4 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{53} + ( -3 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{54} + ( 2 \zeta_{8} - 4 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{57} + ( \zeta_{8} + \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{58} + ( 4 - 6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{59} + ( -3 + 6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{61} + ( -6 \zeta_{8} - 6 \zeta_{8}^{2} - 6 \zeta_{8}^{3} ) q^{62} + ( 7 + 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{64} + ( -2 + 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{66} + ( -\zeta_{8} + 11 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{67} + ( -6 \zeta_{8} - 10 \zeta_{8}^{2} - 6 \zeta_{8}^{3} ) q^{68} + ( 3 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{69} + ( -4 + 6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{71} + ( -6 \zeta_{8} - 4 \zeta_{8}^{2} - 6 \zeta_{8}^{3} ) q^{72} + ( 2 \zeta_{8} - 2 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{73} + ( 8 + 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{76} + ( -2 \zeta_{8} - 2 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{78} + ( -12 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{79} + ( -1 + 6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{81} + ( -7 \zeta_{8} - 9 \zeta_{8}^{2} - 7 \zeta_{8}^{3} ) q^{82} + ( -9 \zeta_{8} - \zeta_{8}^{2} - 9 \zeta_{8}^{3} ) q^{83} + ( 3 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{86} + ( \zeta_{8} - \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{87} + ( 4 \zeta_{8} - 2 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{88} + ( 3 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{89} + ( -\zeta_{8} + 3 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{92} + ( -6 \zeta_{8} + 6 \zeta_{8}^{2} - 6 \zeta_{8}^{3} ) q^{93} + ( -2 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{94} + ( -5 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{96} + ( 4 \zeta_{8} + 6 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{97} + ( -8 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{4} - 4q^{6} + O(q^{10}) \) \( 4q - 4q^{4} - 4q^{6} + 8q^{11} + 12q^{16} - 4q^{24} - 24q^{26} + 4q^{29} - 24q^{31} - 24q^{34} - 32q^{36} - 8q^{39} - 20q^{41} + 24q^{44} + 4q^{46} - 8q^{51} - 12q^{54} + 16q^{59} - 12q^{61} + 28q^{64} - 8q^{66} + 12q^{69} - 16q^{71} + 32q^{76} - 48q^{79} - 4q^{81} + 12q^{86} + 12q^{89} - 8q^{94} - 20q^{96} - 32q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(1177\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
2.41421i 0.414214i −3.82843 0 −1.00000 0 4.41421i 2.82843 0
99.2 0.414214i 2.41421i 1.82843 0 −1.00000 0 1.58579i −2.82843 0
99.3 0.414214i 2.41421i 1.82843 0 −1.00000 0 1.58579i −2.82843 0
99.4 2.41421i 0.414214i −3.82843 0 −1.00000 0 4.41421i 2.82843 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1225.2.b.g 4
5.b even 2 1 inner 1225.2.b.g 4
5.c odd 4 1 245.2.a.h 2
5.c odd 4 1 1225.2.a.k 2
7.b odd 2 1 1225.2.b.h 4
7.c even 3 2 175.2.k.a 8
15.e even 4 1 2205.2.a.n 2
20.e even 4 1 3920.2.a.bq 2
35.c odd 2 1 1225.2.b.h 4
35.f even 4 1 245.2.a.g 2
35.f even 4 1 1225.2.a.m 2
35.j even 6 2 175.2.k.a 8
35.k even 12 2 245.2.e.e 4
35.l odd 12 2 35.2.e.a 4
35.l odd 12 2 175.2.e.c 4
105.k odd 4 1 2205.2.a.q 2
105.x even 12 2 315.2.j.e 4
140.j odd 4 1 3920.2.a.bv 2
140.w even 12 2 560.2.q.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.e.a 4 35.l odd 12 2
175.2.e.c 4 35.l odd 12 2
175.2.k.a 8 7.c even 3 2
175.2.k.a 8 35.j even 6 2
245.2.a.g 2 35.f even 4 1
245.2.a.h 2 5.c odd 4 1
245.2.e.e 4 35.k even 12 2
315.2.j.e 4 105.x even 12 2
560.2.q.k 4 140.w even 12 2
1225.2.a.k 2 5.c odd 4 1
1225.2.a.m 2 35.f even 4 1
1225.2.b.g 4 1.a even 1 1 trivial
1225.2.b.g 4 5.b even 2 1 inner
1225.2.b.h 4 7.b odd 2 1
1225.2.b.h 4 35.c odd 2 1
2205.2.a.n 2 15.e even 4 1
2205.2.a.q 2 105.k odd 4 1
3920.2.a.bq 2 20.e even 4 1
3920.2.a.bv 2 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1225, [\chi])\):

\( T_{2}^{4} + 6 T_{2}^{2} + 1 \)
\( T_{19}^{2} - 8 \)
\( T_{31} + 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + 6 T^{2} + T^{4} \)
$3$ \( 1 + 6 T^{2} + T^{4} \)
$5$ \( T^{4} \)
$7$ \( T^{4} \)
$11$ \( ( -4 - 4 T + T^{2} )^{2} \)
$13$ \( 16 + 24 T^{2} + T^{4} \)
$17$ \( 16 + 24 T^{2} + T^{4} \)
$19$ \( ( -8 + T^{2} )^{2} \)
$23$ \( 1 + 6 T^{2} + T^{4} \)
$29$ \( ( -1 + T )^{4} \)
$31$ \( ( 6 + T )^{4} \)
$37$ \( T^{4} \)
$41$ \( ( 17 + 10 T + T^{2} )^{2} \)
$43$ \( 529 + 54 T^{2} + T^{4} \)
$47$ \( ( 4 + T^{2} )^{2} \)
$53$ \( 64 + 48 T^{2} + T^{4} \)
$59$ \( ( -56 - 8 T + T^{2} )^{2} \)
$61$ \( ( -63 + 6 T + T^{2} )^{2} \)
$67$ \( 14161 + 246 T^{2} + T^{4} \)
$71$ \( ( -56 + 8 T + T^{2} )^{2} \)
$73$ \( 16 + 24 T^{2} + T^{4} \)
$79$ \( ( 136 + 24 T + T^{2} )^{2} \)
$83$ \( 25921 + 326 T^{2} + T^{4} \)
$89$ \( ( -23 - 6 T + T^{2} )^{2} \)
$97$ \( 16 + 136 T^{2} + T^{4} \)
show more
show less