Defining parameters
Level: | \( N \) | \(=\) | \( 1225 = 5^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1225.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(280\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\), \(19\), \(31\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1225, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 164 | 66 | 98 |
Cusp forms | 116 | 56 | 60 |
Eisenstein series | 48 | 10 | 38 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1225, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1225, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1225, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 2}\)