# Properties

 Label 1225.2.a.c.1.1 Level $1225$ Weight $2$ Character 1225.1 Self dual yes Analytic conductor $9.782$ Analytic rank $0$ Dimension $1$ CM discriminant -7 Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1225 = 5^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1225.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$9.78167424761$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 49) Fricke sign: $$-1$$ Sato-Tate group: $N(\mathrm{U}(1))$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1225.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-1.00000 q^{2} -1.00000 q^{4} +3.00000 q^{8} -3.00000 q^{9} +O(q^{10})$$ $$q-1.00000 q^{2} -1.00000 q^{4} +3.00000 q^{8} -3.00000 q^{9} +4.00000 q^{11} -1.00000 q^{16} +3.00000 q^{18} -4.00000 q^{22} -8.00000 q^{23} +2.00000 q^{29} -5.00000 q^{32} +3.00000 q^{36} +6.00000 q^{37} +12.0000 q^{43} -4.00000 q^{44} +8.00000 q^{46} +10.0000 q^{53} -2.00000 q^{58} +7.00000 q^{64} -4.00000 q^{67} +16.0000 q^{71} -9.00000 q^{72} -6.00000 q^{74} +8.00000 q^{79} +9.00000 q^{81} -12.0000 q^{86} +12.0000 q^{88} +8.00000 q^{92} -12.0000 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.00000 −0.707107 −0.353553 0.935414i $$-0.615027\pi$$
−0.353553 + 0.935414i $$0.615027\pi$$
$$3$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$4$$ −1.00000 −0.500000
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 0 0
$$8$$ 3.00000 1.06066
$$9$$ −3.00000 −1.00000
$$10$$ 0 0
$$11$$ 4.00000 1.20605 0.603023 0.797724i $$-0.293963\pi$$
0.603023 + 0.797724i $$0.293963\pi$$
$$12$$ 0 0
$$13$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ −1.00000 −0.250000
$$17$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$18$$ 3.00000 0.707107
$$19$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ −4.00000 −0.852803
$$23$$ −8.00000 −1.66812 −0.834058 0.551677i $$-0.813988\pi$$
−0.834058 + 0.551677i $$0.813988\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 2.00000 0.371391 0.185695 0.982607i $$-0.440546\pi$$
0.185695 + 0.982607i $$0.440546\pi$$
$$30$$ 0 0
$$31$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$32$$ −5.00000 −0.883883
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 3.00000 0.500000
$$37$$ 6.00000 0.986394 0.493197 0.869918i $$-0.335828\pi$$
0.493197 + 0.869918i $$0.335828\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$42$$ 0 0
$$43$$ 12.0000 1.82998 0.914991 0.403473i $$-0.132197\pi$$
0.914991 + 0.403473i $$0.132197\pi$$
$$44$$ −4.00000 −0.603023
$$45$$ 0 0
$$46$$ 8.00000 1.17954
$$47$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 10.0000 1.37361 0.686803 0.726844i $$-0.259014\pi$$
0.686803 + 0.726844i $$0.259014\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ −2.00000 −0.262613
$$59$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$60$$ 0 0
$$61$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 7.00000 0.875000
$$65$$ 0 0
$$66$$ 0 0
$$67$$ −4.00000 −0.488678 −0.244339 0.969690i $$-0.578571\pi$$
−0.244339 + 0.969690i $$0.578571\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 16.0000 1.89885 0.949425 0.313993i $$-0.101667\pi$$
0.949425 + 0.313993i $$0.101667\pi$$
$$72$$ −9.00000 −1.06066
$$73$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$74$$ −6.00000 −0.697486
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 8.00000 0.900070 0.450035 0.893011i $$-0.351411\pi$$
0.450035 + 0.893011i $$0.351411\pi$$
$$80$$ 0 0
$$81$$ 9.00000 1.00000
$$82$$ 0 0
$$83$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ −12.0000 −1.29399
$$87$$ 0 0
$$88$$ 12.0000 1.27920
$$89$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 8.00000 0.834058
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$98$$ 0 0
$$99$$ −12.0000 −1.20605
$$100$$ 0 0
$$101$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$102$$ 0 0
$$103$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ −10.0000 −0.971286
$$107$$ 20.0000 1.93347 0.966736 0.255774i $$-0.0823304\pi$$
0.966736 + 0.255774i $$0.0823304\pi$$
$$108$$ 0 0
$$109$$ 18.0000 1.72409 0.862044 0.506834i $$-0.169184\pi$$
0.862044 + 0.506834i $$0.169184\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −2.00000 −0.188144 −0.0940721 0.995565i $$-0.529988\pi$$
−0.0940721 + 0.995565i $$0.529988\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ −2.00000 −0.185695
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 5.00000 0.454545
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ −16.0000 −1.41977 −0.709885 0.704317i $$-0.751253\pi$$
−0.709885 + 0.704317i $$0.751253\pi$$
$$128$$ 3.00000 0.265165
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 4.00000 0.345547
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 10.0000 0.854358 0.427179 0.904167i $$-0.359507\pi$$
0.427179 + 0.904167i $$0.359507\pi$$
$$138$$ 0 0
$$139$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ −16.0000 −1.34269
$$143$$ 0 0
$$144$$ 3.00000 0.250000
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 0 0
$$148$$ −6.00000 −0.493197
$$149$$ 22.0000 1.80231 0.901155 0.433497i $$-0.142720\pi$$
0.901155 + 0.433497i $$0.142720\pi$$
$$150$$ 0 0
$$151$$ −24.0000 −1.95309 −0.976546 0.215308i $$-0.930924\pi$$
−0.976546 + 0.215308i $$0.930924\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$158$$ −8.00000 −0.636446
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ −9.00000 −0.707107
$$163$$ 20.0000 1.56652 0.783260 0.621694i $$-0.213555\pi$$
0.783260 + 0.621694i $$0.213555\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$168$$ 0 0
$$169$$ −13.0000 −1.00000
$$170$$ 0 0
$$171$$ 0 0
$$172$$ −12.0000 −0.914991
$$173$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ −4.00000 −0.301511
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 4.00000 0.298974 0.149487 0.988764i $$-0.452238\pi$$
0.149487 + 0.988764i $$0.452238\pi$$
$$180$$ 0 0
$$181$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ −24.0000 −1.76930
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 8.00000 0.578860 0.289430 0.957199i $$-0.406534\pi$$
0.289430 + 0.957199i $$0.406534\pi$$
$$192$$ 0 0
$$193$$ −18.0000 −1.29567 −0.647834 0.761781i $$-0.724325\pi$$
−0.647834 + 0.761781i $$0.724325\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 26.0000 1.85242 0.926212 0.377004i $$-0.123046\pi$$
0.926212 + 0.377004i $$0.123046\pi$$
$$198$$ 12.0000 0.852803
$$199$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 24.0000 1.66812
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ −12.0000 −0.826114 −0.413057 0.910705i $$-0.635539\pi$$
−0.413057 + 0.910705i $$0.635539\pi$$
$$212$$ −10.0000 −0.686803
$$213$$ 0 0
$$214$$ −20.0000 −1.36717
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 0 0
$$218$$ −18.0000 −1.21911
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 2.00000 0.133038
$$227$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$228$$ 0 0
$$229$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 6.00000 0.393919
$$233$$ −22.0000 −1.44127 −0.720634 0.693316i $$-0.756149\pi$$
−0.720634 + 0.693316i $$0.756149\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 16.0000 1.03495 0.517477 0.855697i $$-0.326871\pi$$
0.517477 + 0.855697i $$0.326871\pi$$
$$240$$ 0 0
$$241$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$242$$ −5.00000 −0.321412
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$252$$ 0 0
$$253$$ −32.0000 −2.01182
$$254$$ 16.0000 1.00393
$$255$$ 0 0
$$256$$ −17.0000 −1.06250
$$257$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ −6.00000 −0.371391
$$262$$ 0 0
$$263$$ −32.0000 −1.97320 −0.986602 0.163144i $$-0.947836\pi$$
−0.986602 + 0.163144i $$0.947836\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 4.00000 0.244339
$$269$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$270$$ 0 0
$$271$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ −10.0000 −0.604122
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 10.0000 0.600842 0.300421 0.953807i $$-0.402873\pi$$
0.300421 + 0.953807i $$0.402873\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −26.0000 −1.55103 −0.775515 0.631329i $$-0.782510\pi$$
−0.775515 + 0.631329i $$0.782510\pi$$
$$282$$ 0 0
$$283$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$284$$ −16.0000 −0.949425
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 15.0000 0.883883
$$289$$ −17.0000 −1.00000
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 18.0000 1.04623
$$297$$ 0 0
$$298$$ −22.0000 −1.27443
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 24.0000 1.38104
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$312$$ 0 0
$$313$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ −8.00000 −0.450035
$$317$$ 34.0000 1.90963 0.954815 0.297200i $$-0.0960529\pi$$
0.954815 + 0.297200i $$0.0960529\pi$$
$$318$$ 0 0
$$319$$ 8.00000 0.447914
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 0 0
$$324$$ −9.00000 −0.500000
$$325$$ 0 0
$$326$$ −20.0000 −1.10770
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 36.0000 1.97874 0.989369 0.145424i $$-0.0464545\pi$$
0.989369 + 0.145424i $$0.0464545\pi$$
$$332$$ 0 0
$$333$$ −18.0000 −0.986394
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ −30.0000 −1.63420 −0.817102 0.576493i $$-0.804421\pi$$
−0.817102 + 0.576493i $$0.804421\pi$$
$$338$$ 13.0000 0.707107
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 36.0000 1.94099
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −4.00000 −0.214731 −0.107366 0.994220i $$-0.534242\pi$$
−0.107366 + 0.994220i $$0.534242\pi$$
$$348$$ 0 0
$$349$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ −20.0000 −1.06600
$$353$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ −4.00000 −0.211407
$$359$$ 8.00000 0.422224 0.211112 0.977462i $$-0.432292\pi$$
0.211112 + 0.977462i $$0.432292\pi$$
$$360$$ 0 0
$$361$$ −19.0000 −1.00000
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$368$$ 8.00000 0.417029
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ −22.0000 −1.13912 −0.569558 0.821951i $$-0.692886\pi$$
−0.569558 + 0.821951i $$0.692886\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −12.0000 −0.616399 −0.308199 0.951322i $$-0.599726\pi$$
−0.308199 + 0.951322i $$0.599726\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ −8.00000 −0.409316
$$383$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 18.0000 0.916176
$$387$$ −36.0000 −1.82998
$$388$$ 0 0
$$389$$ −38.0000 −1.92668 −0.963338 0.268290i $$-0.913542\pi$$
−0.963338 + 0.268290i $$0.913542\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 0 0
$$394$$ −26.0000 −1.30986
$$395$$ 0 0
$$396$$ 12.0000 0.603023
$$397$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −34.0000 −1.69788 −0.848939 0.528490i $$-0.822758\pi$$
−0.848939 + 0.528490i $$0.822758\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 24.0000 1.18964
$$408$$ 0 0
$$409$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ −24.0000 −1.17954
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$420$$ 0 0
$$421$$ −26.0000 −1.26716 −0.633581 0.773676i $$-0.718416\pi$$
−0.633581 + 0.773676i $$0.718416\pi$$
$$422$$ 12.0000 0.584151
$$423$$ 0 0
$$424$$ 30.0000 1.45693
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 0 0
$$428$$ −20.0000 −0.966736
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 32.0000 1.54139 0.770693 0.637207i $$-0.219910\pi$$
0.770693 + 0.637207i $$0.219910\pi$$
$$432$$ 0 0
$$433$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ −18.0000 −0.862044
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 20.0000 0.950229 0.475114 0.879924i $$-0.342407\pi$$
0.475114 + 0.879924i $$0.342407\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 2.00000 0.0943858 0.0471929 0.998886i $$-0.484972\pi$$
0.0471929 + 0.998886i $$0.484972\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 2.00000 0.0940721
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 6.00000 0.280668 0.140334 0.990104i $$-0.455182\pi$$
0.140334 + 0.990104i $$0.455182\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$462$$ 0 0
$$463$$ 40.0000 1.85896 0.929479 0.368875i $$-0.120257\pi$$
0.929479 + 0.368875i $$0.120257\pi$$
$$464$$ −2.00000 −0.0928477
$$465$$ 0 0
$$466$$ 22.0000 1.01913
$$467$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 48.0000 2.20704
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ −30.0000 −1.37361
$$478$$ −16.0000 −0.731823
$$479$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 0 0
$$483$$ 0 0
$$484$$ −5.00000 −0.227273
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 24.0000 1.08754 0.543772 0.839233i $$-0.316996\pi$$
0.543772 + 0.839233i $$0.316996\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 44.0000 1.98569 0.992846 0.119401i $$-0.0380974\pi$$
0.992846 + 0.119401i $$0.0380974\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 36.0000 1.61158 0.805791 0.592200i $$-0.201741\pi$$
0.805791 + 0.592200i $$0.201741\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 32.0000 1.42257
$$507$$ 0 0
$$508$$ 16.0000 0.709885
$$509$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 11.0000 0.486136
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$522$$ 6.00000 0.262613
$$523$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 32.0000 1.39527
$$527$$ 0 0
$$528$$ 0 0
$$529$$ 41.0000 1.78261
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ 0 0
$$536$$ −12.0000 −0.518321
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −34.0000 −1.46177 −0.730887 0.682498i $$-0.760893\pi$$
−0.730887 + 0.682498i $$0.760893\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ −44.0000 −1.88130 −0.940652 0.339372i $$-0.889785\pi$$
−0.940652 + 0.339372i $$0.889785\pi$$
$$548$$ −10.0000 −0.427179
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 0 0
$$554$$ −10.0000 −0.424859
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −46.0000 −1.94908 −0.974541 0.224208i $$-0.928020\pi$$
−0.974541 + 0.224208i $$0.928020\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 26.0000 1.09674
$$563$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 48.0000 2.01404
$$569$$ 22.0000 0.922288 0.461144 0.887325i $$-0.347439\pi$$
0.461144 + 0.887325i $$0.347439\pi$$
$$570$$ 0 0
$$571$$ 4.00000 0.167395 0.0836974 0.996491i $$-0.473327\pi$$
0.0836974 + 0.996491i $$0.473327\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ −21.0000 −0.875000
$$577$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$578$$ 17.0000 0.707107
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 40.0000 1.65663
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ −6.00000 −0.246598
$$593$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ −22.0000 −0.901155
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 32.0000 1.30748 0.653742 0.756717i $$-0.273198\pi$$
0.653742 + 0.756717i $$0.273198\pi$$
$$600$$ 0 0
$$601$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$602$$ 0 0
$$603$$ 12.0000 0.488678
$$604$$ 24.0000 0.976546
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 38.0000 1.53481 0.767403 0.641165i $$-0.221549\pi$$
0.767403 + 0.641165i $$0.221549\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 26.0000 1.04672 0.523360 0.852111i $$-0.324678\pi$$
0.523360 + 0.852111i $$0.324678\pi$$
$$618$$ 0 0
$$619$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 0 0
$$630$$ 0 0
$$631$$ 16.0000 0.636950 0.318475 0.947931i $$-0.396829\pi$$
0.318475 + 0.947931i $$0.396829\pi$$
$$632$$ 24.0000 0.954669
$$633$$ 0 0
$$634$$ −34.0000 −1.35031
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 0 0
$$638$$ −8.00000 −0.316723
$$639$$ −48.0000 −1.89885
$$640$$ 0 0
$$641$$ 46.0000 1.81689 0.908445 0.418004i $$-0.137270\pi$$
0.908445 + 0.418004i $$0.137270\pi$$
$$642$$ 0 0
$$643$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$648$$ 27.0000 1.06066
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ −20.0000 −0.783260
$$653$$ −50.0000 −1.95665 −0.978326 0.207072i $$-0.933606\pi$$
−0.978326 + 0.207072i $$0.933606\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 44.0000 1.71400 0.856998 0.515319i $$-0.172327\pi$$
0.856998 + 0.515319i $$0.172327\pi$$
$$660$$ 0 0
$$661$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$662$$ −36.0000 −1.39918
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 18.0000 0.697486
$$667$$ −16.0000 −0.619522
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ −30.0000 −1.15642 −0.578208 0.815890i $$-0.696248\pi$$
−0.578208 + 0.815890i $$0.696248\pi$$
$$674$$ 30.0000 1.15556
$$675$$ 0 0
$$676$$ 13.0000 0.500000
$$677$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 52.0000 1.98972 0.994862 0.101237i $$-0.0322800\pi$$
0.994862 + 0.101237i $$0.0322800\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 0 0
$$688$$ −12.0000 −0.457496
$$689$$ 0 0
$$690$$ 0 0
$$691$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 4.00000 0.151838
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 2.00000 0.0755390 0.0377695 0.999286i $$-0.487975\pi$$
0.0377695 + 0.999286i $$0.487975\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 28.0000 1.05529
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ −6.00000 −0.225335 −0.112667 0.993633i $$-0.535939\pi$$
−0.112667 + 0.993633i $$0.535939\pi$$
$$710$$ 0 0
$$711$$ −24.0000 −0.900070
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ −4.00000 −0.149487
$$717$$ 0 0
$$718$$ −8.00000 −0.298557
$$719$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 19.0000 0.707107
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$728$$ 0 0
$$729$$ −27.0000 −1.00000
$$730$$ 0 0
$$731$$ 0 0
$$732$$ 0 0
$$733$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 40.0000 1.47442
$$737$$ −16.0000 −0.589368
$$738$$ 0 0
$$739$$ −52.0000 −1.91285 −0.956425 0.291977i $$-0.905687\pi$$
−0.956425 + 0.291977i $$0.905687\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 40.0000 1.46746 0.733729 0.679442i $$-0.237778\pi$$
0.733729 + 0.679442i $$0.237778\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 22.0000 0.805477
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ −48.0000 −1.75154 −0.875772 0.482724i $$-0.839647\pi$$
−0.875772 + 0.482724i $$0.839647\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 54.0000 1.96266 0.981332 0.192323i $$-0.0616021\pi$$
0.981332 + 0.192323i $$0.0616021\pi$$
$$758$$ 12.0000 0.435860
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ −8.00000 −0.289430
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 18.0000 0.647834
$$773$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$774$$ 36.0000 1.29399
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 38.0000 1.36237
$$779$$ 0 0
$$780$$ 0 0
$$781$$ 64.0000 2.29010
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$788$$ −26.0000 −0.926212
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ −36.0000 −1.27920
$$793$$ 0 0
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 34.0000 1.20058
$$803$$ 0 0
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −38.0000 −1.33601 −0.668004 0.744157i $$-0.732851\pi$$
−0.668004 + 0.744157i $$0.732851\pi$$
$$810$$ 0 0
$$811$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ −24.0000 −0.841200
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 0 0
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 22.0000 0.767805 0.383903 0.923374i $$-0.374580\pi$$
0.383903 + 0.923374i $$0.374580\pi$$
$$822$$ 0 0
$$823$$ −32.0000 −1.11545 −0.557725 0.830026i $$-0.688326\pi$$
−0.557725 + 0.830026i $$0.688326\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ −44.0000 −1.53003 −0.765015 0.644013i $$-0.777268\pi$$
−0.765015 + 0.644013i $$0.777268\pi$$
$$828$$ −24.0000 −0.834058
$$829$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 0 0
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$840$$ 0 0
$$841$$ −25.0000 −0.862069
$$842$$ 26.0000 0.896019
$$843$$ 0 0
$$844$$ 12.0000 0.413057
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 0 0
$$848$$ −10.0000 −0.343401
$$849$$ 0 0
$$850$$ 0 0
$$851$$ −48.0000 −1.64542
$$852$$ 0 0
$$853$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 60.0000 2.05076
$$857$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$858$$ 0 0
$$859$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ −32.0000 −1.08992
$$863$$ −8.00000 −0.272323 −0.136162 0.990687i $$-0.543477\pi$$
−0.136162 + 0.990687i $$0.543477\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 32.0000 1.08553
$$870$$ 0 0
$$871$$ 0 0
$$872$$ 54.0000 1.82867
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ −50.0000 −1.68838 −0.844190 0.536044i $$-0.819918\pi$$
−0.844190 + 0.536044i $$0.819918\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$882$$ 0 0
$$883$$ 12.0000 0.403832 0.201916 0.979403i $$-0.435283\pi$$
0.201916 + 0.979403i $$0.435283\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ −20.0000 −0.671913
$$887$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ 36.0000 1.20605
$$892$$ 0 0
$$893$$ 0 0
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ −2.00000 −0.0667409
$$899$$ 0 0
$$900$$ 0 0
$$901$$ 0 0
$$902$$ 0 0
$$903$$ 0 0
$$904$$ −6.00000 −0.199557
$$905$$ 0 0
$$906$$ 0 0
$$907$$ −60.0000 −1.99227 −0.996134 0.0878507i $$-0.972000\pi$$
−0.996134 + 0.0878507i $$0.972000\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 16.0000 0.530104 0.265052 0.964234i $$-0.414611\pi$$
0.265052 + 0.964234i $$0.414611\pi$$
$$912$$ 0 0
$$913$$ 0 0
$$914$$ −6.00000 −0.198462
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ −48.0000 −1.58337 −0.791687 0.610927i $$-0.790797\pi$$
−0.791687 + 0.610927i $$0.790797\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ −40.0000 −1.31448
$$927$$ 0 0
$$928$$ −10.0000 −0.328266
$$929$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$930$$ 0 0
$$931$$ 0 0
$$932$$ 22.0000 0.720634
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ −48.0000 −1.56061
$$947$$ 20.0000 0.649913 0.324956 0.945729i $$-0.394650\pi$$
0.324956 + 0.945729i $$0.394650\pi$$
$$948$$ 0 0
$$949$$ 0 0
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ −58.0000 −1.87880 −0.939402 0.342817i $$-0.888619\pi$$
−0.939402 + 0.342817i $$0.888619\pi$$
$$954$$ 30.0000 0.971286
$$955$$ 0 0
$$956$$ −16.0000 −0.517477
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ −31.0000 −1.00000
$$962$$ 0 0
$$963$$ −60.0000 −1.93347
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 40.0000 1.28631 0.643157 0.765735i $$-0.277624\pi$$
0.643157 + 0.765735i $$0.277624\pi$$
$$968$$ 15.0000 0.482118
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ −24.0000 −0.769010
$$975$$ 0 0
$$976$$ 0 0
$$977$$ −46.0000 −1.47167 −0.735835 0.677161i $$-0.763210\pi$$
−0.735835 + 0.677161i $$0.763210\pi$$
$$978$$ 0 0
$$979$$ 0 0
$$980$$ 0 0
$$981$$ −54.0000 −1.72409
$$982$$ −44.0000 −1.40410
$$983$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −96.0000 −3.05262
$$990$$ 0 0
$$991$$ −24.0000 −0.762385 −0.381193 0.924496i $$-0.624487\pi$$
−0.381193 + 0.924496i $$0.624487\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$998$$ −36.0000 −1.13956
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.2.a.c.1.1 1
5.2 odd 4 1225.2.b.c.99.1 2
5.3 odd 4 1225.2.b.c.99.2 2
5.4 even 2 49.2.a.a.1.1 1
7.6 odd 2 CM 1225.2.a.c.1.1 1
15.14 odd 2 441.2.a.c.1.1 1
20.19 odd 2 784.2.a.f.1.1 1
35.4 even 6 49.2.c.a.30.1 2
35.9 even 6 49.2.c.a.18.1 2
35.13 even 4 1225.2.b.c.99.2 2
35.19 odd 6 49.2.c.a.18.1 2
35.24 odd 6 49.2.c.a.30.1 2
35.27 even 4 1225.2.b.c.99.1 2
35.34 odd 2 49.2.a.a.1.1 1
40.19 odd 2 3136.2.a.o.1.1 1
40.29 even 2 3136.2.a.n.1.1 1
55.54 odd 2 5929.2.a.c.1.1 1
60.59 even 2 7056.2.a.bg.1.1 1
65.64 even 2 8281.2.a.d.1.1 1
105.44 odd 6 441.2.e.d.361.1 2
105.59 even 6 441.2.e.d.226.1 2
105.74 odd 6 441.2.e.d.226.1 2
105.89 even 6 441.2.e.d.361.1 2
105.104 even 2 441.2.a.c.1.1 1
140.19 even 6 784.2.i.f.753.1 2
140.39 odd 6 784.2.i.f.177.1 2
140.59 even 6 784.2.i.f.177.1 2
140.79 odd 6 784.2.i.f.753.1 2
140.139 even 2 784.2.a.f.1.1 1
280.69 odd 2 3136.2.a.n.1.1 1
280.139 even 2 3136.2.a.o.1.1 1
385.384 even 2 5929.2.a.c.1.1 1
420.419 odd 2 7056.2.a.bg.1.1 1
455.454 odd 2 8281.2.a.d.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
49.2.a.a.1.1 1 5.4 even 2
49.2.a.a.1.1 1 35.34 odd 2
49.2.c.a.18.1 2 35.9 even 6
49.2.c.a.18.1 2 35.19 odd 6
49.2.c.a.30.1 2 35.4 even 6
49.2.c.a.30.1 2 35.24 odd 6
441.2.a.c.1.1 1 15.14 odd 2
441.2.a.c.1.1 1 105.104 even 2
441.2.e.d.226.1 2 105.59 even 6
441.2.e.d.226.1 2 105.74 odd 6
441.2.e.d.361.1 2 105.44 odd 6
441.2.e.d.361.1 2 105.89 even 6
784.2.a.f.1.1 1 20.19 odd 2
784.2.a.f.1.1 1 140.139 even 2
784.2.i.f.177.1 2 140.39 odd 6
784.2.i.f.177.1 2 140.59 even 6
784.2.i.f.753.1 2 140.19 even 6
784.2.i.f.753.1 2 140.79 odd 6
1225.2.a.c.1.1 1 1.1 even 1 trivial
1225.2.a.c.1.1 1 7.6 odd 2 CM
1225.2.b.c.99.1 2 5.2 odd 4
1225.2.b.c.99.1 2 35.27 even 4
1225.2.b.c.99.2 2 5.3 odd 4
1225.2.b.c.99.2 2 35.13 even 4
3136.2.a.n.1.1 1 40.29 even 2
3136.2.a.n.1.1 1 280.69 odd 2
3136.2.a.o.1.1 1 40.19 odd 2
3136.2.a.o.1.1 1 280.139 even 2
5929.2.a.c.1.1 1 55.54 odd 2
5929.2.a.c.1.1 1 385.384 even 2
7056.2.a.bg.1.1 1 60.59 even 2
7056.2.a.bg.1.1 1 420.419 odd 2
8281.2.a.d.1.1 1 65.64 even 2
8281.2.a.d.1.1 1 455.454 odd 2