Properties

Label 1225.1.j
Level $1225$
Weight $1$
Character orbit 1225.j
Rep. character $\chi_{1225}(374,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $1$
Sturm bound $140$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1225.j (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(140\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1225, [\chi])\).

Total New Old
Modular forms 52 12 40
Cusp forms 4 4 0
Eisenstein series 48 8 40

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4q + 2q^{9} + O(q^{10}) \) \( 4q + 2q^{9} + 2q^{11} + 2q^{16} + 4q^{29} - 2q^{46} - 4q^{64} - 4q^{71} + 2q^{74} - 2q^{79} - 2q^{81} - 2q^{86} + 4q^{99} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(1225, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1225.1.j.a \(4\) \(0.611\) \(\Q(\zeta_{12})\) \(D_{3}\) \(\Q(\sqrt{-7}) \) None \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{12}^{5}q^{2}-\zeta_{12}^{3}q^{8}+\zeta_{12}^{2}q^{9}+\cdots\)