Properties

Label 1224.2.cj
Level $1224$
Weight $2$
Character orbit 1224.cj
Rep. character $\chi_{1224}(91,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $704$
Sturm bound $432$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.cj (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 136 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(432\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1224, [\chi])\).

Total New Old
Modular forms 1792 736 1056
Cusp forms 1664 704 960
Eisenstein series 128 32 96

Trace form

\( 704 q + 8 q^{2} - 8 q^{4} + 8 q^{8} - 8 q^{10} + 16 q^{11} + 8 q^{14} + 16 q^{17} - 16 q^{19} + 8 q^{20} - 8 q^{22} - 16 q^{25} - 24 q^{26} - 56 q^{28} + 48 q^{32} - 40 q^{34} + 32 q^{35} - 32 q^{38} - 72 q^{40}+ \cdots - 128 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1224, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1224, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1224, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(408, [\chi])\)\(^{\oplus 2}\)