Properties

Label 1224.2.a.j.1.2
Level $1224$
Weight $2$
Character 1224.1
Self dual yes
Analytic conductor $9.774$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1224,2,Mod(1,1224)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1224.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1224, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,1,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 408)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 1224.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.56155 q^{5} +3.12311 q^{7} +6.56155 q^{11} +0.561553 q^{13} +1.00000 q^{17} -7.68466 q^{19} +3.43845 q^{23} +1.56155 q^{25} -1.12311 q^{29} -8.24621 q^{31} +8.00000 q^{35} -4.00000 q^{37} -9.68466 q^{41} +7.68466 q^{43} +9.12311 q^{47} +2.75379 q^{49} -6.00000 q^{53} +16.8078 q^{55} -11.3693 q^{59} -4.00000 q^{61} +1.43845 q^{65} +12.0000 q^{67} +13.3693 q^{71} -8.24621 q^{73} +20.4924 q^{77} +2.00000 q^{79} +1.12311 q^{83} +2.56155 q^{85} -0.876894 q^{89} +1.75379 q^{91} -19.6847 q^{95} -7.12311 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{5} - 2 q^{7} + 9 q^{11} - 3 q^{13} + 2 q^{17} - 3 q^{19} + 11 q^{23} - q^{25} + 6 q^{29} + 16 q^{35} - 8 q^{37} - 7 q^{41} + 3 q^{43} + 10 q^{47} + 22 q^{49} - 12 q^{53} + 13 q^{55} + 2 q^{59}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.56155 1.14556 0.572781 0.819709i \(-0.305865\pi\)
0.572781 + 0.819709i \(0.305865\pi\)
\(6\) 0 0
\(7\) 3.12311 1.18042 0.590211 0.807249i \(-0.299044\pi\)
0.590211 + 0.807249i \(0.299044\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.56155 1.97838 0.989191 0.146631i \(-0.0468429\pi\)
0.989191 + 0.146631i \(0.0468429\pi\)
\(12\) 0 0
\(13\) 0.561553 0.155747 0.0778734 0.996963i \(-0.475187\pi\)
0.0778734 + 0.996963i \(0.475187\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −7.68466 −1.76298 −0.881491 0.472201i \(-0.843460\pi\)
−0.881491 + 0.472201i \(0.843460\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.43845 0.716966 0.358483 0.933536i \(-0.383294\pi\)
0.358483 + 0.933536i \(0.383294\pi\)
\(24\) 0 0
\(25\) 1.56155 0.312311
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.12311 −0.208555 −0.104278 0.994548i \(-0.533253\pi\)
−0.104278 + 0.994548i \(0.533253\pi\)
\(30\) 0 0
\(31\) −8.24621 −1.48106 −0.740532 0.672022i \(-0.765426\pi\)
−0.740532 + 0.672022i \(0.765426\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.00000 1.35225
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.68466 −1.51249 −0.756245 0.654289i \(-0.772968\pi\)
−0.756245 + 0.654289i \(0.772968\pi\)
\(42\) 0 0
\(43\) 7.68466 1.17190 0.585950 0.810347i \(-0.300722\pi\)
0.585950 + 0.810347i \(0.300722\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.12311 1.33074 0.665371 0.746513i \(-0.268273\pi\)
0.665371 + 0.746513i \(0.268273\pi\)
\(48\) 0 0
\(49\) 2.75379 0.393398
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 16.8078 2.26636
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.3693 −1.48016 −0.740079 0.672519i \(-0.765212\pi\)
−0.740079 + 0.672519i \(0.765212\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.43845 0.178417
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 13.3693 1.58665 0.793323 0.608801i \(-0.208349\pi\)
0.793323 + 0.608801i \(0.208349\pi\)
\(72\) 0 0
\(73\) −8.24621 −0.965146 −0.482573 0.875856i \(-0.660298\pi\)
−0.482573 + 0.875856i \(0.660298\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 20.4924 2.33533
\(78\) 0 0
\(79\) 2.00000 0.225018 0.112509 0.993651i \(-0.464111\pi\)
0.112509 + 0.993651i \(0.464111\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.12311 0.123277 0.0616384 0.998099i \(-0.480367\pi\)
0.0616384 + 0.998099i \(0.480367\pi\)
\(84\) 0 0
\(85\) 2.56155 0.277839
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.876894 −0.0929506 −0.0464753 0.998919i \(-0.514799\pi\)
−0.0464753 + 0.998919i \(0.514799\pi\)
\(90\) 0 0
\(91\) 1.75379 0.183847
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −19.6847 −2.01960
\(96\) 0 0
\(97\) −7.12311 −0.723242 −0.361621 0.932325i \(-0.617777\pi\)
−0.361621 + 0.932325i \(0.617777\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.12311 −0.310761 −0.155380 0.987855i \(-0.549660\pi\)
−0.155380 + 0.987855i \(0.549660\pi\)
\(102\) 0 0
\(103\) −0.315342 −0.0310715 −0.0155358 0.999879i \(-0.504945\pi\)
−0.0155358 + 0.999879i \(0.504945\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.68466 −0.356209 −0.178105 0.984012i \(-0.556997\pi\)
−0.178105 + 0.984012i \(0.556997\pi\)
\(108\) 0 0
\(109\) 10.2462 0.981409 0.490705 0.871326i \(-0.336739\pi\)
0.490705 + 0.871326i \(0.336739\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.56155 −0.805403 −0.402702 0.915331i \(-0.631929\pi\)
−0.402702 + 0.915331i \(0.631929\pi\)
\(114\) 0 0
\(115\) 8.80776 0.821328
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.12311 0.286295
\(120\) 0 0
\(121\) 32.0540 2.91400
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −8.80776 −0.787790
\(126\) 0 0
\(127\) −13.9309 −1.23616 −0.618082 0.786113i \(-0.712090\pi\)
−0.618082 + 0.786113i \(0.712090\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.43845 0.824641 0.412320 0.911039i \(-0.364718\pi\)
0.412320 + 0.911039i \(0.364718\pi\)
\(132\) 0 0
\(133\) −24.0000 −2.08106
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.2462 1.38801 0.694004 0.719971i \(-0.255845\pi\)
0.694004 + 0.719971i \(0.255845\pi\)
\(138\) 0 0
\(139\) 5.12311 0.434536 0.217268 0.976112i \(-0.430285\pi\)
0.217268 + 0.976112i \(0.430285\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.68466 0.308127
\(144\) 0 0
\(145\) −2.87689 −0.238913
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.0000 1.14692 0.573462 0.819232i \(-0.305600\pi\)
0.573462 + 0.819232i \(0.305600\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −21.1231 −1.69665
\(156\) 0 0
\(157\) −3.43845 −0.274418 −0.137209 0.990542i \(-0.543813\pi\)
−0.137209 + 0.990542i \(0.543813\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.7386 0.846323
\(162\) 0 0
\(163\) −11.3693 −0.890514 −0.445257 0.895403i \(-0.646888\pi\)
−0.445257 + 0.895403i \(0.646888\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.19224 0.0922580 0.0461290 0.998935i \(-0.485311\pi\)
0.0461290 + 0.998935i \(0.485311\pi\)
\(168\) 0 0
\(169\) −12.6847 −0.975743
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.68466 −0.584254 −0.292127 0.956380i \(-0.594363\pi\)
−0.292127 + 0.956380i \(0.594363\pi\)
\(174\) 0 0
\(175\) 4.87689 0.368659
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.87689 0.514003 0.257002 0.966411i \(-0.417265\pi\)
0.257002 + 0.966411i \(0.417265\pi\)
\(180\) 0 0
\(181\) −1.12311 −0.0834798 −0.0417399 0.999129i \(-0.513290\pi\)
−0.0417399 + 0.999129i \(0.513290\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −10.2462 −0.753316
\(186\) 0 0
\(187\) 6.56155 0.479828
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.3693 −1.40151 −0.700757 0.713400i \(-0.747154\pi\)
−0.700757 + 0.713400i \(0.747154\pi\)
\(192\) 0 0
\(193\) −4.24621 −0.305649 −0.152824 0.988253i \(-0.548837\pi\)
−0.152824 + 0.988253i \(0.548837\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.3153 0.877432 0.438716 0.898626i \(-0.355433\pi\)
0.438716 + 0.898626i \(0.355433\pi\)
\(198\) 0 0
\(199\) −23.1231 −1.63915 −0.819577 0.572969i \(-0.805791\pi\)
−0.819577 + 0.572969i \(0.805791\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.50758 −0.246184
\(204\) 0 0
\(205\) −24.8078 −1.73265
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −50.4233 −3.48785
\(210\) 0 0
\(211\) 10.8769 0.748796 0.374398 0.927268i \(-0.377849\pi\)
0.374398 + 0.927268i \(0.377849\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 19.6847 1.34248
\(216\) 0 0
\(217\) −25.7538 −1.74828
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.561553 0.0377741
\(222\) 0 0
\(223\) −21.4384 −1.43562 −0.717812 0.696237i \(-0.754856\pi\)
−0.717812 + 0.696237i \(0.754856\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.6847 1.04103 0.520514 0.853853i \(-0.325740\pi\)
0.520514 + 0.853853i \(0.325740\pi\)
\(228\) 0 0
\(229\) −18.0000 −1.18947 −0.594737 0.803921i \(-0.702744\pi\)
−0.594737 + 0.803921i \(0.702744\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.43845 −0.225260 −0.112630 0.993637i \(-0.535928\pi\)
−0.112630 + 0.993637i \(0.535928\pi\)
\(234\) 0 0
\(235\) 23.3693 1.52445
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −22.2462 −1.43899 −0.719494 0.694499i \(-0.755626\pi\)
−0.719494 + 0.694499i \(0.755626\pi\)
\(240\) 0 0
\(241\) 5.36932 0.345868 0.172934 0.984933i \(-0.444675\pi\)
0.172934 + 0.984933i \(0.444675\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7.05398 0.450662
\(246\) 0 0
\(247\) −4.31534 −0.274579
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.24621 0.394257 0.197129 0.980378i \(-0.436838\pi\)
0.197129 + 0.980378i \(0.436838\pi\)
\(252\) 0 0
\(253\) 22.5616 1.41843
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.87689 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(258\) 0 0
\(259\) −12.4924 −0.776241
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.00000 −0.246651 −0.123325 0.992366i \(-0.539356\pi\)
−0.123325 + 0.992366i \(0.539356\pi\)
\(264\) 0 0
\(265\) −15.3693 −0.944130
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 23.6847 1.44408 0.722040 0.691852i \(-0.243205\pi\)
0.722040 + 0.691852i \(0.243205\pi\)
\(270\) 0 0
\(271\) 19.0540 1.15745 0.578723 0.815524i \(-0.303551\pi\)
0.578723 + 0.815524i \(0.303551\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.2462 0.617870
\(276\) 0 0
\(277\) −21.1231 −1.26916 −0.634582 0.772855i \(-0.718828\pi\)
−0.634582 + 0.772855i \(0.718828\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −11.1231 −0.663549 −0.331774 0.943359i \(-0.607647\pi\)
−0.331774 + 0.943359i \(0.607647\pi\)
\(282\) 0 0
\(283\) 13.1231 0.780088 0.390044 0.920796i \(-0.372460\pi\)
0.390044 + 0.920796i \(0.372460\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −30.2462 −1.78538
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.12311 0.182454 0.0912269 0.995830i \(-0.470921\pi\)
0.0912269 + 0.995830i \(0.470921\pi\)
\(294\) 0 0
\(295\) −29.1231 −1.69561
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.93087 0.111665
\(300\) 0 0
\(301\) 24.0000 1.38334
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −10.2462 −0.586696
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.63068 −0.375992 −0.187996 0.982170i \(-0.560199\pi\)
−0.187996 + 0.982170i \(0.560199\pi\)
\(312\) 0 0
\(313\) −11.6155 −0.656548 −0.328274 0.944582i \(-0.606467\pi\)
−0.328274 + 0.944582i \(0.606467\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.8769 0.610907 0.305454 0.952207i \(-0.401192\pi\)
0.305454 + 0.952207i \(0.401192\pi\)
\(318\) 0 0
\(319\) −7.36932 −0.412603
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7.68466 −0.427586
\(324\) 0 0
\(325\) 0.876894 0.0486413
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 28.4924 1.57084
\(330\) 0 0
\(331\) 2.56155 0.140796 0.0703978 0.997519i \(-0.477573\pi\)
0.0703978 + 0.997519i \(0.477573\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 30.7386 1.67943
\(336\) 0 0
\(337\) 30.4924 1.66103 0.830514 0.556998i \(-0.188047\pi\)
0.830514 + 0.556998i \(0.188047\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −54.1080 −2.93011
\(342\) 0 0
\(343\) −13.2614 −0.716046
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.4924 −0.885360 −0.442680 0.896680i \(-0.645972\pi\)
−0.442680 + 0.896680i \(0.645972\pi\)
\(348\) 0 0
\(349\) 11.4384 0.612286 0.306143 0.951986i \(-0.400961\pi\)
0.306143 + 0.951986i \(0.400961\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.00000 0.106449 0.0532246 0.998583i \(-0.483050\pi\)
0.0532246 + 0.998583i \(0.483050\pi\)
\(354\) 0 0
\(355\) 34.2462 1.81760
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.49242 −0.237101 −0.118550 0.992948i \(-0.537825\pi\)
−0.118550 + 0.992948i \(0.537825\pi\)
\(360\) 0 0
\(361\) 40.0540 2.10810
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −21.1231 −1.10563
\(366\) 0 0
\(367\) −11.1231 −0.580621 −0.290311 0.956932i \(-0.593759\pi\)
−0.290311 + 0.956932i \(0.593759\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −18.7386 −0.972861
\(372\) 0 0
\(373\) −2.49242 −0.129053 −0.0645264 0.997916i \(-0.520554\pi\)
−0.0645264 + 0.997916i \(0.520554\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.630683 −0.0324818
\(378\) 0 0
\(379\) 32.4924 1.66902 0.834512 0.550990i \(-0.185750\pi\)
0.834512 + 0.550990i \(0.185750\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.75379 −0.0896144 −0.0448072 0.998996i \(-0.514267\pi\)
−0.0448072 + 0.998996i \(0.514267\pi\)
\(384\) 0 0
\(385\) 52.4924 2.67526
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.63068 −0.133381 −0.0666905 0.997774i \(-0.521244\pi\)
−0.0666905 + 0.997774i \(0.521244\pi\)
\(390\) 0 0
\(391\) 3.43845 0.173890
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.12311 0.257771
\(396\) 0 0
\(397\) −6.24621 −0.313488 −0.156744 0.987639i \(-0.550100\pi\)
−0.156744 + 0.987639i \(0.550100\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.06913 0.203203 0.101601 0.994825i \(-0.467603\pi\)
0.101601 + 0.994825i \(0.467603\pi\)
\(402\) 0 0
\(403\) −4.63068 −0.230671
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −26.2462 −1.30098
\(408\) 0 0
\(409\) −16.5616 −0.818916 −0.409458 0.912329i \(-0.634282\pi\)
−0.409458 + 0.912329i \(0.634282\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −35.5076 −1.74721
\(414\) 0 0
\(415\) 2.87689 0.141221
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 28.0000 1.36789 0.683945 0.729534i \(-0.260263\pi\)
0.683945 + 0.729534i \(0.260263\pi\)
\(420\) 0 0
\(421\) −32.4233 −1.58021 −0.790107 0.612969i \(-0.789975\pi\)
−0.790107 + 0.612969i \(0.789975\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.56155 0.0757464
\(426\) 0 0
\(427\) −12.4924 −0.604551
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −15.6155 −0.752174 −0.376087 0.926584i \(-0.622731\pi\)
−0.376087 + 0.926584i \(0.622731\pi\)
\(432\) 0 0
\(433\) 25.0540 1.20402 0.602009 0.798490i \(-0.294367\pi\)
0.602009 + 0.798490i \(0.294367\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −26.4233 −1.26400
\(438\) 0 0
\(439\) −35.6155 −1.69984 −0.849918 0.526915i \(-0.823349\pi\)
−0.849918 + 0.526915i \(0.823349\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 19.3693 0.920264 0.460132 0.887851i \(-0.347802\pi\)
0.460132 + 0.887851i \(0.347802\pi\)
\(444\) 0 0
\(445\) −2.24621 −0.106481
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −16.2462 −0.766706 −0.383353 0.923602i \(-0.625231\pi\)
−0.383353 + 0.923602i \(0.625231\pi\)
\(450\) 0 0
\(451\) −63.5464 −2.99228
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.49242 0.210608
\(456\) 0 0
\(457\) 19.9309 0.932327 0.466163 0.884699i \(-0.345636\pi\)
0.466163 + 0.884699i \(0.345636\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 26.9848 1.25681 0.628405 0.777887i \(-0.283708\pi\)
0.628405 + 0.777887i \(0.283708\pi\)
\(462\) 0 0
\(463\) 9.75379 0.453297 0.226649 0.973977i \(-0.427223\pi\)
0.226649 + 0.973977i \(0.427223\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9.12311 0.422167 0.211083 0.977468i \(-0.432301\pi\)
0.211083 + 0.977468i \(0.432301\pi\)
\(468\) 0 0
\(469\) 37.4773 1.73054
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 50.4233 2.31847
\(474\) 0 0
\(475\) −12.0000 −0.550598
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −21.0540 −0.961981 −0.480990 0.876726i \(-0.659723\pi\)
−0.480990 + 0.876726i \(0.659723\pi\)
\(480\) 0 0
\(481\) −2.24621 −0.102418
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −18.2462 −0.828518
\(486\) 0 0
\(487\) −28.7386 −1.30227 −0.651136 0.758961i \(-0.725707\pi\)
−0.651136 + 0.758961i \(0.725707\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.6155 0.614460 0.307230 0.951635i \(-0.400598\pi\)
0.307230 + 0.951635i \(0.400598\pi\)
\(492\) 0 0
\(493\) −1.12311 −0.0505821
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 41.7538 1.87291
\(498\) 0 0
\(499\) 38.1080 1.70595 0.852973 0.521955i \(-0.174797\pi\)
0.852973 + 0.521955i \(0.174797\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −9.68466 −0.431818 −0.215909 0.976414i \(-0.569271\pi\)
−0.215909 + 0.976414i \(0.569271\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 37.3693 1.65637 0.828183 0.560458i \(-0.189375\pi\)
0.828183 + 0.560458i \(0.189375\pi\)
\(510\) 0 0
\(511\) −25.7538 −1.13928
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.807764 −0.0355943
\(516\) 0 0
\(517\) 59.8617 2.63272
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.3002 0.670313 0.335157 0.942162i \(-0.391211\pi\)
0.335157 + 0.942162i \(0.391211\pi\)
\(522\) 0 0
\(523\) 24.4924 1.07098 0.535489 0.844542i \(-0.320127\pi\)
0.535489 + 0.844542i \(0.320127\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.24621 −0.359211
\(528\) 0 0
\(529\) −11.1771 −0.485960
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.43845 −0.235565
\(534\) 0 0
\(535\) −9.43845 −0.408060
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18.0691 0.778293
\(540\) 0 0
\(541\) −26.7386 −1.14958 −0.574792 0.818300i \(-0.694917\pi\)
−0.574792 + 0.818300i \(0.694917\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 26.2462 1.12426
\(546\) 0 0
\(547\) −22.7386 −0.972234 −0.486117 0.873894i \(-0.661587\pi\)
−0.486117 + 0.873894i \(0.661587\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.63068 0.367679
\(552\) 0 0
\(553\) 6.24621 0.265616
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −20.7386 −0.878724 −0.439362 0.898310i \(-0.644795\pi\)
−0.439362 + 0.898310i \(0.644795\pi\)
\(558\) 0 0
\(559\) 4.31534 0.182520
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.3693 0.816319 0.408160 0.912911i \(-0.366171\pi\)
0.408160 + 0.912911i \(0.366171\pi\)
\(564\) 0 0
\(565\) −21.9309 −0.922639
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.87689 0.372139 0.186069 0.982537i \(-0.440425\pi\)
0.186069 + 0.982537i \(0.440425\pi\)
\(570\) 0 0
\(571\) 32.4924 1.35977 0.679883 0.733321i \(-0.262031\pi\)
0.679883 + 0.733321i \(0.262031\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.36932 0.223916
\(576\) 0 0
\(577\) −41.0540 −1.70910 −0.854550 0.519370i \(-0.826167\pi\)
−0.854550 + 0.519370i \(0.826167\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.50758 0.145519
\(582\) 0 0
\(583\) −39.3693 −1.63051
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 40.4924 1.67130 0.835651 0.549261i \(-0.185091\pi\)
0.835651 + 0.549261i \(0.185091\pi\)
\(588\) 0 0
\(589\) 63.3693 2.61109
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.50758 0.390429 0.195215 0.980761i \(-0.437460\pi\)
0.195215 + 0.980761i \(0.437460\pi\)
\(594\) 0 0
\(595\) 8.00000 0.327968
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8.63068 −0.352640 −0.176320 0.984333i \(-0.556419\pi\)
−0.176320 + 0.984333i \(0.556419\pi\)
\(600\) 0 0
\(601\) 24.7386 1.00911 0.504555 0.863380i \(-0.331657\pi\)
0.504555 + 0.863380i \(0.331657\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 82.1080 3.33816
\(606\) 0 0
\(607\) 28.2462 1.14648 0.573239 0.819388i \(-0.305687\pi\)
0.573239 + 0.819388i \(0.305687\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.12311 0.207259
\(612\) 0 0
\(613\) 20.5616 0.830473 0.415237 0.909713i \(-0.363699\pi\)
0.415237 + 0.909713i \(0.363699\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) −33.1231 −1.33133 −0.665665 0.746251i \(-0.731852\pi\)
−0.665665 + 0.746251i \(0.731852\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.73863 −0.109721
\(624\) 0 0
\(625\) −30.3693 −1.21477
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) −3.19224 −0.127081 −0.0635405 0.997979i \(-0.520239\pi\)
−0.0635405 + 0.997979i \(0.520239\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −35.6847 −1.41610
\(636\) 0 0
\(637\) 1.54640 0.0612705
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 30.6695 1.21137 0.605686 0.795704i \(-0.292899\pi\)
0.605686 + 0.795704i \(0.292899\pi\)
\(642\) 0 0
\(643\) −16.4924 −0.650398 −0.325199 0.945646i \(-0.605431\pi\)
−0.325199 + 0.945646i \(0.605431\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 33.1231 1.30220 0.651102 0.758990i \(-0.274307\pi\)
0.651102 + 0.758990i \(0.274307\pi\)
\(648\) 0 0
\(649\) −74.6004 −2.92832
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −30.4233 −1.19056 −0.595278 0.803520i \(-0.702958\pi\)
−0.595278 + 0.803520i \(0.702958\pi\)
\(654\) 0 0
\(655\) 24.1771 0.944677
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −37.6155 −1.46529 −0.732646 0.680609i \(-0.761715\pi\)
−0.732646 + 0.680609i \(0.761715\pi\)
\(660\) 0 0
\(661\) 21.6847 0.843435 0.421718 0.906727i \(-0.361427\pi\)
0.421718 + 0.906727i \(0.361427\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −61.4773 −2.38399
\(666\) 0 0
\(667\) −3.86174 −0.149527
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −26.2462 −1.01322
\(672\) 0 0
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.807764 −0.0310449 −0.0155224 0.999880i \(-0.504941\pi\)
−0.0155224 + 0.999880i \(0.504941\pi\)
\(678\) 0 0
\(679\) −22.2462 −0.853731
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.8078 −0.490075 −0.245038 0.969514i \(-0.578800\pi\)
−0.245038 + 0.969514i \(0.578800\pi\)
\(684\) 0 0
\(685\) 41.6155 1.59005
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.36932 −0.128361
\(690\) 0 0
\(691\) 26.2462 0.998453 0.499226 0.866472i \(-0.333618\pi\)
0.499226 + 0.866472i \(0.333618\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 13.1231 0.497788
\(696\) 0 0
\(697\) −9.68466 −0.366833
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.8769 1.09067 0.545333 0.838220i \(-0.316403\pi\)
0.545333 + 0.838220i \(0.316403\pi\)
\(702\) 0 0
\(703\) 30.7386 1.15933
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.75379 −0.366829
\(708\) 0 0
\(709\) −2.87689 −0.108044 −0.0540220 0.998540i \(-0.517204\pi\)
−0.0540220 + 0.998540i \(0.517204\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −28.3542 −1.06187
\(714\) 0 0
\(715\) 9.43845 0.352978
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 47.7926 1.78236 0.891182 0.453646i \(-0.149877\pi\)
0.891182 + 0.453646i \(0.149877\pi\)
\(720\) 0 0
\(721\) −0.984845 −0.0366775
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.75379 −0.0651341
\(726\) 0 0
\(727\) 36.4924 1.35343 0.676715 0.736246i \(-0.263403\pi\)
0.676715 + 0.736246i \(0.263403\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.68466 0.284227
\(732\) 0 0
\(733\) −30.0000 −1.10808 −0.554038 0.832492i \(-0.686914\pi\)
−0.554038 + 0.832492i \(0.686914\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 78.7386 2.90037
\(738\) 0 0
\(739\) −19.1922 −0.705998 −0.352999 0.935624i \(-0.614838\pi\)
−0.352999 + 0.935624i \(0.614838\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.12311 −0.114576 −0.0572878 0.998358i \(-0.518245\pi\)
−0.0572878 + 0.998358i \(0.518245\pi\)
\(744\) 0 0
\(745\) 35.8617 1.31387
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.5076 −0.420478
\(750\) 0 0
\(751\) −50.9848 −1.86046 −0.930232 0.366973i \(-0.880394\pi\)
−0.930232 + 0.366973i \(0.880394\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 40.9848 1.49159
\(756\) 0 0
\(757\) −39.3002 −1.42839 −0.714195 0.699947i \(-0.753207\pi\)
−0.714195 + 0.699947i \(0.753207\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.7538 0.426075 0.213037 0.977044i \(-0.431664\pi\)
0.213037 + 0.977044i \(0.431664\pi\)
\(762\) 0 0
\(763\) 32.0000 1.15848
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.38447 −0.230530
\(768\) 0 0
\(769\) 14.9460 0.538967 0.269484 0.963005i \(-0.413147\pi\)
0.269484 + 0.963005i \(0.413147\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −31.1231 −1.11942 −0.559710 0.828688i \(-0.689088\pi\)
−0.559710 + 0.828688i \(0.689088\pi\)
\(774\) 0 0
\(775\) −12.8769 −0.462552
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 74.4233 2.66649
\(780\) 0 0
\(781\) 87.7235 3.13899
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −8.80776 −0.314363
\(786\) 0 0
\(787\) 35.2311 1.25585 0.627926 0.778273i \(-0.283904\pi\)
0.627926 + 0.778273i \(0.283904\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −26.7386 −0.950716
\(792\) 0 0
\(793\) −2.24621 −0.0797653
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 53.8617 1.90788 0.953940 0.299996i \(-0.0969855\pi\)
0.953940 + 0.299996i \(0.0969855\pi\)
\(798\) 0 0
\(799\) 9.12311 0.322752
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −54.1080 −1.90943
\(804\) 0 0
\(805\) 27.5076 0.969515
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −21.1922 −0.745079 −0.372540 0.928016i \(-0.621513\pi\)
−0.372540 + 0.928016i \(0.621513\pi\)
\(810\) 0 0
\(811\) 28.6307 1.00536 0.502680 0.864473i \(-0.332348\pi\)
0.502680 + 0.864473i \(0.332348\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −29.1231 −1.02014
\(816\) 0 0
\(817\) −59.0540 −2.06604
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 33.7926 1.17937 0.589685 0.807633i \(-0.299252\pi\)
0.589685 + 0.807633i \(0.299252\pi\)
\(822\) 0 0
\(823\) 2.63068 0.0916998 0.0458499 0.998948i \(-0.485400\pi\)
0.0458499 + 0.998948i \(0.485400\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9.43845 0.328207 0.164103 0.986443i \(-0.447527\pi\)
0.164103 + 0.986443i \(0.447527\pi\)
\(828\) 0 0
\(829\) 10.4924 0.364417 0.182208 0.983260i \(-0.441675\pi\)
0.182208 + 0.983260i \(0.441675\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.75379 0.0954131
\(834\) 0 0
\(835\) 3.05398 0.105687
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 41.0540 1.41734 0.708670 0.705540i \(-0.249295\pi\)
0.708670 + 0.705540i \(0.249295\pi\)
\(840\) 0 0
\(841\) −27.7386 −0.956505
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −32.4924 −1.11777
\(846\) 0 0
\(847\) 100.108 3.43975
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −13.7538 −0.471474
\(852\) 0 0
\(853\) 33.6155 1.15097 0.575487 0.817811i \(-0.304813\pi\)
0.575487 + 0.817811i \(0.304813\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) 16.4924 0.562714 0.281357 0.959603i \(-0.409215\pi\)
0.281357 + 0.959603i \(0.409215\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.26137 0.0429374 0.0214687 0.999770i \(-0.493166\pi\)
0.0214687 + 0.999770i \(0.493166\pi\)
\(864\) 0 0
\(865\) −19.6847 −0.669298
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 13.1231 0.445171
\(870\) 0 0
\(871\) 6.73863 0.228330
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −27.5076 −0.929926
\(876\) 0 0
\(877\) −56.3542 −1.90294 −0.951472 0.307734i \(-0.900429\pi\)
−0.951472 + 0.307734i \(0.900429\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −34.0000 −1.14549 −0.572745 0.819734i \(-0.694121\pi\)
−0.572745 + 0.819734i \(0.694121\pi\)
\(882\) 0 0
\(883\) −21.4384 −0.721461 −0.360731 0.932670i \(-0.617473\pi\)
−0.360731 + 0.932670i \(0.617473\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −43.4384 −1.45852 −0.729260 0.684237i \(-0.760136\pi\)
−0.729260 + 0.684237i \(0.760136\pi\)
\(888\) 0 0
\(889\) −43.5076 −1.45920
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −70.1080 −2.34607
\(894\) 0 0
\(895\) 17.6155 0.588822
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.26137 0.308884
\(900\) 0 0
\(901\) −6.00000 −0.199889
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.87689 −0.0956312
\(906\) 0 0
\(907\) 16.6307 0.552213 0.276106 0.961127i \(-0.410956\pi\)
0.276106 + 0.961127i \(0.410956\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −32.5616 −1.07881 −0.539406 0.842046i \(-0.681351\pi\)
−0.539406 + 0.842046i \(0.681351\pi\)
\(912\) 0 0
\(913\) 7.36932 0.243889
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 29.4773 0.973425
\(918\) 0 0
\(919\) 10.0691 0.332150 0.166075 0.986113i \(-0.446891\pi\)
0.166075 + 0.986113i \(0.446891\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 7.50758 0.247115
\(924\) 0 0
\(925\) −6.24621 −0.205374
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −55.7926 −1.83050 −0.915248 0.402891i \(-0.868005\pi\)
−0.915248 + 0.402891i \(0.868005\pi\)
\(930\) 0 0
\(931\) −21.1619 −0.693554
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 16.8078 0.549673
\(936\) 0 0
\(937\) −4.24621 −0.138718 −0.0693588 0.997592i \(-0.522095\pi\)
−0.0693588 + 0.997592i \(0.522095\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6.38447 0.208128 0.104064 0.994571i \(-0.466815\pi\)
0.104064 + 0.994571i \(0.466815\pi\)
\(942\) 0 0
\(943\) −33.3002 −1.08440
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.24621 0.0729921 0.0364960 0.999334i \(-0.488380\pi\)
0.0364960 + 0.999334i \(0.488380\pi\)
\(948\) 0 0
\(949\) −4.63068 −0.150318
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 32.1080 1.04008 0.520039 0.854142i \(-0.325917\pi\)
0.520039 + 0.854142i \(0.325917\pi\)
\(954\) 0 0
\(955\) −49.6155 −1.60552
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 50.7386 1.63844
\(960\) 0 0
\(961\) 37.0000 1.19355
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −10.8769 −0.350140
\(966\) 0 0
\(967\) 5.43845 0.174889 0.0874443 0.996169i \(-0.472130\pi\)
0.0874443 + 0.996169i \(0.472130\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −44.3542 −1.42339 −0.711696 0.702487i \(-0.752073\pi\)
−0.711696 + 0.702487i \(0.752073\pi\)
\(972\) 0 0
\(973\) 16.0000 0.512936
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −38.4924 −1.23148 −0.615741 0.787949i \(-0.711143\pi\)
−0.615741 + 0.787949i \(0.711143\pi\)
\(978\) 0 0
\(979\) −5.75379 −0.183892
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −51.4384 −1.64063 −0.820316 0.571911i \(-0.806202\pi\)
−0.820316 + 0.571911i \(0.806202\pi\)
\(984\) 0 0
\(985\) 31.5464 1.00515
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 26.4233 0.840212
\(990\) 0 0
\(991\) −49.3693 −1.56827 −0.784134 0.620592i \(-0.786893\pi\)
−0.784134 + 0.620592i \(0.786893\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −59.2311 −1.87775
\(996\) 0 0
\(997\) −11.3693 −0.360070 −0.180035 0.983660i \(-0.557621\pi\)
−0.180035 + 0.983660i \(0.557621\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.a.j.1.2 2
3.2 odd 2 408.2.a.e.1.1 2
4.3 odd 2 2448.2.a.ba.1.2 2
8.3 odd 2 9792.2.a.cn.1.1 2
8.5 even 2 9792.2.a.cm.1.1 2
12.11 even 2 816.2.a.l.1.1 2
24.5 odd 2 3264.2.a.bo.1.2 2
24.11 even 2 3264.2.a.bi.1.2 2
51.50 odd 2 6936.2.a.y.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.a.e.1.1 2 3.2 odd 2
816.2.a.l.1.1 2 12.11 even 2
1224.2.a.j.1.2 2 1.1 even 1 trivial
2448.2.a.ba.1.2 2 4.3 odd 2
3264.2.a.bi.1.2 2 24.11 even 2
3264.2.a.bo.1.2 2 24.5 odd 2
6936.2.a.y.1.2 2 51.50 odd 2
9792.2.a.cm.1.1 2 8.5 even 2
9792.2.a.cn.1.1 2 8.3 odd 2