Properties

Label 1216.4.a.d
Level $1216$
Weight $4$
Character orbit 1216.a
Self dual yes
Analytic conductor $71.746$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,4,Mod(1,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1216.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.7463225670\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 608)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} + 8 q^{5} - 17 q^{7} - 26 q^{9} + 70 q^{11} + 61 q^{13} + 8 q^{15} + 83 q^{17} - 19 q^{19} - 17 q^{21} + 115 q^{23} - 61 q^{25} - 53 q^{27} - 279 q^{29} - 72 q^{31} + 70 q^{33} - 136 q^{35}+ \cdots - 1820 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 8.00000 0 −17.0000 0 −26.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.4.a.d 1
4.b odd 2 1 1216.4.a.c 1
8.b even 2 1 608.4.a.a 1
8.d odd 2 1 608.4.a.b yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
608.4.a.a 1 8.b even 2 1
608.4.a.b yes 1 8.d odd 2 1
1216.4.a.c 1 4.b odd 2 1
1216.4.a.d 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1216))\):

\( T_{3} - 1 \) Copy content Toggle raw display
\( T_{5} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T - 8 \) Copy content Toggle raw display
$7$ \( T + 17 \) Copy content Toggle raw display
$11$ \( T - 70 \) Copy content Toggle raw display
$13$ \( T - 61 \) Copy content Toggle raw display
$17$ \( T - 83 \) Copy content Toggle raw display
$19$ \( T + 19 \) Copy content Toggle raw display
$23$ \( T - 115 \) Copy content Toggle raw display
$29$ \( T + 279 \) Copy content Toggle raw display
$31$ \( T + 72 \) Copy content Toggle raw display
$37$ \( T - 34 \) Copy content Toggle raw display
$41$ \( T - 108 \) Copy content Toggle raw display
$43$ \( T - 192 \) Copy content Toggle raw display
$47$ \( T + 392 \) Copy content Toggle raw display
$53$ \( T + 131 \) Copy content Toggle raw display
$59$ \( T - 609 \) Copy content Toggle raw display
$61$ \( T + 338 \) Copy content Toggle raw display
$67$ \( T - 461 \) Copy content Toggle raw display
$71$ \( T - 750 \) Copy content Toggle raw display
$73$ \( T - 1177 \) Copy content Toggle raw display
$79$ \( T + 22 \) Copy content Toggle raw display
$83$ \( T - 810 \) Copy content Toggle raw display
$89$ \( T + 476 \) Copy content Toggle raw display
$97$ \( T - 1426 \) Copy content Toggle raw display
show more
show less