Properties

Label 1216.4.a.bg.1.7
Level $1216$
Weight $4$
Character 1216.1
Self dual yes
Analytic conductor $71.746$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,4,Mod(1,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1216.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.7463225670\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 121x^{5} + 402x^{4} + 4234x^{3} - 14542x^{2} - 40996x + 141664 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 608)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-8.42108\) of defining polynomial
Character \(\chi\) \(=\) 1216.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.54092 q^{3} -13.1578 q^{5} -19.9667 q^{7} +45.9472 q^{9} +O(q^{10})\) \(q+8.54092 q^{3} -13.1578 q^{5} -19.9667 q^{7} +45.9472 q^{9} -25.7995 q^{11} +81.5195 q^{13} -112.379 q^{15} +115.470 q^{17} -19.0000 q^{19} -170.534 q^{21} -167.379 q^{23} +48.1264 q^{25} +161.827 q^{27} -251.521 q^{29} +189.395 q^{31} -220.351 q^{33} +262.717 q^{35} -88.3617 q^{37} +696.251 q^{39} -125.916 q^{41} -459.601 q^{43} -604.562 q^{45} -509.199 q^{47} +55.6703 q^{49} +986.219 q^{51} +604.464 q^{53} +339.463 q^{55} -162.277 q^{57} -173.618 q^{59} +271.164 q^{61} -917.416 q^{63} -1072.61 q^{65} +397.563 q^{67} -1429.57 q^{69} -762.891 q^{71} +108.403 q^{73} +411.044 q^{75} +515.131 q^{77} -230.707 q^{79} +141.573 q^{81} -412.152 q^{83} -1519.32 q^{85} -2148.22 q^{87} -1278.14 q^{89} -1627.68 q^{91} +1617.61 q^{93} +249.997 q^{95} -1333.48 q^{97} -1185.41 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{3} + 17 q^{5} - 42 q^{7} + 86 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + 3 q^{3} + 17 q^{5} - 42 q^{7} + 86 q^{9} - 33 q^{11} + 35 q^{13} - 120 q^{15} + 66 q^{17} - 133 q^{19} - 33 q^{21} - 389 q^{23} + 44 q^{25} - 39 q^{27} - 233 q^{29} - 158 q^{31} - 206 q^{33} + 123 q^{35} + 436 q^{37} - 807 q^{39} - 94 q^{41} + 645 q^{43} - 103 q^{45} - 1451 q^{47} + 93 q^{49} + 1741 q^{51} - 3 q^{53} - 1971 q^{55} - 57 q^{57} + 297 q^{59} - 93 q^{61} - 2999 q^{63} - 788 q^{65} + 1641 q^{67} - 945 q^{69} - 2392 q^{71} + 324 q^{73} + 1909 q^{75} + 711 q^{77} - 2492 q^{79} + 143 q^{81} + 310 q^{83} - 2353 q^{85} - 4795 q^{87} - 440 q^{89} - 107 q^{91} - 900 q^{93} - 323 q^{95} - 532 q^{97} - 1591 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.54092 1.64370 0.821850 0.569704i \(-0.192942\pi\)
0.821850 + 0.569704i \(0.192942\pi\)
\(4\) 0 0
\(5\) −13.1578 −1.17686 −0.588432 0.808546i \(-0.700255\pi\)
−0.588432 + 0.808546i \(0.700255\pi\)
\(6\) 0 0
\(7\) −19.9667 −1.07810 −0.539051 0.842273i \(-0.681217\pi\)
−0.539051 + 0.842273i \(0.681217\pi\)
\(8\) 0 0
\(9\) 45.9472 1.70175
\(10\) 0 0
\(11\) −25.7995 −0.707166 −0.353583 0.935403i \(-0.615037\pi\)
−0.353583 + 0.935403i \(0.615037\pi\)
\(12\) 0 0
\(13\) 81.5195 1.73919 0.869594 0.493768i \(-0.164381\pi\)
0.869594 + 0.493768i \(0.164381\pi\)
\(14\) 0 0
\(15\) −112.379 −1.93441
\(16\) 0 0
\(17\) 115.470 1.64739 0.823693 0.567035i \(-0.191910\pi\)
0.823693 + 0.567035i \(0.191910\pi\)
\(18\) 0 0
\(19\) −19.0000 −0.229416
\(20\) 0 0
\(21\) −170.534 −1.77208
\(22\) 0 0
\(23\) −167.379 −1.51743 −0.758715 0.651422i \(-0.774173\pi\)
−0.758715 + 0.651422i \(0.774173\pi\)
\(24\) 0 0
\(25\) 48.1264 0.385011
\(26\) 0 0
\(27\) 161.827 1.15347
\(28\) 0 0
\(29\) −251.521 −1.61056 −0.805280 0.592895i \(-0.797985\pi\)
−0.805280 + 0.592895i \(0.797985\pi\)
\(30\) 0 0
\(31\) 189.395 1.09730 0.548651 0.836051i \(-0.315142\pi\)
0.548651 + 0.836051i \(0.315142\pi\)
\(32\) 0 0
\(33\) −220.351 −1.16237
\(34\) 0 0
\(35\) 262.717 1.26878
\(36\) 0 0
\(37\) −88.3617 −0.392610 −0.196305 0.980543i \(-0.562894\pi\)
−0.196305 + 0.980543i \(0.562894\pi\)
\(38\) 0 0
\(39\) 696.251 2.85870
\(40\) 0 0
\(41\) −125.916 −0.479629 −0.239815 0.970819i \(-0.577087\pi\)
−0.239815 + 0.970819i \(0.577087\pi\)
\(42\) 0 0
\(43\) −459.601 −1.62996 −0.814982 0.579486i \(-0.803253\pi\)
−0.814982 + 0.579486i \(0.803253\pi\)
\(44\) 0 0
\(45\) −604.562 −2.00273
\(46\) 0 0
\(47\) −509.199 −1.58030 −0.790152 0.612911i \(-0.789999\pi\)
−0.790152 + 0.612911i \(0.789999\pi\)
\(48\) 0 0
\(49\) 55.6703 0.162304
\(50\) 0 0
\(51\) 986.219 2.70781
\(52\) 0 0
\(53\) 604.464 1.56660 0.783298 0.621647i \(-0.213536\pi\)
0.783298 + 0.621647i \(0.213536\pi\)
\(54\) 0 0
\(55\) 339.463 0.832239
\(56\) 0 0
\(57\) −162.277 −0.377091
\(58\) 0 0
\(59\) −173.618 −0.383105 −0.191552 0.981482i \(-0.561352\pi\)
−0.191552 + 0.981482i \(0.561352\pi\)
\(60\) 0 0
\(61\) 271.164 0.569164 0.284582 0.958652i \(-0.408145\pi\)
0.284582 + 0.958652i \(0.408145\pi\)
\(62\) 0 0
\(63\) −917.416 −1.83466
\(64\) 0 0
\(65\) −1072.61 −2.04679
\(66\) 0 0
\(67\) 397.563 0.724925 0.362463 0.931998i \(-0.381936\pi\)
0.362463 + 0.931998i \(0.381936\pi\)
\(68\) 0 0
\(69\) −1429.57 −2.49420
\(70\) 0 0
\(71\) −762.891 −1.27519 −0.637595 0.770371i \(-0.720071\pi\)
−0.637595 + 0.770371i \(0.720071\pi\)
\(72\) 0 0
\(73\) 108.403 0.173804 0.0869018 0.996217i \(-0.472303\pi\)
0.0869018 + 0.996217i \(0.472303\pi\)
\(74\) 0 0
\(75\) 411.044 0.632843
\(76\) 0 0
\(77\) 515.131 0.762397
\(78\) 0 0
\(79\) −230.707 −0.328565 −0.164282 0.986413i \(-0.552531\pi\)
−0.164282 + 0.986413i \(0.552531\pi\)
\(80\) 0 0
\(81\) 141.573 0.194202
\(82\) 0 0
\(83\) −412.152 −0.545055 −0.272527 0.962148i \(-0.587860\pi\)
−0.272527 + 0.962148i \(0.587860\pi\)
\(84\) 0 0
\(85\) −1519.32 −1.93875
\(86\) 0 0
\(87\) −2148.22 −2.64728
\(88\) 0 0
\(89\) −1278.14 −1.52228 −0.761138 0.648590i \(-0.775359\pi\)
−0.761138 + 0.648590i \(0.775359\pi\)
\(90\) 0 0
\(91\) −1627.68 −1.87502
\(92\) 0 0
\(93\) 1617.61 1.80364
\(94\) 0 0
\(95\) 249.997 0.269991
\(96\) 0 0
\(97\) −1333.48 −1.39582 −0.697910 0.716186i \(-0.745886\pi\)
−0.697910 + 0.716186i \(0.745886\pi\)
\(98\) 0 0
\(99\) −1185.41 −1.20342
\(100\) 0 0
\(101\) −627.099 −0.617809 −0.308905 0.951093i \(-0.599962\pi\)
−0.308905 + 0.951093i \(0.599962\pi\)
\(102\) 0 0
\(103\) 402.636 0.385174 0.192587 0.981280i \(-0.438312\pi\)
0.192587 + 0.981280i \(0.438312\pi\)
\(104\) 0 0
\(105\) 2243.85 2.08549
\(106\) 0 0
\(107\) 665.703 0.601457 0.300728 0.953710i \(-0.402770\pi\)
0.300728 + 0.953710i \(0.402770\pi\)
\(108\) 0 0
\(109\) 349.282 0.306928 0.153464 0.988154i \(-0.450957\pi\)
0.153464 + 0.988154i \(0.450957\pi\)
\(110\) 0 0
\(111\) −754.690 −0.645333
\(112\) 0 0
\(113\) −994.312 −0.827761 −0.413880 0.910331i \(-0.635827\pi\)
−0.413880 + 0.910331i \(0.635827\pi\)
\(114\) 0 0
\(115\) 2202.33 1.78581
\(116\) 0 0
\(117\) 3745.60 2.95966
\(118\) 0 0
\(119\) −2305.56 −1.77605
\(120\) 0 0
\(121\) −665.388 −0.499916
\(122\) 0 0
\(123\) −1075.44 −0.788366
\(124\) 0 0
\(125\) 1011.48 0.723759
\(126\) 0 0
\(127\) −2669.61 −1.86527 −0.932635 0.360822i \(-0.882496\pi\)
−0.932635 + 0.360822i \(0.882496\pi\)
\(128\) 0 0
\(129\) −3925.41 −2.67917
\(130\) 0 0
\(131\) 126.439 0.0843287 0.0421644 0.999111i \(-0.486575\pi\)
0.0421644 + 0.999111i \(0.486575\pi\)
\(132\) 0 0
\(133\) 379.368 0.247334
\(134\) 0 0
\(135\) −2129.28 −1.35747
\(136\) 0 0
\(137\) 847.326 0.528408 0.264204 0.964467i \(-0.414891\pi\)
0.264204 + 0.964467i \(0.414891\pi\)
\(138\) 0 0
\(139\) 226.691 0.138329 0.0691643 0.997605i \(-0.477967\pi\)
0.0691643 + 0.997605i \(0.477967\pi\)
\(140\) 0 0
\(141\) −4349.03 −2.59755
\(142\) 0 0
\(143\) −2103.16 −1.22990
\(144\) 0 0
\(145\) 3309.45 1.89541
\(146\) 0 0
\(147\) 475.476 0.266779
\(148\) 0 0
\(149\) −1028.82 −0.565668 −0.282834 0.959169i \(-0.591275\pi\)
−0.282834 + 0.959169i \(0.591275\pi\)
\(150\) 0 0
\(151\) −383.908 −0.206901 −0.103450 0.994635i \(-0.532988\pi\)
−0.103450 + 0.994635i \(0.532988\pi\)
\(152\) 0 0
\(153\) 5305.53 2.80344
\(154\) 0 0
\(155\) −2492.01 −1.29138
\(156\) 0 0
\(157\) −341.502 −0.173597 −0.0867987 0.996226i \(-0.527664\pi\)
−0.0867987 + 0.996226i \(0.527664\pi\)
\(158\) 0 0
\(159\) 5162.68 2.57501
\(160\) 0 0
\(161\) 3342.01 1.63594
\(162\) 0 0
\(163\) 79.6805 0.0382887 0.0191443 0.999817i \(-0.493906\pi\)
0.0191443 + 0.999817i \(0.493906\pi\)
\(164\) 0 0
\(165\) 2899.32 1.36795
\(166\) 0 0
\(167\) −406.653 −0.188430 −0.0942149 0.995552i \(-0.530034\pi\)
−0.0942149 + 0.995552i \(0.530034\pi\)
\(168\) 0 0
\(169\) 4448.43 2.02477
\(170\) 0 0
\(171\) −872.998 −0.390408
\(172\) 0 0
\(173\) 2246.16 0.987123 0.493562 0.869711i \(-0.335695\pi\)
0.493562 + 0.869711i \(0.335695\pi\)
\(174\) 0 0
\(175\) −960.927 −0.415081
\(176\) 0 0
\(177\) −1482.86 −0.629709
\(178\) 0 0
\(179\) −2832.67 −1.18281 −0.591406 0.806374i \(-0.701427\pi\)
−0.591406 + 0.806374i \(0.701427\pi\)
\(180\) 0 0
\(181\) 960.875 0.394593 0.197296 0.980344i \(-0.436784\pi\)
0.197296 + 0.980344i \(0.436784\pi\)
\(182\) 0 0
\(183\) 2315.99 0.935535
\(184\) 0 0
\(185\) 1162.64 0.462049
\(186\) 0 0
\(187\) −2979.06 −1.16498
\(188\) 0 0
\(189\) −3231.15 −1.24355
\(190\) 0 0
\(191\) 332.728 0.126049 0.0630245 0.998012i \(-0.479925\pi\)
0.0630245 + 0.998012i \(0.479925\pi\)
\(192\) 0 0
\(193\) −1500.32 −0.559563 −0.279782 0.960064i \(-0.590262\pi\)
−0.279782 + 0.960064i \(0.590262\pi\)
\(194\) 0 0
\(195\) −9161.10 −3.36431
\(196\) 0 0
\(197\) −610.730 −0.220877 −0.110438 0.993883i \(-0.535225\pi\)
−0.110438 + 0.993883i \(0.535225\pi\)
\(198\) 0 0
\(199\) 4387.80 1.56303 0.781514 0.623887i \(-0.214448\pi\)
0.781514 + 0.623887i \(0.214448\pi\)
\(200\) 0 0
\(201\) 3395.55 1.19156
\(202\) 0 0
\(203\) 5022.05 1.73635
\(204\) 0 0
\(205\) 1656.77 0.564459
\(206\) 0 0
\(207\) −7690.60 −2.58229
\(208\) 0 0
\(209\) 490.190 0.162235
\(210\) 0 0
\(211\) 5027.18 1.64021 0.820107 0.572210i \(-0.193914\pi\)
0.820107 + 0.572210i \(0.193914\pi\)
\(212\) 0 0
\(213\) −6515.79 −2.09603
\(214\) 0 0
\(215\) 6047.31 1.91825
\(216\) 0 0
\(217\) −3781.60 −1.18300
\(218\) 0 0
\(219\) 925.864 0.285681
\(220\) 0 0
\(221\) 9413.05 2.86512
\(222\) 0 0
\(223\) 3886.89 1.16720 0.583600 0.812041i \(-0.301644\pi\)
0.583600 + 0.812041i \(0.301644\pi\)
\(224\) 0 0
\(225\) 2211.28 0.655193
\(226\) 0 0
\(227\) −2705.06 −0.790931 −0.395466 0.918481i \(-0.629417\pi\)
−0.395466 + 0.918481i \(0.629417\pi\)
\(228\) 0 0
\(229\) 2471.34 0.713148 0.356574 0.934267i \(-0.383945\pi\)
0.356574 + 0.934267i \(0.383945\pi\)
\(230\) 0 0
\(231\) 4399.69 1.25315
\(232\) 0 0
\(233\) 4029.19 1.13288 0.566439 0.824103i \(-0.308321\pi\)
0.566439 + 0.824103i \(0.308321\pi\)
\(234\) 0 0
\(235\) 6699.91 1.85981
\(236\) 0 0
\(237\) −1970.45 −0.540062
\(238\) 0 0
\(239\) −2329.50 −0.630472 −0.315236 0.949013i \(-0.602084\pi\)
−0.315236 + 0.949013i \(0.602084\pi\)
\(240\) 0 0
\(241\) −4687.77 −1.25297 −0.626485 0.779434i \(-0.715507\pi\)
−0.626485 + 0.779434i \(0.715507\pi\)
\(242\) 0 0
\(243\) −3160.16 −0.834256
\(244\) 0 0
\(245\) −732.496 −0.191010
\(246\) 0 0
\(247\) −1548.87 −0.398997
\(248\) 0 0
\(249\) −3520.15 −0.895907
\(250\) 0 0
\(251\) 3723.91 0.936458 0.468229 0.883607i \(-0.344892\pi\)
0.468229 + 0.883607i \(0.344892\pi\)
\(252\) 0 0
\(253\) 4318.28 1.07308
\(254\) 0 0
\(255\) −12976.4 −3.18673
\(256\) 0 0
\(257\) 4926.21 1.19567 0.597837 0.801618i \(-0.296027\pi\)
0.597837 + 0.801618i \(0.296027\pi\)
\(258\) 0 0
\(259\) 1764.29 0.423274
\(260\) 0 0
\(261\) −11556.7 −2.74077
\(262\) 0 0
\(263\) −2177.76 −0.510595 −0.255298 0.966863i \(-0.582173\pi\)
−0.255298 + 0.966863i \(0.582173\pi\)
\(264\) 0 0
\(265\) −7953.39 −1.84367
\(266\) 0 0
\(267\) −10916.5 −2.50217
\(268\) 0 0
\(269\) 5760.70 1.30571 0.652855 0.757483i \(-0.273571\pi\)
0.652855 + 0.757483i \(0.273571\pi\)
\(270\) 0 0
\(271\) −528.665 −0.118502 −0.0592512 0.998243i \(-0.518871\pi\)
−0.0592512 + 0.998243i \(0.518871\pi\)
\(272\) 0 0
\(273\) −13901.9 −3.08197
\(274\) 0 0
\(275\) −1241.64 −0.272267
\(276\) 0 0
\(277\) −6110.07 −1.32534 −0.662669 0.748912i \(-0.730576\pi\)
−0.662669 + 0.748912i \(0.730576\pi\)
\(278\) 0 0
\(279\) 8702.18 1.86733
\(280\) 0 0
\(281\) −4673.80 −0.992225 −0.496113 0.868258i \(-0.665240\pi\)
−0.496113 + 0.868258i \(0.665240\pi\)
\(282\) 0 0
\(283\) −3933.39 −0.826204 −0.413102 0.910685i \(-0.635555\pi\)
−0.413102 + 0.910685i \(0.635555\pi\)
\(284\) 0 0
\(285\) 2135.21 0.443785
\(286\) 0 0
\(287\) 2514.13 0.517089
\(288\) 0 0
\(289\) 8420.31 1.71388
\(290\) 0 0
\(291\) −11389.1 −2.29431
\(292\) 0 0
\(293\) −843.734 −0.168230 −0.0841151 0.996456i \(-0.526806\pi\)
−0.0841151 + 0.996456i \(0.526806\pi\)
\(294\) 0 0
\(295\) 2284.43 0.450863
\(296\) 0 0
\(297\) −4175.04 −0.815692
\(298\) 0 0
\(299\) −13644.6 −2.63910
\(300\) 0 0
\(301\) 9176.73 1.75727
\(302\) 0 0
\(303\) −5356.00 −1.01549
\(304\) 0 0
\(305\) −3567.91 −0.669829
\(306\) 0 0
\(307\) −2128.89 −0.395772 −0.197886 0.980225i \(-0.563408\pi\)
−0.197886 + 0.980225i \(0.563408\pi\)
\(308\) 0 0
\(309\) 3438.88 0.633111
\(310\) 0 0
\(311\) −8236.36 −1.50174 −0.750870 0.660450i \(-0.770366\pi\)
−0.750870 + 0.660450i \(0.770366\pi\)
\(312\) 0 0
\(313\) −7429.56 −1.34167 −0.670836 0.741606i \(-0.734065\pi\)
−0.670836 + 0.741606i \(0.734065\pi\)
\(314\) 0 0
\(315\) 12071.1 2.15915
\(316\) 0 0
\(317\) 6298.50 1.11596 0.557980 0.829855i \(-0.311577\pi\)
0.557980 + 0.829855i \(0.311577\pi\)
\(318\) 0 0
\(319\) 6489.10 1.13893
\(320\) 0 0
\(321\) 5685.71 0.988615
\(322\) 0 0
\(323\) −2193.93 −0.377936
\(324\) 0 0
\(325\) 3923.24 0.669607
\(326\) 0 0
\(327\) 2983.19 0.504497
\(328\) 0 0
\(329\) 10167.0 1.70373
\(330\) 0 0
\(331\) −2575.03 −0.427602 −0.213801 0.976877i \(-0.568584\pi\)
−0.213801 + 0.976877i \(0.568584\pi\)
\(332\) 0 0
\(333\) −4059.98 −0.668124
\(334\) 0 0
\(335\) −5231.03 −0.853139
\(336\) 0 0
\(337\) −740.602 −0.119713 −0.0598563 0.998207i \(-0.519064\pi\)
−0.0598563 + 0.998207i \(0.519064\pi\)
\(338\) 0 0
\(339\) −8492.33 −1.36059
\(340\) 0 0
\(341\) −4886.29 −0.775975
\(342\) 0 0
\(343\) 5737.03 0.903122
\(344\) 0 0
\(345\) 18809.9 2.93534
\(346\) 0 0
\(347\) 11162.7 1.72693 0.863466 0.504406i \(-0.168289\pi\)
0.863466 + 0.504406i \(0.168289\pi\)
\(348\) 0 0
\(349\) −2445.65 −0.375108 −0.187554 0.982254i \(-0.560056\pi\)
−0.187554 + 0.982254i \(0.560056\pi\)
\(350\) 0 0
\(351\) 13192.0 2.00609
\(352\) 0 0
\(353\) −12241.3 −1.84572 −0.922858 0.385140i \(-0.874153\pi\)
−0.922858 + 0.385140i \(0.874153\pi\)
\(354\) 0 0
\(355\) 10037.9 1.50073
\(356\) 0 0
\(357\) −19691.6 −2.91930
\(358\) 0 0
\(359\) −996.059 −0.146435 −0.0732173 0.997316i \(-0.523327\pi\)
−0.0732173 + 0.997316i \(0.523327\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) −5683.02 −0.821712
\(364\) 0 0
\(365\) −1426.35 −0.204543
\(366\) 0 0
\(367\) 4660.35 0.662856 0.331428 0.943480i \(-0.392470\pi\)
0.331428 + 0.943480i \(0.392470\pi\)
\(368\) 0 0
\(369\) −5785.50 −0.816209
\(370\) 0 0
\(371\) −12069.2 −1.68895
\(372\) 0 0
\(373\) 2812.80 0.390459 0.195229 0.980758i \(-0.437455\pi\)
0.195229 + 0.980758i \(0.437455\pi\)
\(374\) 0 0
\(375\) 8639.00 1.18964
\(376\) 0 0
\(377\) −20503.8 −2.80107
\(378\) 0 0
\(379\) 8251.88 1.11839 0.559196 0.829035i \(-0.311110\pi\)
0.559196 + 0.829035i \(0.311110\pi\)
\(380\) 0 0
\(381\) −22800.9 −3.06594
\(382\) 0 0
\(383\) 2675.35 0.356930 0.178465 0.983946i \(-0.442887\pi\)
0.178465 + 0.983946i \(0.442887\pi\)
\(384\) 0 0
\(385\) −6777.96 −0.897239
\(386\) 0 0
\(387\) −21117.4 −2.77379
\(388\) 0 0
\(389\) 4063.09 0.529581 0.264791 0.964306i \(-0.414697\pi\)
0.264791 + 0.964306i \(0.414697\pi\)
\(390\) 0 0
\(391\) −19327.2 −2.49980
\(392\) 0 0
\(393\) 1079.91 0.138611
\(394\) 0 0
\(395\) 3035.59 0.386676
\(396\) 0 0
\(397\) 8158.05 1.03134 0.515668 0.856788i \(-0.327544\pi\)
0.515668 + 0.856788i \(0.327544\pi\)
\(398\) 0 0
\(399\) 3240.15 0.406542
\(400\) 0 0
\(401\) 7411.97 0.923032 0.461516 0.887132i \(-0.347306\pi\)
0.461516 + 0.887132i \(0.347306\pi\)
\(402\) 0 0
\(403\) 15439.4 1.90841
\(404\) 0 0
\(405\) −1862.79 −0.228550
\(406\) 0 0
\(407\) 2279.68 0.277641
\(408\) 0 0
\(409\) 7084.46 0.856489 0.428245 0.903663i \(-0.359132\pi\)
0.428245 + 0.903663i \(0.359132\pi\)
\(410\) 0 0
\(411\) 7236.94 0.868545
\(412\) 0 0
\(413\) 3466.59 0.413026
\(414\) 0 0
\(415\) 5422.99 0.641456
\(416\) 0 0
\(417\) 1936.15 0.227371
\(418\) 0 0
\(419\) 9315.37 1.08612 0.543062 0.839693i \(-0.317265\pi\)
0.543062 + 0.839693i \(0.317265\pi\)
\(420\) 0 0
\(421\) 1577.50 0.182619 0.0913093 0.995823i \(-0.470895\pi\)
0.0913093 + 0.995823i \(0.470895\pi\)
\(422\) 0 0
\(423\) −23396.3 −2.68928
\(424\) 0 0
\(425\) 5557.15 0.634262
\(426\) 0 0
\(427\) −5414.26 −0.613617
\(428\) 0 0
\(429\) −17962.9 −2.02158
\(430\) 0 0
\(431\) 1798.83 0.201036 0.100518 0.994935i \(-0.467950\pi\)
0.100518 + 0.994935i \(0.467950\pi\)
\(432\) 0 0
\(433\) 10553.6 1.17130 0.585649 0.810565i \(-0.300840\pi\)
0.585649 + 0.810565i \(0.300840\pi\)
\(434\) 0 0
\(435\) 28265.7 3.11549
\(436\) 0 0
\(437\) 3180.20 0.348122
\(438\) 0 0
\(439\) 8814.06 0.958250 0.479125 0.877747i \(-0.340954\pi\)
0.479125 + 0.877747i \(0.340954\pi\)
\(440\) 0 0
\(441\) 2557.90 0.276201
\(442\) 0 0
\(443\) −3323.91 −0.356487 −0.178243 0.983986i \(-0.557041\pi\)
−0.178243 + 0.983986i \(0.557041\pi\)
\(444\) 0 0
\(445\) 16817.4 1.79151
\(446\) 0 0
\(447\) −8787.10 −0.929788
\(448\) 0 0
\(449\) 7631.27 0.802098 0.401049 0.916057i \(-0.368646\pi\)
0.401049 + 0.916057i \(0.368646\pi\)
\(450\) 0 0
\(451\) 3248.57 0.339178
\(452\) 0 0
\(453\) −3278.93 −0.340083
\(454\) 0 0
\(455\) 21416.6 2.20665
\(456\) 0 0
\(457\) 105.869 0.0108366 0.00541830 0.999985i \(-0.498275\pi\)
0.00541830 + 0.999985i \(0.498275\pi\)
\(458\) 0 0
\(459\) 18686.1 1.90020
\(460\) 0 0
\(461\) −15158.0 −1.53140 −0.765701 0.643197i \(-0.777608\pi\)
−0.765701 + 0.643197i \(0.777608\pi\)
\(462\) 0 0
\(463\) −14630.3 −1.46853 −0.734264 0.678864i \(-0.762473\pi\)
−0.734264 + 0.678864i \(0.762473\pi\)
\(464\) 0 0
\(465\) −21284.1 −2.12264
\(466\) 0 0
\(467\) −12655.4 −1.25401 −0.627004 0.779016i \(-0.715719\pi\)
−0.627004 + 0.779016i \(0.715719\pi\)
\(468\) 0 0
\(469\) −7938.02 −0.781543
\(470\) 0 0
\(471\) −2916.74 −0.285342
\(472\) 0 0
\(473\) 11857.5 1.15266
\(474\) 0 0
\(475\) −914.402 −0.0883276
\(476\) 0 0
\(477\) 27773.5 2.66595
\(478\) 0 0
\(479\) −3774.83 −0.360075 −0.180038 0.983660i \(-0.557622\pi\)
−0.180038 + 0.983660i \(0.557622\pi\)
\(480\) 0 0
\(481\) −7203.20 −0.682823
\(482\) 0 0
\(483\) 28543.8 2.68900
\(484\) 0 0
\(485\) 17545.6 1.64269
\(486\) 0 0
\(487\) −15396.5 −1.43261 −0.716305 0.697788i \(-0.754168\pi\)
−0.716305 + 0.697788i \(0.754168\pi\)
\(488\) 0 0
\(489\) 680.544 0.0629351
\(490\) 0 0
\(491\) −6166.15 −0.566750 −0.283375 0.959009i \(-0.591454\pi\)
−0.283375 + 0.959009i \(0.591454\pi\)
\(492\) 0 0
\(493\) −29043.1 −2.65322
\(494\) 0 0
\(495\) 15597.4 1.41626
\(496\) 0 0
\(497\) 15232.4 1.37479
\(498\) 0 0
\(499\) −4448.36 −0.399070 −0.199535 0.979891i \(-0.563943\pi\)
−0.199535 + 0.979891i \(0.563943\pi\)
\(500\) 0 0
\(501\) −3473.19 −0.309722
\(502\) 0 0
\(503\) 15601.5 1.38297 0.691487 0.722389i \(-0.256956\pi\)
0.691487 + 0.722389i \(0.256956\pi\)
\(504\) 0 0
\(505\) 8251.22 0.727078
\(506\) 0 0
\(507\) 37993.7 3.32812
\(508\) 0 0
\(509\) 2056.72 0.179101 0.0895505 0.995982i \(-0.471457\pi\)
0.0895505 + 0.995982i \(0.471457\pi\)
\(510\) 0 0
\(511\) −2164.46 −0.187378
\(512\) 0 0
\(513\) −3074.71 −0.264623
\(514\) 0 0
\(515\) −5297.79 −0.453298
\(516\) 0 0
\(517\) 13137.1 1.11754
\(518\) 0 0
\(519\) 19184.3 1.62253
\(520\) 0 0
\(521\) 6105.27 0.513391 0.256695 0.966492i \(-0.417366\pi\)
0.256695 + 0.966492i \(0.417366\pi\)
\(522\) 0 0
\(523\) 15629.1 1.30672 0.653358 0.757050i \(-0.273360\pi\)
0.653358 + 0.757050i \(0.273360\pi\)
\(524\) 0 0
\(525\) −8207.20 −0.682269
\(526\) 0 0
\(527\) 21869.4 1.80768
\(528\) 0 0
\(529\) 15848.7 1.30260
\(530\) 0 0
\(531\) −7977.28 −0.651948
\(532\) 0 0
\(533\) −10264.6 −0.834165
\(534\) 0 0
\(535\) −8759.15 −0.707834
\(536\) 0 0
\(537\) −24193.6 −1.94419
\(538\) 0 0
\(539\) −1436.26 −0.114776
\(540\) 0 0
\(541\) 719.686 0.0571935 0.0285968 0.999591i \(-0.490896\pi\)
0.0285968 + 0.999591i \(0.490896\pi\)
\(542\) 0 0
\(543\) 8206.75 0.648592
\(544\) 0 0
\(545\) −4595.76 −0.361213
\(546\) 0 0
\(547\) −1043.70 −0.0815820 −0.0407910 0.999168i \(-0.512988\pi\)
−0.0407910 + 0.999168i \(0.512988\pi\)
\(548\) 0 0
\(549\) 12459.2 0.968575
\(550\) 0 0
\(551\) 4778.89 0.369488
\(552\) 0 0
\(553\) 4606.47 0.354226
\(554\) 0 0
\(555\) 9930.02 0.759470
\(556\) 0 0
\(557\) 8833.00 0.671932 0.335966 0.941874i \(-0.390937\pi\)
0.335966 + 0.941874i \(0.390937\pi\)
\(558\) 0 0
\(559\) −37466.4 −2.83482
\(560\) 0 0
\(561\) −25443.9 −1.91487
\(562\) 0 0
\(563\) −2352.97 −0.176138 −0.0880691 0.996114i \(-0.528070\pi\)
−0.0880691 + 0.996114i \(0.528070\pi\)
\(564\) 0 0
\(565\) 13082.9 0.974163
\(566\) 0 0
\(567\) −2826.76 −0.209370
\(568\) 0 0
\(569\) 19654.5 1.44809 0.724043 0.689755i \(-0.242282\pi\)
0.724043 + 0.689755i \(0.242282\pi\)
\(570\) 0 0
\(571\) 2346.30 0.171961 0.0859803 0.996297i \(-0.472598\pi\)
0.0859803 + 0.996297i \(0.472598\pi\)
\(572\) 0 0
\(573\) 2841.80 0.207187
\(574\) 0 0
\(575\) −8055.34 −0.584228
\(576\) 0 0
\(577\) 21946.1 1.58341 0.791706 0.610903i \(-0.209193\pi\)
0.791706 + 0.610903i \(0.209193\pi\)
\(578\) 0 0
\(579\) −12814.1 −0.919754
\(580\) 0 0
\(581\) 8229.33 0.587625
\(582\) 0 0
\(583\) −15594.9 −1.10784
\(584\) 0 0
\(585\) −49283.6 −3.48312
\(586\) 0 0
\(587\) −17129.9 −1.20448 −0.602238 0.798316i \(-0.705724\pi\)
−0.602238 + 0.798316i \(0.705724\pi\)
\(588\) 0 0
\(589\) −3598.51 −0.251738
\(590\) 0 0
\(591\) −5216.19 −0.363055
\(592\) 0 0
\(593\) −24042.0 −1.66490 −0.832449 0.554101i \(-0.813062\pi\)
−0.832449 + 0.554101i \(0.813062\pi\)
\(594\) 0 0
\(595\) 30336.0 2.09017
\(596\) 0 0
\(597\) 37475.8 2.56915
\(598\) 0 0
\(599\) −24147.3 −1.64713 −0.823565 0.567222i \(-0.808018\pi\)
−0.823565 + 0.567222i \(0.808018\pi\)
\(600\) 0 0
\(601\) −7106.93 −0.482359 −0.241179 0.970481i \(-0.577534\pi\)
−0.241179 + 0.970481i \(0.577534\pi\)
\(602\) 0 0
\(603\) 18266.9 1.23364
\(604\) 0 0
\(605\) 8755.01 0.588333
\(606\) 0 0
\(607\) 18561.0 1.24113 0.620567 0.784153i \(-0.286902\pi\)
0.620567 + 0.784153i \(0.286902\pi\)
\(608\) 0 0
\(609\) 42892.9 2.85403
\(610\) 0 0
\(611\) −41509.7 −2.74845
\(612\) 0 0
\(613\) 1703.46 0.112238 0.0561192 0.998424i \(-0.482127\pi\)
0.0561192 + 0.998424i \(0.482127\pi\)
\(614\) 0 0
\(615\) 14150.4 0.927801
\(616\) 0 0
\(617\) −2299.61 −0.150047 −0.0750235 0.997182i \(-0.523903\pi\)
−0.0750235 + 0.997182i \(0.523903\pi\)
\(618\) 0 0
\(619\) 27773.9 1.80343 0.901717 0.432327i \(-0.142307\pi\)
0.901717 + 0.432327i \(0.142307\pi\)
\(620\) 0 0
\(621\) −27086.4 −1.75030
\(622\) 0 0
\(623\) 25520.3 1.64117
\(624\) 0 0
\(625\) −19324.6 −1.23678
\(626\) 0 0
\(627\) 4186.67 0.266666
\(628\) 0 0
\(629\) −10203.1 −0.646781
\(630\) 0 0
\(631\) 5059.28 0.319187 0.159593 0.987183i \(-0.448982\pi\)
0.159593 + 0.987183i \(0.448982\pi\)
\(632\) 0 0
\(633\) 42936.7 2.69602
\(634\) 0 0
\(635\) 35126.0 2.19517
\(636\) 0 0
\(637\) 4538.22 0.282277
\(638\) 0 0
\(639\) −35052.8 −2.17006
\(640\) 0 0
\(641\) −4955.44 −0.305348 −0.152674 0.988277i \(-0.548788\pi\)
−0.152674 + 0.988277i \(0.548788\pi\)
\(642\) 0 0
\(643\) −31892.3 −1.95600 −0.978000 0.208604i \(-0.933108\pi\)
−0.978000 + 0.208604i \(0.933108\pi\)
\(644\) 0 0
\(645\) 51649.6 3.15303
\(646\) 0 0
\(647\) −15213.1 −0.924402 −0.462201 0.886775i \(-0.652940\pi\)
−0.462201 + 0.886775i \(0.652940\pi\)
\(648\) 0 0
\(649\) 4479.26 0.270919
\(650\) 0 0
\(651\) −32298.3 −1.94450
\(652\) 0 0
\(653\) 14131.4 0.846867 0.423434 0.905927i \(-0.360825\pi\)
0.423434 + 0.905927i \(0.360825\pi\)
\(654\) 0 0
\(655\) −1663.66 −0.0992435
\(656\) 0 0
\(657\) 4980.84 0.295770
\(658\) 0 0
\(659\) 10846.1 0.641131 0.320565 0.947226i \(-0.396127\pi\)
0.320565 + 0.947226i \(0.396127\pi\)
\(660\) 0 0
\(661\) −17001.0 −1.00039 −0.500197 0.865911i \(-0.666739\pi\)
−0.500197 + 0.865911i \(0.666739\pi\)
\(662\) 0 0
\(663\) 80396.1 4.70939
\(664\) 0 0
\(665\) −4991.63 −0.291078
\(666\) 0 0
\(667\) 42099.3 2.44391
\(668\) 0 0
\(669\) 33197.6 1.91853
\(670\) 0 0
\(671\) −6995.89 −0.402494
\(672\) 0 0
\(673\) 9819.41 0.562423 0.281211 0.959646i \(-0.409264\pi\)
0.281211 + 0.959646i \(0.409264\pi\)
\(674\) 0 0
\(675\) 7788.14 0.444097
\(676\) 0 0
\(677\) −15034.0 −0.853479 −0.426739 0.904375i \(-0.640338\pi\)
−0.426739 + 0.904375i \(0.640338\pi\)
\(678\) 0 0
\(679\) 26625.3 1.50484
\(680\) 0 0
\(681\) −23103.7 −1.30005
\(682\) 0 0
\(683\) 6423.83 0.359884 0.179942 0.983677i \(-0.442409\pi\)
0.179942 + 0.983677i \(0.442409\pi\)
\(684\) 0 0
\(685\) −11148.9 −0.621865
\(686\) 0 0
\(687\) 21107.5 1.17220
\(688\) 0 0
\(689\) 49275.6 2.72460
\(690\) 0 0
\(691\) −14553.0 −0.801191 −0.400596 0.916255i \(-0.631197\pi\)
−0.400596 + 0.916255i \(0.631197\pi\)
\(692\) 0 0
\(693\) 23668.8 1.29741
\(694\) 0 0
\(695\) −2982.74 −0.162794
\(696\) 0 0
\(697\) −14539.5 −0.790135
\(698\) 0 0
\(699\) 34412.9 1.86211
\(700\) 0 0
\(701\) 8367.86 0.450856 0.225428 0.974260i \(-0.427622\pi\)
0.225428 + 0.974260i \(0.427622\pi\)
\(702\) 0 0
\(703\) 1678.87 0.0900710
\(704\) 0 0
\(705\) 57223.4 3.05696
\(706\) 0 0
\(707\) 12521.1 0.666061
\(708\) 0 0
\(709\) 23313.7 1.23493 0.617465 0.786598i \(-0.288160\pi\)
0.617465 + 0.786598i \(0.288160\pi\)
\(710\) 0 0
\(711\) −10600.4 −0.559135
\(712\) 0 0
\(713\) −31700.7 −1.66508
\(714\) 0 0
\(715\) 27672.8 1.44742
\(716\) 0 0
\(717\) −19896.1 −1.03631
\(718\) 0 0
\(719\) −32486.8 −1.68505 −0.842526 0.538655i \(-0.818933\pi\)
−0.842526 + 0.538655i \(0.818933\pi\)
\(720\) 0 0
\(721\) −8039.33 −0.415257
\(722\) 0 0
\(723\) −40037.8 −2.05951
\(724\) 0 0
\(725\) −12104.8 −0.620084
\(726\) 0 0
\(727\) −12999.0 −0.663143 −0.331571 0.943430i \(-0.607579\pi\)
−0.331571 + 0.943430i \(0.607579\pi\)
\(728\) 0 0
\(729\) −30813.1 −1.56547
\(730\) 0 0
\(731\) −53070.1 −2.68518
\(732\) 0 0
\(733\) −29580.1 −1.49054 −0.745269 0.666763i \(-0.767679\pi\)
−0.745269 + 0.666763i \(0.767679\pi\)
\(734\) 0 0
\(735\) −6256.19 −0.313963
\(736\) 0 0
\(737\) −10256.9 −0.512643
\(738\) 0 0
\(739\) 13305.9 0.662337 0.331168 0.943572i \(-0.392557\pi\)
0.331168 + 0.943572i \(0.392557\pi\)
\(740\) 0 0
\(741\) −13228.8 −0.655831
\(742\) 0 0
\(743\) 11226.2 0.554308 0.277154 0.960825i \(-0.410609\pi\)
0.277154 + 0.960825i \(0.410609\pi\)
\(744\) 0 0
\(745\) 13537.0 0.665715
\(746\) 0 0
\(747\) −18937.2 −0.927547
\(748\) 0 0
\(749\) −13291.9 −0.648432
\(750\) 0 0
\(751\) 1364.07 0.0662792 0.0331396 0.999451i \(-0.489449\pi\)
0.0331396 + 0.999451i \(0.489449\pi\)
\(752\) 0 0
\(753\) 31805.6 1.53926
\(754\) 0 0
\(755\) 5051.37 0.243494
\(756\) 0 0
\(757\) −7593.24 −0.364572 −0.182286 0.983246i \(-0.558350\pi\)
−0.182286 + 0.983246i \(0.558350\pi\)
\(758\) 0 0
\(759\) 36882.1 1.76381
\(760\) 0 0
\(761\) −22828.1 −1.08741 −0.543704 0.839277i \(-0.682979\pi\)
−0.543704 + 0.839277i \(0.682979\pi\)
\(762\) 0 0
\(763\) −6974.01 −0.330899
\(764\) 0 0
\(765\) −69808.8 −3.29927
\(766\) 0 0
\(767\) −14153.3 −0.666291
\(768\) 0 0
\(769\) 19685.9 0.923137 0.461568 0.887105i \(-0.347287\pi\)
0.461568 + 0.887105i \(0.347287\pi\)
\(770\) 0 0
\(771\) 42074.3 1.96533
\(772\) 0 0
\(773\) −14169.7 −0.659311 −0.329656 0.944101i \(-0.606933\pi\)
−0.329656 + 0.944101i \(0.606933\pi\)
\(774\) 0 0
\(775\) 9114.90 0.422474
\(776\) 0 0
\(777\) 15068.7 0.695735
\(778\) 0 0
\(779\) 2392.41 0.110034
\(780\) 0 0
\(781\) 19682.2 0.901772
\(782\) 0 0
\(783\) −40702.8 −1.85773
\(784\) 0 0
\(785\) 4493.39 0.204301
\(786\) 0 0
\(787\) −34545.9 −1.56471 −0.782355 0.622832i \(-0.785982\pi\)
−0.782355 + 0.622832i \(0.785982\pi\)
\(788\) 0 0
\(789\) −18600.1 −0.839265
\(790\) 0 0
\(791\) 19853.2 0.892411
\(792\) 0 0
\(793\) 22105.2 0.989883
\(794\) 0 0
\(795\) −67929.2 −3.03044
\(796\) 0 0
\(797\) 2551.15 0.113383 0.0566917 0.998392i \(-0.481945\pi\)
0.0566917 + 0.998392i \(0.481945\pi\)
\(798\) 0 0
\(799\) −58797.2 −2.60337
\(800\) 0 0
\(801\) −58727.0 −2.59053
\(802\) 0 0
\(803\) −2796.75 −0.122908
\(804\) 0 0
\(805\) −43973.3 −1.92529
\(806\) 0 0
\(807\) 49201.6 2.14620
\(808\) 0 0
\(809\) 19573.7 0.850648 0.425324 0.905041i \(-0.360160\pi\)
0.425324 + 0.905041i \(0.360160\pi\)
\(810\) 0 0
\(811\) 805.214 0.0348642 0.0174321 0.999848i \(-0.494451\pi\)
0.0174321 + 0.999848i \(0.494451\pi\)
\(812\) 0 0
\(813\) −4515.29 −0.194782
\(814\) 0 0
\(815\) −1048.42 −0.0450606
\(816\) 0 0
\(817\) 8732.42 0.373940
\(818\) 0 0
\(819\) −74787.3 −3.19082
\(820\) 0 0
\(821\) −37470.4 −1.59285 −0.796423 0.604740i \(-0.793277\pi\)
−0.796423 + 0.604740i \(0.793277\pi\)
\(822\) 0 0
\(823\) −10931.7 −0.463008 −0.231504 0.972834i \(-0.574365\pi\)
−0.231504 + 0.972834i \(0.574365\pi\)
\(824\) 0 0
\(825\) −10604.7 −0.447525
\(826\) 0 0
\(827\) 3622.95 0.152337 0.0761683 0.997095i \(-0.475731\pi\)
0.0761683 + 0.997095i \(0.475731\pi\)
\(828\) 0 0
\(829\) −17057.0 −0.714615 −0.357307 0.933987i \(-0.616305\pi\)
−0.357307 + 0.933987i \(0.616305\pi\)
\(830\) 0 0
\(831\) −52185.6 −2.17846
\(832\) 0 0
\(833\) 6428.25 0.267378
\(834\) 0 0
\(835\) 5350.64 0.221756
\(836\) 0 0
\(837\) 30649.2 1.26570
\(838\) 0 0
\(839\) −43129.6 −1.77473 −0.887366 0.461066i \(-0.847467\pi\)
−0.887366 + 0.461066i \(0.847467\pi\)
\(840\) 0 0
\(841\) 38873.7 1.59390
\(842\) 0 0
\(843\) −39918.5 −1.63092
\(844\) 0 0
\(845\) −58531.3 −2.38289
\(846\) 0 0
\(847\) 13285.6 0.538960
\(848\) 0 0
\(849\) −33594.7 −1.35803
\(850\) 0 0
\(851\) 14789.9 0.595759
\(852\) 0 0
\(853\) −8168.69 −0.327890 −0.163945 0.986469i \(-0.552422\pi\)
−0.163945 + 0.986469i \(0.552422\pi\)
\(854\) 0 0
\(855\) 11486.7 0.459458
\(856\) 0 0
\(857\) −39062.0 −1.55698 −0.778491 0.627656i \(-0.784014\pi\)
−0.778491 + 0.627656i \(0.784014\pi\)
\(858\) 0 0
\(859\) 483.093 0.0191885 0.00959425 0.999954i \(-0.496946\pi\)
0.00959425 + 0.999954i \(0.496946\pi\)
\(860\) 0 0
\(861\) 21473.0 0.849939
\(862\) 0 0
\(863\) −23713.4 −0.935357 −0.467678 0.883899i \(-0.654909\pi\)
−0.467678 + 0.883899i \(0.654909\pi\)
\(864\) 0 0
\(865\) −29554.4 −1.16171
\(866\) 0 0
\(867\) 71917.2 2.81711
\(868\) 0 0
\(869\) 5952.13 0.232350
\(870\) 0 0
\(871\) 32409.1 1.26078
\(872\) 0 0
\(873\) −61269.8 −2.37534
\(874\) 0 0
\(875\) −20196.0 −0.780286
\(876\) 0 0
\(877\) 22434.1 0.863793 0.431897 0.901923i \(-0.357845\pi\)
0.431897 + 0.901923i \(0.357845\pi\)
\(878\) 0 0
\(879\) −7206.26 −0.276520
\(880\) 0 0
\(881\) −42303.5 −1.61776 −0.808878 0.587977i \(-0.799925\pi\)
−0.808878 + 0.587977i \(0.799925\pi\)
\(882\) 0 0
\(883\) 20452.4 0.779475 0.389738 0.920926i \(-0.372566\pi\)
0.389738 + 0.920926i \(0.372566\pi\)
\(884\) 0 0
\(885\) 19511.1 0.741083
\(886\) 0 0
\(887\) −23455.6 −0.887895 −0.443947 0.896053i \(-0.646422\pi\)
−0.443947 + 0.896053i \(0.646422\pi\)
\(888\) 0 0
\(889\) 53303.3 2.01095
\(890\) 0 0
\(891\) −3652.51 −0.137333
\(892\) 0 0
\(893\) 9674.78 0.362547
\(894\) 0 0
\(895\) 37271.5 1.39201
\(896\) 0 0
\(897\) −116538. −4.33788
\(898\) 0 0
\(899\) −47636.8 −1.76727
\(900\) 0 0
\(901\) 69797.5 2.58079
\(902\) 0 0
\(903\) 78377.7 2.88842
\(904\) 0 0
\(905\) −12643.0 −0.464382
\(906\) 0 0
\(907\) 19565.8 0.716288 0.358144 0.933666i \(-0.383410\pi\)
0.358144 + 0.933666i \(0.383410\pi\)
\(908\) 0 0
\(909\) −28813.5 −1.05136
\(910\) 0 0
\(911\) 50384.3 1.83239 0.916194 0.400735i \(-0.131245\pi\)
0.916194 + 0.400735i \(0.131245\pi\)
\(912\) 0 0
\(913\) 10633.3 0.385444
\(914\) 0 0
\(915\) −30473.2 −1.10100
\(916\) 0 0
\(917\) −2524.58 −0.0909150
\(918\) 0 0
\(919\) 16715.6 0.599996 0.299998 0.953940i \(-0.403014\pi\)
0.299998 + 0.953940i \(0.403014\pi\)
\(920\) 0 0
\(921\) −18182.6 −0.650530
\(922\) 0 0
\(923\) −62190.5 −2.21780
\(924\) 0 0
\(925\) −4252.53 −0.151159
\(926\) 0 0
\(927\) 18500.0 0.655470
\(928\) 0 0
\(929\) 54313.0 1.91814 0.959069 0.283172i \(-0.0913869\pi\)
0.959069 + 0.283172i \(0.0913869\pi\)
\(930\) 0 0
\(931\) −1057.74 −0.0372351
\(932\) 0 0
\(933\) −70346.1 −2.46841
\(934\) 0 0
\(935\) 39197.8 1.37102
\(936\) 0 0
\(937\) −39884.6 −1.39058 −0.695290 0.718729i \(-0.744724\pi\)
−0.695290 + 0.718729i \(0.744724\pi\)
\(938\) 0 0
\(939\) −63455.2 −2.20531
\(940\) 0 0
\(941\) −31712.3 −1.09861 −0.549305 0.835622i \(-0.685107\pi\)
−0.549305 + 0.835622i \(0.685107\pi\)
\(942\) 0 0
\(943\) 21075.7 0.727804
\(944\) 0 0
\(945\) 42514.7 1.46350
\(946\) 0 0
\(947\) −35314.1 −1.21178 −0.605889 0.795549i \(-0.707182\pi\)
−0.605889 + 0.795549i \(0.707182\pi\)
\(948\) 0 0
\(949\) 8836.99 0.302277
\(950\) 0 0
\(951\) 53795.0 1.83430
\(952\) 0 0
\(953\) 10741.7 0.365120 0.182560 0.983195i \(-0.441562\pi\)
0.182560 + 0.983195i \(0.441562\pi\)
\(954\) 0 0
\(955\) −4377.95 −0.148343
\(956\) 0 0
\(957\) 55422.8 1.87207
\(958\) 0 0
\(959\) −16918.3 −0.569678
\(960\) 0 0
\(961\) 6079.51 0.204072
\(962\) 0 0
\(963\) 30587.2 1.02353
\(964\) 0 0
\(965\) 19740.9 0.658530
\(966\) 0 0
\(967\) −57806.9 −1.92238 −0.961191 0.275883i \(-0.911030\pi\)
−0.961191 + 0.275883i \(0.911030\pi\)
\(968\) 0 0
\(969\) −18738.2 −0.621214
\(970\) 0 0
\(971\) 42959.8 1.41982 0.709910 0.704292i \(-0.248736\pi\)
0.709910 + 0.704292i \(0.248736\pi\)
\(972\) 0 0
\(973\) −4526.28 −0.149132
\(974\) 0 0
\(975\) 33508.1 1.10063
\(976\) 0 0
\(977\) 54273.7 1.77725 0.888623 0.458638i \(-0.151663\pi\)
0.888623 + 0.458638i \(0.151663\pi\)
\(978\) 0 0
\(979\) 32975.3 1.07650
\(980\) 0 0
\(981\) 16048.5 0.522314
\(982\) 0 0
\(983\) 45578.5 1.47887 0.739435 0.673228i \(-0.235093\pi\)
0.739435 + 0.673228i \(0.235093\pi\)
\(984\) 0 0
\(985\) 8035.84 0.259942
\(986\) 0 0
\(987\) 86835.8 2.80042
\(988\) 0 0
\(989\) 76927.5 2.47336
\(990\) 0 0
\(991\) 37734.1 1.20955 0.604774 0.796397i \(-0.293263\pi\)
0.604774 + 0.796397i \(0.293263\pi\)
\(992\) 0 0
\(993\) −21993.1 −0.702849
\(994\) 0 0
\(995\) −57733.5 −1.83947
\(996\) 0 0
\(997\) 51233.9 1.62748 0.813738 0.581232i \(-0.197429\pi\)
0.813738 + 0.581232i \(0.197429\pi\)
\(998\) 0 0
\(999\) −14299.3 −0.452862
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.4.a.bg.1.7 7
4.3 odd 2 1216.4.a.bf.1.1 7
8.3 odd 2 608.4.a.k.1.7 yes 7
8.5 even 2 608.4.a.j.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.4.a.j.1.1 7 8.5 even 2
608.4.a.k.1.7 yes 7 8.3 odd 2
1216.4.a.bf.1.1 7 4.3 odd 2
1216.4.a.bg.1.7 7 1.1 even 1 trivial