Properties

Label 1216.4.a.bg.1.5
Level $1216$
Weight $4$
Character 1216.1
Self dual yes
Analytic conductor $71.746$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,4,Mod(1,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1216.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.7463225670\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 121x^{5} + 402x^{4} + 4234x^{3} - 14542x^{2} - 40996x + 141664 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 608)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(6.59304\) of defining polynomial
Character \(\chi\) \(=\) 1216.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.59727 q^{3} +20.9584 q^{5} -13.9085 q^{7} +4.32941 q^{9} +O(q^{10})\) \(q+5.59727 q^{3} +20.9584 q^{5} -13.9085 q^{7} +4.32941 q^{9} -58.3230 q^{11} -65.0857 q^{13} +117.310 q^{15} +31.7022 q^{17} -19.0000 q^{19} -77.8498 q^{21} -151.699 q^{23} +314.256 q^{25} -126.893 q^{27} -110.944 q^{29} -94.0614 q^{31} -326.450 q^{33} -291.501 q^{35} +291.678 q^{37} -364.302 q^{39} +64.4169 q^{41} +449.123 q^{43} +90.7375 q^{45} -530.261 q^{47} -149.553 q^{49} +177.446 q^{51} -621.195 q^{53} -1222.36 q^{55} -106.348 q^{57} -244.887 q^{59} -801.180 q^{61} -60.2157 q^{63} -1364.10 q^{65} -7.34129 q^{67} -849.098 q^{69} +1027.68 q^{71} +592.854 q^{73} +1758.97 q^{75} +811.188 q^{77} -120.481 q^{79} -827.150 q^{81} -502.722 q^{83} +664.428 q^{85} -620.983 q^{87} +253.862 q^{89} +905.247 q^{91} -526.487 q^{93} -398.210 q^{95} +511.232 q^{97} -252.504 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{3} + 17 q^{5} - 42 q^{7} + 86 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + 3 q^{3} + 17 q^{5} - 42 q^{7} + 86 q^{9} - 33 q^{11} + 35 q^{13} - 120 q^{15} + 66 q^{17} - 133 q^{19} - 33 q^{21} - 389 q^{23} + 44 q^{25} - 39 q^{27} - 233 q^{29} - 158 q^{31} - 206 q^{33} + 123 q^{35} + 436 q^{37} - 807 q^{39} - 94 q^{41} + 645 q^{43} - 103 q^{45} - 1451 q^{47} + 93 q^{49} + 1741 q^{51} - 3 q^{53} - 1971 q^{55} - 57 q^{57} + 297 q^{59} - 93 q^{61} - 2999 q^{63} - 788 q^{65} + 1641 q^{67} - 945 q^{69} - 2392 q^{71} + 324 q^{73} + 1909 q^{75} + 711 q^{77} - 2492 q^{79} + 143 q^{81} + 310 q^{83} - 2353 q^{85} - 4795 q^{87} - 440 q^{89} - 107 q^{91} - 900 q^{93} - 323 q^{95} - 532 q^{97} - 1591 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.59727 1.07719 0.538597 0.842563i \(-0.318954\pi\)
0.538597 + 0.842563i \(0.318954\pi\)
\(4\) 0 0
\(5\) 20.9584 1.87458 0.937290 0.348552i \(-0.113326\pi\)
0.937290 + 0.348552i \(0.113326\pi\)
\(6\) 0 0
\(7\) −13.9085 −0.750990 −0.375495 0.926824i \(-0.622527\pi\)
−0.375495 + 0.926824i \(0.622527\pi\)
\(8\) 0 0
\(9\) 4.32941 0.160348
\(10\) 0 0
\(11\) −58.3230 −1.59864 −0.799321 0.600904i \(-0.794807\pi\)
−0.799321 + 0.600904i \(0.794807\pi\)
\(12\) 0 0
\(13\) −65.0857 −1.38858 −0.694290 0.719695i \(-0.744281\pi\)
−0.694290 + 0.719695i \(0.744281\pi\)
\(14\) 0 0
\(15\) 117.310 2.01929
\(16\) 0 0
\(17\) 31.7022 0.452289 0.226144 0.974094i \(-0.427388\pi\)
0.226144 + 0.974094i \(0.427388\pi\)
\(18\) 0 0
\(19\) −19.0000 −0.229416
\(20\) 0 0
\(21\) −77.8498 −0.808963
\(22\) 0 0
\(23\) −151.699 −1.37528 −0.687639 0.726053i \(-0.741353\pi\)
−0.687639 + 0.726053i \(0.741353\pi\)
\(24\) 0 0
\(25\) 314.256 2.51405
\(26\) 0 0
\(27\) −126.893 −0.904468
\(28\) 0 0
\(29\) −110.944 −0.710406 −0.355203 0.934789i \(-0.615588\pi\)
−0.355203 + 0.934789i \(0.615588\pi\)
\(30\) 0 0
\(31\) −94.0614 −0.544965 −0.272483 0.962161i \(-0.587845\pi\)
−0.272483 + 0.962161i \(0.587845\pi\)
\(32\) 0 0
\(33\) −326.450 −1.72205
\(34\) 0 0
\(35\) −291.501 −1.40779
\(36\) 0 0
\(37\) 291.678 1.29599 0.647994 0.761645i \(-0.275608\pi\)
0.647994 + 0.761645i \(0.275608\pi\)
\(38\) 0 0
\(39\) −364.302 −1.49577
\(40\) 0 0
\(41\) 64.4169 0.245371 0.122686 0.992446i \(-0.460849\pi\)
0.122686 + 0.992446i \(0.460849\pi\)
\(42\) 0 0
\(43\) 449.123 1.59281 0.796403 0.604766i \(-0.206733\pi\)
0.796403 + 0.604766i \(0.206733\pi\)
\(44\) 0 0
\(45\) 90.7375 0.300586
\(46\) 0 0
\(47\) −530.261 −1.64567 −0.822835 0.568281i \(-0.807609\pi\)
−0.822835 + 0.568281i \(0.807609\pi\)
\(48\) 0 0
\(49\) −149.553 −0.436013
\(50\) 0 0
\(51\) 177.446 0.487203
\(52\) 0 0
\(53\) −621.195 −1.60996 −0.804978 0.593304i \(-0.797823\pi\)
−0.804978 + 0.593304i \(0.797823\pi\)
\(54\) 0 0
\(55\) −1222.36 −2.99678
\(56\) 0 0
\(57\) −106.348 −0.247125
\(58\) 0 0
\(59\) −244.887 −0.540367 −0.270183 0.962809i \(-0.587084\pi\)
−0.270183 + 0.962809i \(0.587084\pi\)
\(60\) 0 0
\(61\) −801.180 −1.68165 −0.840825 0.541308i \(-0.817929\pi\)
−0.840825 + 0.541308i \(0.817929\pi\)
\(62\) 0 0
\(63\) −60.2157 −0.120420
\(64\) 0 0
\(65\) −1364.10 −2.60300
\(66\) 0 0
\(67\) −7.34129 −0.0133863 −0.00669315 0.999978i \(-0.502131\pi\)
−0.00669315 + 0.999978i \(0.502131\pi\)
\(68\) 0 0
\(69\) −849.098 −1.48144
\(70\) 0 0
\(71\) 1027.68 1.71778 0.858892 0.512156i \(-0.171153\pi\)
0.858892 + 0.512156i \(0.171153\pi\)
\(72\) 0 0
\(73\) 592.854 0.950526 0.475263 0.879844i \(-0.342353\pi\)
0.475263 + 0.879844i \(0.342353\pi\)
\(74\) 0 0
\(75\) 1758.97 2.70812
\(76\) 0 0
\(77\) 811.188 1.20056
\(78\) 0 0
\(79\) −120.481 −0.171584 −0.0857919 0.996313i \(-0.527342\pi\)
−0.0857919 + 0.996313i \(0.527342\pi\)
\(80\) 0 0
\(81\) −827.150 −1.13464
\(82\) 0 0
\(83\) −502.722 −0.664830 −0.332415 0.943133i \(-0.607863\pi\)
−0.332415 + 0.943133i \(0.607863\pi\)
\(84\) 0 0
\(85\) 664.428 0.847851
\(86\) 0 0
\(87\) −620.983 −0.765246
\(88\) 0 0
\(89\) 253.862 0.302352 0.151176 0.988507i \(-0.451694\pi\)
0.151176 + 0.988507i \(0.451694\pi\)
\(90\) 0 0
\(91\) 905.247 1.04281
\(92\) 0 0
\(93\) −526.487 −0.587034
\(94\) 0 0
\(95\) −398.210 −0.430058
\(96\) 0 0
\(97\) 511.232 0.535131 0.267566 0.963540i \(-0.413781\pi\)
0.267566 + 0.963540i \(0.413781\pi\)
\(98\) 0 0
\(99\) −252.504 −0.256340
\(100\) 0 0
\(101\) 647.433 0.637842 0.318921 0.947781i \(-0.396680\pi\)
0.318921 + 0.947781i \(0.396680\pi\)
\(102\) 0 0
\(103\) −825.539 −0.789736 −0.394868 0.918738i \(-0.629210\pi\)
−0.394868 + 0.918738i \(0.629210\pi\)
\(104\) 0 0
\(105\) −1631.61 −1.51646
\(106\) 0 0
\(107\) 244.650 0.221040 0.110520 0.993874i \(-0.464748\pi\)
0.110520 + 0.993874i \(0.464748\pi\)
\(108\) 0 0
\(109\) 1011.60 0.888937 0.444469 0.895794i \(-0.353393\pi\)
0.444469 + 0.895794i \(0.353393\pi\)
\(110\) 0 0
\(111\) 1632.60 1.39603
\(112\) 0 0
\(113\) 70.2342 0.0584697 0.0292348 0.999573i \(-0.490693\pi\)
0.0292348 + 0.999573i \(0.490693\pi\)
\(114\) 0 0
\(115\) −3179.37 −2.57807
\(116\) 0 0
\(117\) −281.783 −0.222656
\(118\) 0 0
\(119\) −440.931 −0.339664
\(120\) 0 0
\(121\) 2070.58 1.55566
\(122\) 0 0
\(123\) 360.558 0.264313
\(124\) 0 0
\(125\) 3966.51 2.83820
\(126\) 0 0
\(127\) −484.115 −0.338254 −0.169127 0.985594i \(-0.554095\pi\)
−0.169127 + 0.985594i \(0.554095\pi\)
\(128\) 0 0
\(129\) 2513.86 1.71576
\(130\) 0 0
\(131\) 2460.64 1.64113 0.820563 0.571557i \(-0.193660\pi\)
0.820563 + 0.571557i \(0.193660\pi\)
\(132\) 0 0
\(133\) 264.262 0.172289
\(134\) 0 0
\(135\) −2659.49 −1.69550
\(136\) 0 0
\(137\) −1872.74 −1.16788 −0.583939 0.811798i \(-0.698489\pi\)
−0.583939 + 0.811798i \(0.698489\pi\)
\(138\) 0 0
\(139\) 168.319 0.102710 0.0513548 0.998680i \(-0.483646\pi\)
0.0513548 + 0.998680i \(0.483646\pi\)
\(140\) 0 0
\(141\) −2968.01 −1.77271
\(142\) 0 0
\(143\) 3796.00 2.21984
\(144\) 0 0
\(145\) −2325.21 −1.33171
\(146\) 0 0
\(147\) −837.086 −0.469671
\(148\) 0 0
\(149\) 719.682 0.395696 0.197848 0.980233i \(-0.436605\pi\)
0.197848 + 0.980233i \(0.436605\pi\)
\(150\) 0 0
\(151\) −3487.49 −1.87952 −0.939762 0.341829i \(-0.888954\pi\)
−0.939762 + 0.341829i \(0.888954\pi\)
\(152\) 0 0
\(153\) 137.252 0.0725237
\(154\) 0 0
\(155\) −1971.38 −1.02158
\(156\) 0 0
\(157\) 416.547 0.211746 0.105873 0.994380i \(-0.466236\pi\)
0.105873 + 0.994380i \(0.466236\pi\)
\(158\) 0 0
\(159\) −3476.99 −1.73424
\(160\) 0 0
\(161\) 2109.91 1.03282
\(162\) 0 0
\(163\) 2999.31 1.44125 0.720626 0.693324i \(-0.243854\pi\)
0.720626 + 0.693324i \(0.243854\pi\)
\(164\) 0 0
\(165\) −6841.87 −3.22812
\(166\) 0 0
\(167\) 2279.85 1.05641 0.528204 0.849117i \(-0.322866\pi\)
0.528204 + 0.849117i \(0.322866\pi\)
\(168\) 0 0
\(169\) 2039.15 0.928154
\(170\) 0 0
\(171\) −82.2587 −0.0367864
\(172\) 0 0
\(173\) −710.537 −0.312261 −0.156130 0.987736i \(-0.549902\pi\)
−0.156130 + 0.987736i \(0.549902\pi\)
\(174\) 0 0
\(175\) −4370.84 −1.88802
\(176\) 0 0
\(177\) −1370.70 −0.582080
\(178\) 0 0
\(179\) −1830.61 −0.764392 −0.382196 0.924081i \(-0.624832\pi\)
−0.382196 + 0.924081i \(0.624832\pi\)
\(180\) 0 0
\(181\) 225.382 0.0925554 0.0462777 0.998929i \(-0.485264\pi\)
0.0462777 + 0.998929i \(0.485264\pi\)
\(182\) 0 0
\(183\) −4484.42 −1.81146
\(184\) 0 0
\(185\) 6113.11 2.42943
\(186\) 0 0
\(187\) −1848.97 −0.723048
\(188\) 0 0
\(189\) 1764.90 0.679247
\(190\) 0 0
\(191\) −1179.95 −0.447005 −0.223502 0.974703i \(-0.571749\pi\)
−0.223502 + 0.974703i \(0.571749\pi\)
\(192\) 0 0
\(193\) −1007.61 −0.375799 −0.187899 0.982188i \(-0.560168\pi\)
−0.187899 + 0.982188i \(0.560168\pi\)
\(194\) 0 0
\(195\) −7635.20 −2.80394
\(196\) 0 0
\(197\) 740.845 0.267934 0.133967 0.990986i \(-0.457228\pi\)
0.133967 + 0.990986i \(0.457228\pi\)
\(198\) 0 0
\(199\) −4116.86 −1.46652 −0.733258 0.679951i \(-0.762001\pi\)
−0.733258 + 0.679951i \(0.762001\pi\)
\(200\) 0 0
\(201\) −41.0912 −0.0144196
\(202\) 0 0
\(203\) 1543.07 0.533508
\(204\) 0 0
\(205\) 1350.08 0.459968
\(206\) 0 0
\(207\) −656.765 −0.220523
\(208\) 0 0
\(209\) 1108.14 0.366754
\(210\) 0 0
\(211\) −926.033 −0.302136 −0.151068 0.988523i \(-0.548271\pi\)
−0.151068 + 0.988523i \(0.548271\pi\)
\(212\) 0 0
\(213\) 5752.18 1.85039
\(214\) 0 0
\(215\) 9412.92 2.98584
\(216\) 0 0
\(217\) 1308.26 0.409264
\(218\) 0 0
\(219\) 3318.37 1.02390
\(220\) 0 0
\(221\) −2063.36 −0.628039
\(222\) 0 0
\(223\) 1588.10 0.476893 0.238446 0.971156i \(-0.423362\pi\)
0.238446 + 0.971156i \(0.423362\pi\)
\(224\) 0 0
\(225\) 1360.54 0.403123
\(226\) 0 0
\(227\) −1728.22 −0.505314 −0.252657 0.967556i \(-0.581304\pi\)
−0.252657 + 0.967556i \(0.581304\pi\)
\(228\) 0 0
\(229\) 3648.90 1.05295 0.526477 0.850190i \(-0.323513\pi\)
0.526477 + 0.850190i \(0.323513\pi\)
\(230\) 0 0
\(231\) 4540.44 1.29324
\(232\) 0 0
\(233\) −732.776 −0.206033 −0.103017 0.994680i \(-0.532850\pi\)
−0.103017 + 0.994680i \(0.532850\pi\)
\(234\) 0 0
\(235\) −11113.4 −3.08494
\(236\) 0 0
\(237\) −674.362 −0.184829
\(238\) 0 0
\(239\) −4003.14 −1.08344 −0.541719 0.840560i \(-0.682226\pi\)
−0.541719 + 0.840560i \(0.682226\pi\)
\(240\) 0 0
\(241\) 4947.02 1.32226 0.661132 0.750270i \(-0.270076\pi\)
0.661132 + 0.750270i \(0.270076\pi\)
\(242\) 0 0
\(243\) −1203.66 −0.317756
\(244\) 0 0
\(245\) −3134.39 −0.817342
\(246\) 0 0
\(247\) 1236.63 0.318562
\(248\) 0 0
\(249\) −2813.87 −0.716151
\(250\) 0 0
\(251\) −3693.27 −0.928753 −0.464376 0.885638i \(-0.653722\pi\)
−0.464376 + 0.885638i \(0.653722\pi\)
\(252\) 0 0
\(253\) 8847.53 2.19858
\(254\) 0 0
\(255\) 3718.98 0.913300
\(256\) 0 0
\(257\) −5937.42 −1.44111 −0.720556 0.693397i \(-0.756113\pi\)
−0.720556 + 0.693397i \(0.756113\pi\)
\(258\) 0 0
\(259\) −4056.81 −0.973275
\(260\) 0 0
\(261\) −480.321 −0.113912
\(262\) 0 0
\(263\) −484.571 −0.113612 −0.0568059 0.998385i \(-0.518092\pi\)
−0.0568059 + 0.998385i \(0.518092\pi\)
\(264\) 0 0
\(265\) −13019.3 −3.01799
\(266\) 0 0
\(267\) 1420.93 0.325692
\(268\) 0 0
\(269\) −4691.52 −1.06337 −0.531685 0.846942i \(-0.678441\pi\)
−0.531685 + 0.846942i \(0.678441\pi\)
\(270\) 0 0
\(271\) −3754.24 −0.841526 −0.420763 0.907170i \(-0.638238\pi\)
−0.420763 + 0.907170i \(0.638238\pi\)
\(272\) 0 0
\(273\) 5066.91 1.12331
\(274\) 0 0
\(275\) −18328.4 −4.01906
\(276\) 0 0
\(277\) 2432.06 0.527540 0.263770 0.964586i \(-0.415034\pi\)
0.263770 + 0.964586i \(0.415034\pi\)
\(278\) 0 0
\(279\) −407.230 −0.0873843
\(280\) 0 0
\(281\) 5992.05 1.27209 0.636043 0.771654i \(-0.280570\pi\)
0.636043 + 0.771654i \(0.280570\pi\)
\(282\) 0 0
\(283\) −181.186 −0.0380579 −0.0190290 0.999819i \(-0.506057\pi\)
−0.0190290 + 0.999819i \(0.506057\pi\)
\(284\) 0 0
\(285\) −2228.89 −0.463256
\(286\) 0 0
\(287\) −895.944 −0.184271
\(288\) 0 0
\(289\) −3907.97 −0.795435
\(290\) 0 0
\(291\) 2861.50 0.576440
\(292\) 0 0
\(293\) 1909.02 0.380634 0.190317 0.981723i \(-0.439048\pi\)
0.190317 + 0.981723i \(0.439048\pi\)
\(294\) 0 0
\(295\) −5132.46 −1.01296
\(296\) 0 0
\(297\) 7400.81 1.44592
\(298\) 0 0
\(299\) 9873.43 1.90968
\(300\) 0 0
\(301\) −6246.65 −1.19618
\(302\) 0 0
\(303\) 3623.86 0.687080
\(304\) 0 0
\(305\) −16791.5 −3.15238
\(306\) 0 0
\(307\) −3890.48 −0.723261 −0.361631 0.932321i \(-0.617780\pi\)
−0.361631 + 0.932321i \(0.617780\pi\)
\(308\) 0 0
\(309\) −4620.76 −0.850699
\(310\) 0 0
\(311\) 978.939 0.178491 0.0892453 0.996010i \(-0.471554\pi\)
0.0892453 + 0.996010i \(0.471554\pi\)
\(312\) 0 0
\(313\) 1049.35 0.189498 0.0947492 0.995501i \(-0.469795\pi\)
0.0947492 + 0.995501i \(0.469795\pi\)
\(314\) 0 0
\(315\) −1262.03 −0.225737
\(316\) 0 0
\(317\) 4862.01 0.861443 0.430722 0.902485i \(-0.358259\pi\)
0.430722 + 0.902485i \(0.358259\pi\)
\(318\) 0 0
\(319\) 6470.59 1.13569
\(320\) 0 0
\(321\) 1369.37 0.238103
\(322\) 0 0
\(323\) −602.341 −0.103762
\(324\) 0 0
\(325\) −20453.6 −3.49095
\(326\) 0 0
\(327\) 5662.22 0.957558
\(328\) 0 0
\(329\) 7375.15 1.23588
\(330\) 0 0
\(331\) 6962.05 1.15610 0.578049 0.816002i \(-0.303814\pi\)
0.578049 + 0.816002i \(0.303814\pi\)
\(332\) 0 0
\(333\) 1262.79 0.207810
\(334\) 0 0
\(335\) −153.862 −0.0250937
\(336\) 0 0
\(337\) −12140.3 −1.96239 −0.981197 0.193011i \(-0.938175\pi\)
−0.981197 + 0.193011i \(0.938175\pi\)
\(338\) 0 0
\(339\) 393.119 0.0629832
\(340\) 0 0
\(341\) 5485.95 0.871204
\(342\) 0 0
\(343\) 6850.69 1.07843
\(344\) 0 0
\(345\) −17795.8 −2.77708
\(346\) 0 0
\(347\) 1658.87 0.256636 0.128318 0.991733i \(-0.459042\pi\)
0.128318 + 0.991733i \(0.459042\pi\)
\(348\) 0 0
\(349\) 9251.45 1.41896 0.709482 0.704723i \(-0.248929\pi\)
0.709482 + 0.704723i \(0.248929\pi\)
\(350\) 0 0
\(351\) 8258.95 1.25593
\(352\) 0 0
\(353\) −1168.48 −0.176180 −0.0880902 0.996112i \(-0.528076\pi\)
−0.0880902 + 0.996112i \(0.528076\pi\)
\(354\) 0 0
\(355\) 21538.5 3.22012
\(356\) 0 0
\(357\) −2468.01 −0.365885
\(358\) 0 0
\(359\) 3821.35 0.561791 0.280896 0.959738i \(-0.409369\pi\)
0.280896 + 0.959738i \(0.409369\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) 11589.6 1.67574
\(364\) 0 0
\(365\) 12425.3 1.78184
\(366\) 0 0
\(367\) −5672.77 −0.806856 −0.403428 0.915011i \(-0.632181\pi\)
−0.403428 + 0.915011i \(0.632181\pi\)
\(368\) 0 0
\(369\) 278.887 0.0393449
\(370\) 0 0
\(371\) 8639.91 1.20906
\(372\) 0 0
\(373\) 1253.21 0.173964 0.0869821 0.996210i \(-0.472278\pi\)
0.0869821 + 0.996210i \(0.472278\pi\)
\(374\) 0 0
\(375\) 22201.6 3.05729
\(376\) 0 0
\(377\) 7220.87 0.986456
\(378\) 0 0
\(379\) −8245.91 −1.11758 −0.558792 0.829308i \(-0.688735\pi\)
−0.558792 + 0.829308i \(0.688735\pi\)
\(380\) 0 0
\(381\) −2709.72 −0.364365
\(382\) 0 0
\(383\) −10182.5 −1.35849 −0.679247 0.733910i \(-0.737693\pi\)
−0.679247 + 0.733910i \(0.737693\pi\)
\(384\) 0 0
\(385\) 17001.2 2.25055
\(386\) 0 0
\(387\) 1944.44 0.255404
\(388\) 0 0
\(389\) −4232.31 −0.551637 −0.275819 0.961210i \(-0.588949\pi\)
−0.275819 + 0.961210i \(0.588949\pi\)
\(390\) 0 0
\(391\) −4809.18 −0.622022
\(392\) 0 0
\(393\) 13772.9 1.76781
\(394\) 0 0
\(395\) −2525.08 −0.321647
\(396\) 0 0
\(397\) −13862.9 −1.75254 −0.876269 0.481823i \(-0.839975\pi\)
−0.876269 + 0.481823i \(0.839975\pi\)
\(398\) 0 0
\(399\) 1479.15 0.185589
\(400\) 0 0
\(401\) 622.725 0.0775496 0.0387748 0.999248i \(-0.487655\pi\)
0.0387748 + 0.999248i \(0.487655\pi\)
\(402\) 0 0
\(403\) 6122.06 0.756728
\(404\) 0 0
\(405\) −17335.8 −2.12697
\(406\) 0 0
\(407\) −17011.5 −2.07182
\(408\) 0 0
\(409\) −2415.98 −0.292085 −0.146042 0.989278i \(-0.546654\pi\)
−0.146042 + 0.989278i \(0.546654\pi\)
\(410\) 0 0
\(411\) −10482.2 −1.25803
\(412\) 0 0
\(413\) 3406.03 0.405810
\(414\) 0 0
\(415\) −10536.3 −1.24628
\(416\) 0 0
\(417\) 942.127 0.110638
\(418\) 0 0
\(419\) 538.527 0.0627894 0.0313947 0.999507i \(-0.490005\pi\)
0.0313947 + 0.999507i \(0.490005\pi\)
\(420\) 0 0
\(421\) 5804.87 0.672000 0.336000 0.941862i \(-0.390926\pi\)
0.336000 + 0.941862i \(0.390926\pi\)
\(422\) 0 0
\(423\) −2295.71 −0.263880
\(424\) 0 0
\(425\) 9962.59 1.13707
\(426\) 0 0
\(427\) 11143.2 1.26290
\(428\) 0 0
\(429\) 21247.2 2.39120
\(430\) 0 0
\(431\) −3562.84 −0.398181 −0.199091 0.979981i \(-0.563799\pi\)
−0.199091 + 0.979981i \(0.563799\pi\)
\(432\) 0 0
\(433\) 3848.93 0.427177 0.213589 0.976924i \(-0.431485\pi\)
0.213589 + 0.976924i \(0.431485\pi\)
\(434\) 0 0
\(435\) −13014.8 −1.43451
\(436\) 0 0
\(437\) 2882.28 0.315510
\(438\) 0 0
\(439\) 14995.7 1.63031 0.815154 0.579245i \(-0.196652\pi\)
0.815154 + 0.579245i \(0.196652\pi\)
\(440\) 0 0
\(441\) −647.474 −0.0699140
\(442\) 0 0
\(443\) −7647.68 −0.820208 −0.410104 0.912039i \(-0.634508\pi\)
−0.410104 + 0.912039i \(0.634508\pi\)
\(444\) 0 0
\(445\) 5320.55 0.566783
\(446\) 0 0
\(447\) 4028.26 0.426241
\(448\) 0 0
\(449\) 16945.8 1.78111 0.890557 0.454871i \(-0.150315\pi\)
0.890557 + 0.454871i \(0.150315\pi\)
\(450\) 0 0
\(451\) −3756.99 −0.392261
\(452\) 0 0
\(453\) −19520.4 −2.02461
\(454\) 0 0
\(455\) 18972.6 1.95483
\(456\) 0 0
\(457\) −9759.32 −0.998953 −0.499477 0.866327i \(-0.666474\pi\)
−0.499477 + 0.866327i \(0.666474\pi\)
\(458\) 0 0
\(459\) −4022.80 −0.409081
\(460\) 0 0
\(461\) −12152.0 −1.22771 −0.613855 0.789419i \(-0.710382\pi\)
−0.613855 + 0.789419i \(0.710382\pi\)
\(462\) 0 0
\(463\) −15144.7 −1.52016 −0.760079 0.649831i \(-0.774840\pi\)
−0.760079 + 0.649831i \(0.774840\pi\)
\(464\) 0 0
\(465\) −11034.3 −1.10044
\(466\) 0 0
\(467\) 11903.1 1.17947 0.589734 0.807598i \(-0.299233\pi\)
0.589734 + 0.807598i \(0.299233\pi\)
\(468\) 0 0
\(469\) 102.107 0.0100530
\(470\) 0 0
\(471\) 2331.52 0.228091
\(472\) 0 0
\(473\) −26194.2 −2.54633
\(474\) 0 0
\(475\) −5970.86 −0.576762
\(476\) 0 0
\(477\) −2689.40 −0.258154
\(478\) 0 0
\(479\) 2125.99 0.202795 0.101398 0.994846i \(-0.467669\pi\)
0.101398 + 0.994846i \(0.467669\pi\)
\(480\) 0 0
\(481\) −18984.1 −1.79958
\(482\) 0 0
\(483\) 11809.7 1.11255
\(484\) 0 0
\(485\) 10714.6 1.00315
\(486\) 0 0
\(487\) −9302.38 −0.865567 −0.432783 0.901498i \(-0.642469\pi\)
−0.432783 + 0.901498i \(0.642469\pi\)
\(488\) 0 0
\(489\) 16788.0 1.55251
\(490\) 0 0
\(491\) −1284.29 −0.118044 −0.0590218 0.998257i \(-0.518798\pi\)
−0.0590218 + 0.998257i \(0.518798\pi\)
\(492\) 0 0
\(493\) −3517.17 −0.321309
\(494\) 0 0
\(495\) −5292.09 −0.480529
\(496\) 0 0
\(497\) −14293.5 −1.29004
\(498\) 0 0
\(499\) 270.467 0.0242640 0.0121320 0.999926i \(-0.496138\pi\)
0.0121320 + 0.999926i \(0.496138\pi\)
\(500\) 0 0
\(501\) 12760.9 1.13796
\(502\) 0 0
\(503\) 16179.9 1.43424 0.717122 0.696947i \(-0.245459\pi\)
0.717122 + 0.696947i \(0.245459\pi\)
\(504\) 0 0
\(505\) 13569.2 1.19568
\(506\) 0 0
\(507\) 11413.7 0.999802
\(508\) 0 0
\(509\) −12004.0 −1.04532 −0.522658 0.852542i \(-0.675060\pi\)
−0.522658 + 0.852542i \(0.675060\pi\)
\(510\) 0 0
\(511\) −8245.74 −0.713836
\(512\) 0 0
\(513\) 2410.97 0.207499
\(514\) 0 0
\(515\) −17302.0 −1.48042
\(516\) 0 0
\(517\) 30926.4 2.63084
\(518\) 0 0
\(519\) −3977.07 −0.336366
\(520\) 0 0
\(521\) −7092.90 −0.596441 −0.298220 0.954497i \(-0.596393\pi\)
−0.298220 + 0.954497i \(0.596393\pi\)
\(522\) 0 0
\(523\) 1447.50 0.121023 0.0605114 0.998168i \(-0.480727\pi\)
0.0605114 + 0.998168i \(0.480727\pi\)
\(524\) 0 0
\(525\) −24464.8 −2.03377
\(526\) 0 0
\(527\) −2981.95 −0.246482
\(528\) 0 0
\(529\) 10845.5 0.891387
\(530\) 0 0
\(531\) −1060.22 −0.0866469
\(532\) 0 0
\(533\) −4192.62 −0.340718
\(534\) 0 0
\(535\) 5127.49 0.414356
\(536\) 0 0
\(537\) −10246.4 −0.823398
\(538\) 0 0
\(539\) 8722.36 0.697029
\(540\) 0 0
\(541\) −14803.7 −1.17645 −0.588226 0.808697i \(-0.700173\pi\)
−0.588226 + 0.808697i \(0.700173\pi\)
\(542\) 0 0
\(543\) 1261.52 0.0997002
\(544\) 0 0
\(545\) 21201.6 1.66638
\(546\) 0 0
\(547\) 15330.9 1.19836 0.599179 0.800615i \(-0.295494\pi\)
0.599179 + 0.800615i \(0.295494\pi\)
\(548\) 0 0
\(549\) −3468.63 −0.269650
\(550\) 0 0
\(551\) 2107.94 0.162978
\(552\) 0 0
\(553\) 1675.71 0.128858
\(554\) 0 0
\(555\) 34216.7 2.61697
\(556\) 0 0
\(557\) 12069.8 0.918159 0.459080 0.888395i \(-0.348179\pi\)
0.459080 + 0.888395i \(0.348179\pi\)
\(558\) 0 0
\(559\) −29231.5 −2.21174
\(560\) 0 0
\(561\) −10349.2 −0.778863
\(562\) 0 0
\(563\) 26232.5 1.96371 0.981856 0.189629i \(-0.0607284\pi\)
0.981856 + 0.189629i \(0.0607284\pi\)
\(564\) 0 0
\(565\) 1472.00 0.109606
\(566\) 0 0
\(567\) 11504.4 0.852101
\(568\) 0 0
\(569\) 7982.36 0.588116 0.294058 0.955788i \(-0.404994\pi\)
0.294058 + 0.955788i \(0.404994\pi\)
\(570\) 0 0
\(571\) −8020.59 −0.587831 −0.293915 0.955831i \(-0.594958\pi\)
−0.293915 + 0.955831i \(0.594958\pi\)
\(572\) 0 0
\(573\) −6604.48 −0.481511
\(574\) 0 0
\(575\) −47672.2 −3.45751
\(576\) 0 0
\(577\) 13707.5 0.988999 0.494499 0.869178i \(-0.335351\pi\)
0.494499 + 0.869178i \(0.335351\pi\)
\(578\) 0 0
\(579\) −5639.85 −0.404809
\(580\) 0 0
\(581\) 6992.12 0.499281
\(582\) 0 0
\(583\) 36230.0 2.57374
\(584\) 0 0
\(585\) −5905.72 −0.417387
\(586\) 0 0
\(587\) 17767.6 1.24931 0.624656 0.780900i \(-0.285239\pi\)
0.624656 + 0.780900i \(0.285239\pi\)
\(588\) 0 0
\(589\) 1787.17 0.125024
\(590\) 0 0
\(591\) 4146.71 0.288617
\(592\) 0 0
\(593\) −321.358 −0.0222539 −0.0111270 0.999938i \(-0.503542\pi\)
−0.0111270 + 0.999938i \(0.503542\pi\)
\(594\) 0 0
\(595\) −9241.22 −0.636728
\(596\) 0 0
\(597\) −23043.2 −1.57972
\(598\) 0 0
\(599\) −25291.8 −1.72520 −0.862600 0.505887i \(-0.831165\pi\)
−0.862600 + 0.505887i \(0.831165\pi\)
\(600\) 0 0
\(601\) −24813.2 −1.68412 −0.842058 0.539387i \(-0.818656\pi\)
−0.842058 + 0.539387i \(0.818656\pi\)
\(602\) 0 0
\(603\) −31.7834 −0.00214647
\(604\) 0 0
\(605\) 43396.0 2.91620
\(606\) 0 0
\(607\) −20853.2 −1.39441 −0.697203 0.716874i \(-0.745572\pi\)
−0.697203 + 0.716874i \(0.745572\pi\)
\(608\) 0 0
\(609\) 8636.97 0.574692
\(610\) 0 0
\(611\) 34512.4 2.28514
\(612\) 0 0
\(613\) 21342.3 1.40621 0.703105 0.711086i \(-0.251797\pi\)
0.703105 + 0.711086i \(0.251797\pi\)
\(614\) 0 0
\(615\) 7556.74 0.495475
\(616\) 0 0
\(617\) −14363.6 −0.937208 −0.468604 0.883408i \(-0.655243\pi\)
−0.468604 + 0.883408i \(0.655243\pi\)
\(618\) 0 0
\(619\) 19126.3 1.24192 0.620961 0.783842i \(-0.286743\pi\)
0.620961 + 0.783842i \(0.286743\pi\)
\(620\) 0 0
\(621\) 19249.6 1.24389
\(622\) 0 0
\(623\) −3530.85 −0.227064
\(624\) 0 0
\(625\) 43849.8 2.80638
\(626\) 0 0
\(627\) 6202.54 0.395065
\(628\) 0 0
\(629\) 9246.83 0.586161
\(630\) 0 0
\(631\) −10575.0 −0.667168 −0.333584 0.942720i \(-0.608258\pi\)
−0.333584 + 0.942720i \(0.608258\pi\)
\(632\) 0 0
\(633\) −5183.26 −0.325460
\(634\) 0 0
\(635\) −10146.3 −0.634083
\(636\) 0 0
\(637\) 9733.74 0.605439
\(638\) 0 0
\(639\) 4449.23 0.275444
\(640\) 0 0
\(641\) −3470.84 −0.213869 −0.106934 0.994266i \(-0.534103\pi\)
−0.106934 + 0.994266i \(0.534103\pi\)
\(642\) 0 0
\(643\) −20693.0 −1.26913 −0.634566 0.772868i \(-0.718821\pi\)
−0.634566 + 0.772868i \(0.718821\pi\)
\(644\) 0 0
\(645\) 52686.6 3.21633
\(646\) 0 0
\(647\) 23520.2 1.42917 0.714587 0.699547i \(-0.246615\pi\)
0.714587 + 0.699547i \(0.246615\pi\)
\(648\) 0 0
\(649\) 14282.6 0.863853
\(650\) 0 0
\(651\) 7322.66 0.440857
\(652\) 0 0
\(653\) −11374.6 −0.681660 −0.340830 0.940125i \(-0.610708\pi\)
−0.340830 + 0.940125i \(0.610708\pi\)
\(654\) 0 0
\(655\) 51571.2 3.07642
\(656\) 0 0
\(657\) 2566.71 0.152415
\(658\) 0 0
\(659\) 191.638 0.0113280 0.00566399 0.999984i \(-0.498197\pi\)
0.00566399 + 0.999984i \(0.498197\pi\)
\(660\) 0 0
\(661\) 18403.2 1.08291 0.541455 0.840730i \(-0.317874\pi\)
0.541455 + 0.840730i \(0.317874\pi\)
\(662\) 0 0
\(663\) −11549.2 −0.676520
\(664\) 0 0
\(665\) 5538.52 0.322969
\(666\) 0 0
\(667\) 16830.1 0.977005
\(668\) 0 0
\(669\) 8889.03 0.513706
\(670\) 0 0
\(671\) 46727.3 2.68835
\(672\) 0 0
\(673\) −31346.8 −1.79544 −0.897719 0.440569i \(-0.854777\pi\)
−0.897719 + 0.440569i \(0.854777\pi\)
\(674\) 0 0
\(675\) −39877.0 −2.27388
\(676\) 0 0
\(677\) −3187.80 −0.180971 −0.0904853 0.995898i \(-0.528842\pi\)
−0.0904853 + 0.995898i \(0.528842\pi\)
\(678\) 0 0
\(679\) −7110.49 −0.401878
\(680\) 0 0
\(681\) −9673.33 −0.544321
\(682\) 0 0
\(683\) 5358.92 0.300225 0.150112 0.988669i \(-0.452036\pi\)
0.150112 + 0.988669i \(0.452036\pi\)
\(684\) 0 0
\(685\) −39249.8 −2.18928
\(686\) 0 0
\(687\) 20423.9 1.13424
\(688\) 0 0
\(689\) 40430.9 2.23555
\(690\) 0 0
\(691\) −12057.1 −0.663784 −0.331892 0.943317i \(-0.607687\pi\)
−0.331892 + 0.943317i \(0.607687\pi\)
\(692\) 0 0
\(693\) 3511.96 0.192509
\(694\) 0 0
\(695\) 3527.71 0.192537
\(696\) 0 0
\(697\) 2042.15 0.110979
\(698\) 0 0
\(699\) −4101.54 −0.221938
\(700\) 0 0
\(701\) −21103.5 −1.13704 −0.568522 0.822668i \(-0.692485\pi\)
−0.568522 + 0.822668i \(0.692485\pi\)
\(702\) 0 0
\(703\) −5541.88 −0.297320
\(704\) 0 0
\(705\) −62204.8 −3.32308
\(706\) 0 0
\(707\) −9004.85 −0.479013
\(708\) 0 0
\(709\) −5643.93 −0.298959 −0.149480 0.988765i \(-0.547760\pi\)
−0.149480 + 0.988765i \(0.547760\pi\)
\(710\) 0 0
\(711\) −521.609 −0.0275132
\(712\) 0 0
\(713\) 14269.0 0.749478
\(714\) 0 0
\(715\) 79558.2 4.16127
\(716\) 0 0
\(717\) −22406.7 −1.16707
\(718\) 0 0
\(719\) −8547.76 −0.443363 −0.221681 0.975119i \(-0.571154\pi\)
−0.221681 + 0.975119i \(0.571154\pi\)
\(720\) 0 0
\(721\) 11482.0 0.593084
\(722\) 0 0
\(723\) 27689.8 1.42434
\(724\) 0 0
\(725\) −34864.8 −1.78599
\(726\) 0 0
\(727\) 15122.0 0.771451 0.385726 0.922614i \(-0.373951\pi\)
0.385726 + 0.922614i \(0.373951\pi\)
\(728\) 0 0
\(729\) 15595.9 0.792351
\(730\) 0 0
\(731\) 14238.2 0.720408
\(732\) 0 0
\(733\) −34376.8 −1.73225 −0.866123 0.499832i \(-0.833395\pi\)
−0.866123 + 0.499832i \(0.833395\pi\)
\(734\) 0 0
\(735\) −17544.0 −0.880436
\(736\) 0 0
\(737\) 428.167 0.0213999
\(738\) 0 0
\(739\) −461.978 −0.0229961 −0.0114981 0.999934i \(-0.503660\pi\)
−0.0114981 + 0.999934i \(0.503660\pi\)
\(740\) 0 0
\(741\) 6921.74 0.343153
\(742\) 0 0
\(743\) 12671.9 0.625690 0.312845 0.949804i \(-0.398718\pi\)
0.312845 + 0.949804i \(0.398718\pi\)
\(744\) 0 0
\(745\) 15083.4 0.741763
\(746\) 0 0
\(747\) −2176.49 −0.106604
\(748\) 0 0
\(749\) −3402.73 −0.165999
\(750\) 0 0
\(751\) 14780.8 0.718189 0.359095 0.933301i \(-0.383086\pi\)
0.359095 + 0.933301i \(0.383086\pi\)
\(752\) 0 0
\(753\) −20672.2 −1.00045
\(754\) 0 0
\(755\) −73092.4 −3.52332
\(756\) 0 0
\(757\) 37080.6 1.78034 0.890169 0.455630i \(-0.150586\pi\)
0.890169 + 0.455630i \(0.150586\pi\)
\(758\) 0 0
\(759\) 49522.0 2.36829
\(760\) 0 0
\(761\) 28305.3 1.34831 0.674157 0.738588i \(-0.264507\pi\)
0.674157 + 0.738588i \(0.264507\pi\)
\(762\) 0 0
\(763\) −14069.9 −0.667583
\(764\) 0 0
\(765\) 2876.58 0.135951
\(766\) 0 0
\(767\) 15938.7 0.750342
\(768\) 0 0
\(769\) 15549.6 0.729172 0.364586 0.931170i \(-0.381211\pi\)
0.364586 + 0.931170i \(0.381211\pi\)
\(770\) 0 0
\(771\) −33233.3 −1.55236
\(772\) 0 0
\(773\) −32107.4 −1.49395 −0.746975 0.664852i \(-0.768495\pi\)
−0.746975 + 0.664852i \(0.768495\pi\)
\(774\) 0 0
\(775\) −29559.3 −1.37007
\(776\) 0 0
\(777\) −22707.1 −1.04841
\(778\) 0 0
\(779\) −1223.92 −0.0562920
\(780\) 0 0
\(781\) −59937.2 −2.74612
\(782\) 0 0
\(783\) 14078.1 0.642540
\(784\) 0 0
\(785\) 8730.16 0.396934
\(786\) 0 0
\(787\) 12075.6 0.546950 0.273475 0.961879i \(-0.411827\pi\)
0.273475 + 0.961879i \(0.411827\pi\)
\(788\) 0 0
\(789\) −2712.27 −0.122382
\(790\) 0 0
\(791\) −976.855 −0.0439102
\(792\) 0 0
\(793\) 52145.4 2.33510
\(794\) 0 0
\(795\) −72872.4 −3.25096
\(796\) 0 0
\(797\) −1271.50 −0.0565107 −0.0282553 0.999601i \(-0.508995\pi\)
−0.0282553 + 0.999601i \(0.508995\pi\)
\(798\) 0 0
\(799\) −16810.4 −0.744318
\(800\) 0 0
\(801\) 1099.07 0.0484817
\(802\) 0 0
\(803\) −34577.1 −1.51955
\(804\) 0 0
\(805\) 44220.4 1.93610
\(806\) 0 0
\(807\) −26259.7 −1.14546
\(808\) 0 0
\(809\) −1837.55 −0.0798575 −0.0399288 0.999203i \(-0.512713\pi\)
−0.0399288 + 0.999203i \(0.512713\pi\)
\(810\) 0 0
\(811\) 15642.0 0.677270 0.338635 0.940918i \(-0.390035\pi\)
0.338635 + 0.940918i \(0.390035\pi\)
\(812\) 0 0
\(813\) −21013.5 −0.906488
\(814\) 0 0
\(815\) 62860.9 2.70174
\(816\) 0 0
\(817\) −8533.34 −0.365415
\(818\) 0 0
\(819\) 3919.18 0.167213
\(820\) 0 0
\(821\) −31083.1 −1.32133 −0.660663 0.750683i \(-0.729725\pi\)
−0.660663 + 0.750683i \(0.729725\pi\)
\(822\) 0 0
\(823\) 14774.0 0.625747 0.312874 0.949795i \(-0.398708\pi\)
0.312874 + 0.949795i \(0.398708\pi\)
\(824\) 0 0
\(825\) −102589. −4.32931
\(826\) 0 0
\(827\) −5622.05 −0.236394 −0.118197 0.992990i \(-0.537711\pi\)
−0.118197 + 0.992990i \(0.537711\pi\)
\(828\) 0 0
\(829\) 5438.89 0.227865 0.113933 0.993488i \(-0.463655\pi\)
0.113933 + 0.993488i \(0.463655\pi\)
\(830\) 0 0
\(831\) 13612.9 0.568263
\(832\) 0 0
\(833\) −4741.14 −0.197204
\(834\) 0 0
\(835\) 47782.1 1.98032
\(836\) 0 0
\(837\) 11935.8 0.492904
\(838\) 0 0
\(839\) −13224.4 −0.544166 −0.272083 0.962274i \(-0.587713\pi\)
−0.272083 + 0.962274i \(0.587713\pi\)
\(840\) 0 0
\(841\) −12080.4 −0.495323
\(842\) 0 0
\(843\) 33539.1 1.37028
\(844\) 0 0
\(845\) 42737.5 1.73990
\(846\) 0 0
\(847\) −28798.7 −1.16828
\(848\) 0 0
\(849\) −1014.15 −0.0409958
\(850\) 0 0
\(851\) −44247.2 −1.78234
\(852\) 0 0
\(853\) −26559.3 −1.06609 −0.533045 0.846087i \(-0.678952\pi\)
−0.533045 + 0.846087i \(0.678952\pi\)
\(854\) 0 0
\(855\) −1724.01 −0.0689591
\(856\) 0 0
\(857\) −23397.6 −0.932611 −0.466306 0.884624i \(-0.654415\pi\)
−0.466306 + 0.884624i \(0.654415\pi\)
\(858\) 0 0
\(859\) 37137.6 1.47511 0.737554 0.675288i \(-0.235981\pi\)
0.737554 + 0.675288i \(0.235981\pi\)
\(860\) 0 0
\(861\) −5014.84 −0.198496
\(862\) 0 0
\(863\) −33399.2 −1.31741 −0.658703 0.752403i \(-0.728895\pi\)
−0.658703 + 0.752403i \(0.728895\pi\)
\(864\) 0 0
\(865\) −14891.7 −0.585358
\(866\) 0 0
\(867\) −21874.0 −0.856838
\(868\) 0 0
\(869\) 7026.79 0.274301
\(870\) 0 0
\(871\) 477.814 0.0185879
\(872\) 0 0
\(873\) 2213.33 0.0858074
\(874\) 0 0
\(875\) −55168.3 −2.13146
\(876\) 0 0
\(877\) −596.730 −0.0229762 −0.0114881 0.999934i \(-0.503657\pi\)
−0.0114881 + 0.999934i \(0.503657\pi\)
\(878\) 0 0
\(879\) 10685.3 0.410017
\(880\) 0 0
\(881\) −11250.9 −0.430253 −0.215126 0.976586i \(-0.569016\pi\)
−0.215126 + 0.976586i \(0.569016\pi\)
\(882\) 0 0
\(883\) 10586.0 0.403449 0.201725 0.979442i \(-0.435345\pi\)
0.201725 + 0.979442i \(0.435345\pi\)
\(884\) 0 0
\(885\) −28727.7 −1.09116
\(886\) 0 0
\(887\) −15954.3 −0.603939 −0.301970 0.953318i \(-0.597644\pi\)
−0.301970 + 0.953318i \(0.597644\pi\)
\(888\) 0 0
\(889\) 6733.33 0.254025
\(890\) 0 0
\(891\) 48241.9 1.81388
\(892\) 0 0
\(893\) 10074.9 0.377542
\(894\) 0 0
\(895\) −38366.7 −1.43291
\(896\) 0 0
\(897\) 55264.2 2.05710
\(898\) 0 0
\(899\) 10435.5 0.387147
\(900\) 0 0
\(901\) −19693.2 −0.728165
\(902\) 0 0
\(903\) −34964.2 −1.28852
\(904\) 0 0
\(905\) 4723.66 0.173502
\(906\) 0 0
\(907\) 45468.5 1.66456 0.832280 0.554356i \(-0.187035\pi\)
0.832280 + 0.554356i \(0.187035\pi\)
\(908\) 0 0
\(909\) 2803.00 0.102277
\(910\) 0 0
\(911\) 8802.26 0.320123 0.160061 0.987107i \(-0.448831\pi\)
0.160061 + 0.987107i \(0.448831\pi\)
\(912\) 0 0
\(913\) 29320.3 1.06282
\(914\) 0 0
\(915\) −93986.4 −3.39573
\(916\) 0 0
\(917\) −34223.9 −1.23247
\(918\) 0 0
\(919\) 28718.3 1.03083 0.515414 0.856941i \(-0.327638\pi\)
0.515414 + 0.856941i \(0.327638\pi\)
\(920\) 0 0
\(921\) −21776.0 −0.779093
\(922\) 0 0
\(923\) −66887.1 −2.38528
\(924\) 0 0
\(925\) 91661.5 3.25817
\(926\) 0 0
\(927\) −3574.09 −0.126633
\(928\) 0 0
\(929\) −39530.2 −1.39607 −0.698033 0.716066i \(-0.745941\pi\)
−0.698033 + 0.716066i \(0.745941\pi\)
\(930\) 0 0
\(931\) 2841.50 0.100028
\(932\) 0 0
\(933\) 5479.39 0.192269
\(934\) 0 0
\(935\) −38751.5 −1.35541
\(936\) 0 0
\(937\) −17009.2 −0.593028 −0.296514 0.955028i \(-0.595824\pi\)
−0.296514 + 0.955028i \(0.595824\pi\)
\(938\) 0 0
\(939\) 5873.52 0.204127
\(940\) 0 0
\(941\) 27153.7 0.940684 0.470342 0.882484i \(-0.344130\pi\)
0.470342 + 0.882484i \(0.344130\pi\)
\(942\) 0 0
\(943\) −9771.96 −0.337454
\(944\) 0 0
\(945\) 36989.6 1.27330
\(946\) 0 0
\(947\) −31678.3 −1.08702 −0.543510 0.839403i \(-0.682905\pi\)
−0.543510 + 0.839403i \(0.682905\pi\)
\(948\) 0 0
\(949\) −38586.4 −1.31988
\(950\) 0 0
\(951\) 27214.0 0.927942
\(952\) 0 0
\(953\) −39352.1 −1.33761 −0.668803 0.743440i \(-0.733193\pi\)
−0.668803 + 0.743440i \(0.733193\pi\)
\(954\) 0 0
\(955\) −24729.8 −0.837946
\(956\) 0 0
\(957\) 36217.6 1.22335
\(958\) 0 0
\(959\) 26047.1 0.877065
\(960\) 0 0
\(961\) −20943.5 −0.703013
\(962\) 0 0
\(963\) 1059.19 0.0354433
\(964\) 0 0
\(965\) −21117.9 −0.704465
\(966\) 0 0
\(967\) 4101.55 0.136398 0.0681991 0.997672i \(-0.478275\pi\)
0.0681991 + 0.997672i \(0.478275\pi\)
\(968\) 0 0
\(969\) −3371.47 −0.111772
\(970\) 0 0
\(971\) −39275.2 −1.29804 −0.649022 0.760770i \(-0.724822\pi\)
−0.649022 + 0.760770i \(0.724822\pi\)
\(972\) 0 0
\(973\) −2341.07 −0.0771340
\(974\) 0 0
\(975\) −114484. −3.76044
\(976\) 0 0
\(977\) −1259.70 −0.0412501 −0.0206251 0.999787i \(-0.506566\pi\)
−0.0206251 + 0.999787i \(0.506566\pi\)
\(978\) 0 0
\(979\) −14806.0 −0.483353
\(980\) 0 0
\(981\) 4379.65 0.142540
\(982\) 0 0
\(983\) −45455.1 −1.47487 −0.737433 0.675420i \(-0.763962\pi\)
−0.737433 + 0.675420i \(0.763962\pi\)
\(984\) 0 0
\(985\) 15526.9 0.502264
\(986\) 0 0
\(987\) 41280.7 1.33129
\(988\) 0 0
\(989\) −68131.4 −2.19055
\(990\) 0 0
\(991\) −22713.1 −0.728058 −0.364029 0.931388i \(-0.618599\pi\)
−0.364029 + 0.931388i \(0.618599\pi\)
\(992\) 0 0
\(993\) 38968.4 1.24534
\(994\) 0 0
\(995\) −86282.9 −2.74910
\(996\) 0 0
\(997\) 19731.0 0.626767 0.313384 0.949627i \(-0.398537\pi\)
0.313384 + 0.949627i \(0.398537\pi\)
\(998\) 0 0
\(999\) −37012.0 −1.17218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.4.a.bg.1.5 7
4.3 odd 2 1216.4.a.bf.1.3 7
8.3 odd 2 608.4.a.k.1.5 yes 7
8.5 even 2 608.4.a.j.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.4.a.j.1.3 7 8.5 even 2
608.4.a.k.1.5 yes 7 8.3 odd 2
1216.4.a.bf.1.3 7 4.3 odd 2
1216.4.a.bg.1.5 7 1.1 even 1 trivial