Properties

Label 1216.4.a.bg.1.3
Level $1216$
Weight $4$
Character 1216.1
Self dual yes
Analytic conductor $71.746$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,4,Mod(1,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1216.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.7463225670\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 121x^{5} + 402x^{4} + 4234x^{3} - 14542x^{2} - 40996x + 141664 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 608)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.17107\) of defining polynomial
Character \(\chi\) \(=\) 1216.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.43763 q^{3} +9.42708 q^{5} +9.58919 q^{7} -21.0580 q^{9} +O(q^{10})\) \(q-2.43763 q^{3} +9.42708 q^{5} +9.58919 q^{7} -21.0580 q^{9} -37.8637 q^{11} +30.7777 q^{13} -22.9797 q^{15} +35.3347 q^{17} -19.0000 q^{19} -23.3749 q^{21} +88.7405 q^{23} -36.1302 q^{25} +117.148 q^{27} +226.228 q^{29} -320.623 q^{31} +92.2976 q^{33} +90.3981 q^{35} -346.942 q^{37} -75.0247 q^{39} -150.854 q^{41} -284.273 q^{43} -198.515 q^{45} -240.447 q^{47} -251.047 q^{49} -86.1330 q^{51} +539.492 q^{53} -356.944 q^{55} +46.3150 q^{57} +889.117 q^{59} +377.014 q^{61} -201.929 q^{63} +290.144 q^{65} -78.4735 q^{67} -216.317 q^{69} -924.711 q^{71} +576.682 q^{73} +88.0720 q^{75} -363.082 q^{77} -601.388 q^{79} +283.003 q^{81} -1020.13 q^{83} +333.103 q^{85} -551.459 q^{87} +828.104 q^{89} +295.134 q^{91} +781.559 q^{93} -179.114 q^{95} -101.923 q^{97} +797.332 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{3} + 17 q^{5} - 42 q^{7} + 86 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + 3 q^{3} + 17 q^{5} - 42 q^{7} + 86 q^{9} - 33 q^{11} + 35 q^{13} - 120 q^{15} + 66 q^{17} - 133 q^{19} - 33 q^{21} - 389 q^{23} + 44 q^{25} - 39 q^{27} - 233 q^{29} - 158 q^{31} - 206 q^{33} + 123 q^{35} + 436 q^{37} - 807 q^{39} - 94 q^{41} + 645 q^{43} - 103 q^{45} - 1451 q^{47} + 93 q^{49} + 1741 q^{51} - 3 q^{53} - 1971 q^{55} - 57 q^{57} + 297 q^{59} - 93 q^{61} - 2999 q^{63} - 788 q^{65} + 1641 q^{67} - 945 q^{69} - 2392 q^{71} + 324 q^{73} + 1909 q^{75} + 711 q^{77} - 2492 q^{79} + 143 q^{81} + 310 q^{83} - 2353 q^{85} - 4795 q^{87} - 440 q^{89} - 107 q^{91} - 900 q^{93} - 323 q^{95} - 532 q^{97} - 1591 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.43763 −0.469122 −0.234561 0.972101i \(-0.575365\pi\)
−0.234561 + 0.972101i \(0.575365\pi\)
\(4\) 0 0
\(5\) 9.42708 0.843184 0.421592 0.906786i \(-0.361472\pi\)
0.421592 + 0.906786i \(0.361472\pi\)
\(6\) 0 0
\(7\) 9.58919 0.517768 0.258884 0.965908i \(-0.416645\pi\)
0.258884 + 0.965908i \(0.416645\pi\)
\(8\) 0 0
\(9\) −21.0580 −0.779925
\(10\) 0 0
\(11\) −37.8637 −1.03785 −0.518924 0.854820i \(-0.673667\pi\)
−0.518924 + 0.854820i \(0.673667\pi\)
\(12\) 0 0
\(13\) 30.7777 0.656631 0.328316 0.944568i \(-0.393519\pi\)
0.328316 + 0.944568i \(0.393519\pi\)
\(14\) 0 0
\(15\) −22.9797 −0.395556
\(16\) 0 0
\(17\) 35.3347 0.504114 0.252057 0.967712i \(-0.418893\pi\)
0.252057 + 0.967712i \(0.418893\pi\)
\(18\) 0 0
\(19\) −19.0000 −0.229416
\(20\) 0 0
\(21\) −23.3749 −0.242896
\(22\) 0 0
\(23\) 88.7405 0.804508 0.402254 0.915528i \(-0.368227\pi\)
0.402254 + 0.915528i \(0.368227\pi\)
\(24\) 0 0
\(25\) −36.1302 −0.289041
\(26\) 0 0
\(27\) 117.148 0.835002
\(28\) 0 0
\(29\) 226.228 1.44860 0.724300 0.689485i \(-0.242163\pi\)
0.724300 + 0.689485i \(0.242163\pi\)
\(30\) 0 0
\(31\) −320.623 −1.85760 −0.928799 0.370585i \(-0.879157\pi\)
−0.928799 + 0.370585i \(0.879157\pi\)
\(32\) 0 0
\(33\) 92.2976 0.486877
\(34\) 0 0
\(35\) 90.3981 0.436573
\(36\) 0 0
\(37\) −346.942 −1.54154 −0.770768 0.637116i \(-0.780127\pi\)
−0.770768 + 0.637116i \(0.780127\pi\)
\(38\) 0 0
\(39\) −75.0247 −0.308040
\(40\) 0 0
\(41\) −150.854 −0.574620 −0.287310 0.957838i \(-0.592761\pi\)
−0.287310 + 0.957838i \(0.592761\pi\)
\(42\) 0 0
\(43\) −284.273 −1.00817 −0.504084 0.863654i \(-0.668170\pi\)
−0.504084 + 0.863654i \(0.668170\pi\)
\(44\) 0 0
\(45\) −198.515 −0.657620
\(46\) 0 0
\(47\) −240.447 −0.746230 −0.373115 0.927785i \(-0.621710\pi\)
−0.373115 + 0.927785i \(0.621710\pi\)
\(48\) 0 0
\(49\) −251.047 −0.731917
\(50\) 0 0
\(51\) −86.1330 −0.236491
\(52\) 0 0
\(53\) 539.492 1.39821 0.699103 0.715021i \(-0.253583\pi\)
0.699103 + 0.715021i \(0.253583\pi\)
\(54\) 0 0
\(55\) −356.944 −0.875097
\(56\) 0 0
\(57\) 46.3150 0.107624
\(58\) 0 0
\(59\) 889.117 1.96192 0.980959 0.194215i \(-0.0622160\pi\)
0.980959 + 0.194215i \(0.0622160\pi\)
\(60\) 0 0
\(61\) 377.014 0.791340 0.395670 0.918393i \(-0.370512\pi\)
0.395670 + 0.918393i \(0.370512\pi\)
\(62\) 0 0
\(63\) −201.929 −0.403820
\(64\) 0 0
\(65\) 290.144 0.553661
\(66\) 0 0
\(67\) −78.4735 −0.143091 −0.0715453 0.997437i \(-0.522793\pi\)
−0.0715453 + 0.997437i \(0.522793\pi\)
\(68\) 0 0
\(69\) −216.317 −0.377412
\(70\) 0 0
\(71\) −924.711 −1.54568 −0.772838 0.634603i \(-0.781164\pi\)
−0.772838 + 0.634603i \(0.781164\pi\)
\(72\) 0 0
\(73\) 576.682 0.924597 0.462298 0.886724i \(-0.347025\pi\)
0.462298 + 0.886724i \(0.347025\pi\)
\(74\) 0 0
\(75\) 88.0720 0.135596
\(76\) 0 0
\(77\) −363.082 −0.537364
\(78\) 0 0
\(79\) −601.388 −0.856473 −0.428237 0.903667i \(-0.640865\pi\)
−0.428237 + 0.903667i \(0.640865\pi\)
\(80\) 0 0
\(81\) 283.003 0.388207
\(82\) 0 0
\(83\) −1020.13 −1.34908 −0.674538 0.738240i \(-0.735657\pi\)
−0.674538 + 0.738240i \(0.735657\pi\)
\(84\) 0 0
\(85\) 333.103 0.425060
\(86\) 0 0
\(87\) −551.459 −0.679570
\(88\) 0 0
\(89\) 828.104 0.986279 0.493140 0.869950i \(-0.335849\pi\)
0.493140 + 0.869950i \(0.335849\pi\)
\(90\) 0 0
\(91\) 295.134 0.339982
\(92\) 0 0
\(93\) 781.559 0.871440
\(94\) 0 0
\(95\) −179.114 −0.193440
\(96\) 0 0
\(97\) −101.923 −0.106688 −0.0533438 0.998576i \(-0.516988\pi\)
−0.0533438 + 0.998576i \(0.516988\pi\)
\(98\) 0 0
\(99\) 797.332 0.809443
\(100\) 0 0
\(101\) −735.677 −0.724779 −0.362389 0.932027i \(-0.618039\pi\)
−0.362389 + 0.932027i \(0.618039\pi\)
\(102\) 0 0
\(103\) −185.090 −0.177063 −0.0885313 0.996073i \(-0.528217\pi\)
−0.0885313 + 0.996073i \(0.528217\pi\)
\(104\) 0 0
\(105\) −220.357 −0.204806
\(106\) 0 0
\(107\) 717.679 0.648417 0.324209 0.945986i \(-0.394902\pi\)
0.324209 + 0.945986i \(0.394902\pi\)
\(108\) 0 0
\(109\) 776.115 0.682003 0.341001 0.940063i \(-0.389234\pi\)
0.341001 + 0.940063i \(0.389234\pi\)
\(110\) 0 0
\(111\) 845.715 0.723169
\(112\) 0 0
\(113\) −1062.61 −0.884616 −0.442308 0.896863i \(-0.645840\pi\)
−0.442308 + 0.896863i \(0.645840\pi\)
\(114\) 0 0
\(115\) 836.564 0.678348
\(116\) 0 0
\(117\) −648.116 −0.512123
\(118\) 0 0
\(119\) 338.832 0.261014
\(120\) 0 0
\(121\) 102.659 0.0771289
\(122\) 0 0
\(123\) 367.726 0.269567
\(124\) 0 0
\(125\) −1518.99 −1.08690
\(126\) 0 0
\(127\) −1355.40 −0.947026 −0.473513 0.880787i \(-0.657014\pi\)
−0.473513 + 0.880787i \(0.657014\pi\)
\(128\) 0 0
\(129\) 692.953 0.472954
\(130\) 0 0
\(131\) −2095.87 −1.39784 −0.698920 0.715200i \(-0.746336\pi\)
−0.698920 + 0.715200i \(0.746336\pi\)
\(132\) 0 0
\(133\) −182.195 −0.118784
\(134\) 0 0
\(135\) 1104.36 0.704060
\(136\) 0 0
\(137\) −2256.24 −1.40703 −0.703516 0.710680i \(-0.748387\pi\)
−0.703516 + 0.710680i \(0.748387\pi\)
\(138\) 0 0
\(139\) 1276.76 0.779091 0.389545 0.921007i \(-0.372632\pi\)
0.389545 + 0.921007i \(0.372632\pi\)
\(140\) 0 0
\(141\) 586.121 0.350073
\(142\) 0 0
\(143\) −1165.36 −0.681484
\(144\) 0 0
\(145\) 2132.67 1.22144
\(146\) 0 0
\(147\) 611.961 0.343358
\(148\) 0 0
\(149\) 682.904 0.375474 0.187737 0.982219i \(-0.439885\pi\)
0.187737 + 0.982219i \(0.439885\pi\)
\(150\) 0 0
\(151\) −3418.01 −1.84208 −0.921039 0.389472i \(-0.872658\pi\)
−0.921039 + 0.389472i \(0.872658\pi\)
\(152\) 0 0
\(153\) −744.078 −0.393171
\(154\) 0 0
\(155\) −3022.53 −1.56630
\(156\) 0 0
\(157\) −703.314 −0.357520 −0.178760 0.983893i \(-0.557209\pi\)
−0.178760 + 0.983893i \(0.557209\pi\)
\(158\) 0 0
\(159\) −1315.08 −0.655929
\(160\) 0 0
\(161\) 850.950 0.416548
\(162\) 0 0
\(163\) −821.522 −0.394764 −0.197382 0.980327i \(-0.563244\pi\)
−0.197382 + 0.980327i \(0.563244\pi\)
\(164\) 0 0
\(165\) 870.097 0.410527
\(166\) 0 0
\(167\) −1232.97 −0.571320 −0.285660 0.958331i \(-0.592213\pi\)
−0.285660 + 0.958331i \(0.592213\pi\)
\(168\) 0 0
\(169\) −1249.73 −0.568835
\(170\) 0 0
\(171\) 400.101 0.178927
\(172\) 0 0
\(173\) −3706.69 −1.62899 −0.814493 0.580174i \(-0.802985\pi\)
−0.814493 + 0.580174i \(0.802985\pi\)
\(174\) 0 0
\(175\) −346.459 −0.149656
\(176\) 0 0
\(177\) −2167.34 −0.920379
\(178\) 0 0
\(179\) −3709.73 −1.54904 −0.774521 0.632549i \(-0.782009\pi\)
−0.774521 + 0.632549i \(0.782009\pi\)
\(180\) 0 0
\(181\) 1006.39 0.413283 0.206642 0.978417i \(-0.433747\pi\)
0.206642 + 0.978417i \(0.433747\pi\)
\(182\) 0 0
\(183\) −919.022 −0.371235
\(184\) 0 0
\(185\) −3270.65 −1.29980
\(186\) 0 0
\(187\) −1337.90 −0.523193
\(188\) 0 0
\(189\) 1123.35 0.432337
\(190\) 0 0
\(191\) 1493.75 0.565886 0.282943 0.959137i \(-0.408689\pi\)
0.282943 + 0.959137i \(0.408689\pi\)
\(192\) 0 0
\(193\) −69.3171 −0.0258526 −0.0129263 0.999916i \(-0.504115\pi\)
−0.0129263 + 0.999916i \(0.504115\pi\)
\(194\) 0 0
\(195\) −707.264 −0.259734
\(196\) 0 0
\(197\) −528.461 −0.191123 −0.0955617 0.995424i \(-0.530465\pi\)
−0.0955617 + 0.995424i \(0.530465\pi\)
\(198\) 0 0
\(199\) −2827.61 −1.00726 −0.503629 0.863920i \(-0.668002\pi\)
−0.503629 + 0.863920i \(0.668002\pi\)
\(200\) 0 0
\(201\) 191.289 0.0671269
\(202\) 0 0
\(203\) 2169.34 0.750039
\(204\) 0 0
\(205\) −1422.11 −0.484510
\(206\) 0 0
\(207\) −1868.69 −0.627455
\(208\) 0 0
\(209\) 719.410 0.238099
\(210\) 0 0
\(211\) −2566.80 −0.837468 −0.418734 0.908109i \(-0.637526\pi\)
−0.418734 + 0.908109i \(0.637526\pi\)
\(212\) 0 0
\(213\) 2254.10 0.725111
\(214\) 0 0
\(215\) −2679.87 −0.850072
\(216\) 0 0
\(217\) −3074.51 −0.961804
\(218\) 0 0
\(219\) −1405.74 −0.433749
\(220\) 0 0
\(221\) 1087.52 0.331017
\(222\) 0 0
\(223\) 1293.99 0.388573 0.194286 0.980945i \(-0.437761\pi\)
0.194286 + 0.980945i \(0.437761\pi\)
\(224\) 0 0
\(225\) 760.828 0.225431
\(226\) 0 0
\(227\) −4680.99 −1.36867 −0.684335 0.729168i \(-0.739907\pi\)
−0.684335 + 0.729168i \(0.739907\pi\)
\(228\) 0 0
\(229\) 4590.15 1.32457 0.662283 0.749254i \(-0.269588\pi\)
0.662283 + 0.749254i \(0.269588\pi\)
\(230\) 0 0
\(231\) 885.060 0.252089
\(232\) 0 0
\(233\) 4091.75 1.15047 0.575235 0.817988i \(-0.304911\pi\)
0.575235 + 0.817988i \(0.304911\pi\)
\(234\) 0 0
\(235\) −2266.71 −0.629209
\(236\) 0 0
\(237\) 1465.96 0.401790
\(238\) 0 0
\(239\) 4506.64 1.21971 0.609855 0.792513i \(-0.291228\pi\)
0.609855 + 0.792513i \(0.291228\pi\)
\(240\) 0 0
\(241\) 4831.08 1.29127 0.645637 0.763644i \(-0.276592\pi\)
0.645637 + 0.763644i \(0.276592\pi\)
\(242\) 0 0
\(243\) −3852.84 −1.01712
\(244\) 0 0
\(245\) −2366.64 −0.617140
\(246\) 0 0
\(247\) −584.777 −0.150642
\(248\) 0 0
\(249\) 2486.69 0.632881
\(250\) 0 0
\(251\) −3766.28 −0.947113 −0.473556 0.880764i \(-0.657030\pi\)
−0.473556 + 0.880764i \(0.657030\pi\)
\(252\) 0 0
\(253\) −3360.04 −0.834957
\(254\) 0 0
\(255\) −811.983 −0.199405
\(256\) 0 0
\(257\) −3263.14 −0.792021 −0.396010 0.918246i \(-0.629606\pi\)
−0.396010 + 0.918246i \(0.629606\pi\)
\(258\) 0 0
\(259\) −3326.89 −0.798158
\(260\) 0 0
\(261\) −4763.89 −1.12980
\(262\) 0 0
\(263\) 4864.93 1.14062 0.570312 0.821428i \(-0.306822\pi\)
0.570312 + 0.821428i \(0.306822\pi\)
\(264\) 0 0
\(265\) 5085.83 1.17894
\(266\) 0 0
\(267\) −2018.61 −0.462685
\(268\) 0 0
\(269\) −240.732 −0.0545638 −0.0272819 0.999628i \(-0.508685\pi\)
−0.0272819 + 0.999628i \(0.508685\pi\)
\(270\) 0 0
\(271\) −1603.13 −0.359347 −0.179674 0.983726i \(-0.557504\pi\)
−0.179674 + 0.983726i \(0.557504\pi\)
\(272\) 0 0
\(273\) −719.426 −0.159493
\(274\) 0 0
\(275\) 1368.02 0.299981
\(276\) 0 0
\(277\) 6141.93 1.33225 0.666124 0.745841i \(-0.267952\pi\)
0.666124 + 0.745841i \(0.267952\pi\)
\(278\) 0 0
\(279\) 6751.66 1.44879
\(280\) 0 0
\(281\) 3784.11 0.803350 0.401675 0.915782i \(-0.368428\pi\)
0.401675 + 0.915782i \(0.368428\pi\)
\(282\) 0 0
\(283\) −4591.13 −0.964362 −0.482181 0.876072i \(-0.660155\pi\)
−0.482181 + 0.876072i \(0.660155\pi\)
\(284\) 0 0
\(285\) 436.615 0.0907468
\(286\) 0 0
\(287\) −1446.57 −0.297520
\(288\) 0 0
\(289\) −3664.46 −0.745869
\(290\) 0 0
\(291\) 248.450 0.0500495
\(292\) 0 0
\(293\) −4699.81 −0.937084 −0.468542 0.883441i \(-0.655221\pi\)
−0.468542 + 0.883441i \(0.655221\pi\)
\(294\) 0 0
\(295\) 8381.77 1.65426
\(296\) 0 0
\(297\) −4435.64 −0.866605
\(298\) 0 0
\(299\) 2731.23 0.528265
\(300\) 0 0
\(301\) −2725.95 −0.521997
\(302\) 0 0
\(303\) 1793.31 0.340010
\(304\) 0 0
\(305\) 3554.14 0.667245
\(306\) 0 0
\(307\) 5219.15 0.970269 0.485135 0.874440i \(-0.338771\pi\)
0.485135 + 0.874440i \(0.338771\pi\)
\(308\) 0 0
\(309\) 451.181 0.0830640
\(310\) 0 0
\(311\) 6801.34 1.24009 0.620046 0.784566i \(-0.287114\pi\)
0.620046 + 0.784566i \(0.287114\pi\)
\(312\) 0 0
\(313\) −6207.21 −1.12093 −0.560467 0.828177i \(-0.689378\pi\)
−0.560467 + 0.828177i \(0.689378\pi\)
\(314\) 0 0
\(315\) −1903.60 −0.340494
\(316\) 0 0
\(317\) −5047.46 −0.894301 −0.447151 0.894459i \(-0.647561\pi\)
−0.447151 + 0.894459i \(0.647561\pi\)
\(318\) 0 0
\(319\) −8565.81 −1.50343
\(320\) 0 0
\(321\) −1749.44 −0.304187
\(322\) 0 0
\(323\) −671.360 −0.115652
\(324\) 0 0
\(325\) −1112.01 −0.189794
\(326\) 0 0
\(327\) −1891.88 −0.319943
\(328\) 0 0
\(329\) −2305.69 −0.386374
\(330\) 0 0
\(331\) 7678.32 1.27504 0.637521 0.770433i \(-0.279960\pi\)
0.637521 + 0.770433i \(0.279960\pi\)
\(332\) 0 0
\(333\) 7305.88 1.20228
\(334\) 0 0
\(335\) −739.776 −0.120652
\(336\) 0 0
\(337\) 7014.71 1.13387 0.566937 0.823761i \(-0.308128\pi\)
0.566937 + 0.823761i \(0.308128\pi\)
\(338\) 0 0
\(339\) 2590.24 0.414993
\(340\) 0 0
\(341\) 12140.0 1.92790
\(342\) 0 0
\(343\) −5696.43 −0.896730
\(344\) 0 0
\(345\) −2039.23 −0.318228
\(346\) 0 0
\(347\) −2411.56 −0.373082 −0.186541 0.982447i \(-0.559728\pi\)
−0.186541 + 0.982447i \(0.559728\pi\)
\(348\) 0 0
\(349\) −1768.55 −0.271256 −0.135628 0.990760i \(-0.543305\pi\)
−0.135628 + 0.990760i \(0.543305\pi\)
\(350\) 0 0
\(351\) 3605.53 0.548288
\(352\) 0 0
\(353\) −725.636 −0.109410 −0.0547050 0.998503i \(-0.517422\pi\)
−0.0547050 + 0.998503i \(0.517422\pi\)
\(354\) 0 0
\(355\) −8717.32 −1.30329
\(356\) 0 0
\(357\) −825.946 −0.122447
\(358\) 0 0
\(359\) −3393.30 −0.498863 −0.249431 0.968392i \(-0.580244\pi\)
−0.249431 + 0.968392i \(0.580244\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) −250.243 −0.0361828
\(364\) 0 0
\(365\) 5436.43 0.779605
\(366\) 0 0
\(367\) 4902.25 0.697262 0.348631 0.937260i \(-0.386647\pi\)
0.348631 + 0.937260i \(0.386647\pi\)
\(368\) 0 0
\(369\) 3176.67 0.448160
\(370\) 0 0
\(371\) 5173.29 0.723946
\(372\) 0 0
\(373\) −11121.7 −1.54386 −0.771932 0.635705i \(-0.780709\pi\)
−0.771932 + 0.635705i \(0.780709\pi\)
\(374\) 0 0
\(375\) 3702.73 0.509888
\(376\) 0 0
\(377\) 6962.77 0.951197
\(378\) 0 0
\(379\) 6826.18 0.925164 0.462582 0.886576i \(-0.346923\pi\)
0.462582 + 0.886576i \(0.346923\pi\)
\(380\) 0 0
\(381\) 3303.96 0.444271
\(382\) 0 0
\(383\) −7637.04 −1.01889 −0.509445 0.860503i \(-0.670149\pi\)
−0.509445 + 0.860503i \(0.670149\pi\)
\(384\) 0 0
\(385\) −3422.80 −0.453097
\(386\) 0 0
\(387\) 5986.22 0.786296
\(388\) 0 0
\(389\) −198.410 −0.0258607 −0.0129303 0.999916i \(-0.504116\pi\)
−0.0129303 + 0.999916i \(0.504116\pi\)
\(390\) 0 0
\(391\) 3135.62 0.405563
\(392\) 0 0
\(393\) 5108.95 0.655757
\(394\) 0 0
\(395\) −5669.33 −0.722164
\(396\) 0 0
\(397\) −13398.8 −1.69387 −0.846933 0.531700i \(-0.821553\pi\)
−0.846933 + 0.531700i \(0.821553\pi\)
\(398\) 0 0
\(399\) 444.123 0.0557242
\(400\) 0 0
\(401\) −13426.2 −1.67200 −0.835999 0.548731i \(-0.815111\pi\)
−0.835999 + 0.548731i \(0.815111\pi\)
\(402\) 0 0
\(403\) −9868.04 −1.21976
\(404\) 0 0
\(405\) 2667.89 0.327330
\(406\) 0 0
\(407\) 13136.5 1.59988
\(408\) 0 0
\(409\) −945.230 −0.114275 −0.0571377 0.998366i \(-0.518197\pi\)
−0.0571377 + 0.998366i \(0.518197\pi\)
\(410\) 0 0
\(411\) 5499.87 0.660069
\(412\) 0 0
\(413\) 8525.91 1.01582
\(414\) 0 0
\(415\) −9616.80 −1.13752
\(416\) 0 0
\(417\) −3112.27 −0.365489
\(418\) 0 0
\(419\) 5013.06 0.584497 0.292248 0.956342i \(-0.405597\pi\)
0.292248 + 0.956342i \(0.405597\pi\)
\(420\) 0 0
\(421\) −1574.62 −0.182285 −0.0911426 0.995838i \(-0.529052\pi\)
−0.0911426 + 0.995838i \(0.529052\pi\)
\(422\) 0 0
\(423\) 5063.32 0.582003
\(424\) 0 0
\(425\) −1276.65 −0.145710
\(426\) 0 0
\(427\) 3615.26 0.409730
\(428\) 0 0
\(429\) 2840.71 0.319699
\(430\) 0 0
\(431\) 9535.61 1.06569 0.532847 0.846212i \(-0.321122\pi\)
0.532847 + 0.846212i \(0.321122\pi\)
\(432\) 0 0
\(433\) 9182.73 1.01915 0.509577 0.860425i \(-0.329802\pi\)
0.509577 + 0.860425i \(0.329802\pi\)
\(434\) 0 0
\(435\) −5198.65 −0.573003
\(436\) 0 0
\(437\) −1686.07 −0.184567
\(438\) 0 0
\(439\) 898.925 0.0977297 0.0488648 0.998805i \(-0.484440\pi\)
0.0488648 + 0.998805i \(0.484440\pi\)
\(440\) 0 0
\(441\) 5286.55 0.570840
\(442\) 0 0
\(443\) 6638.61 0.711987 0.355993 0.934488i \(-0.384143\pi\)
0.355993 + 0.934488i \(0.384143\pi\)
\(444\) 0 0
\(445\) 7806.60 0.831615
\(446\) 0 0
\(447\) −1664.67 −0.176143
\(448\) 0 0
\(449\) 1509.78 0.158688 0.0793442 0.996847i \(-0.474717\pi\)
0.0793442 + 0.996847i \(0.474717\pi\)
\(450\) 0 0
\(451\) 5711.88 0.596368
\(452\) 0 0
\(453\) 8331.84 0.864159
\(454\) 0 0
\(455\) 2782.25 0.286668
\(456\) 0 0
\(457\) −2910.97 −0.297964 −0.148982 0.988840i \(-0.547600\pi\)
−0.148982 + 0.988840i \(0.547600\pi\)
\(458\) 0 0
\(459\) 4139.38 0.420936
\(460\) 0 0
\(461\) 2610.80 0.263768 0.131884 0.991265i \(-0.457897\pi\)
0.131884 + 0.991265i \(0.457897\pi\)
\(462\) 0 0
\(463\) −19238.6 −1.93109 −0.965545 0.260237i \(-0.916199\pi\)
−0.965545 + 0.260237i \(0.916199\pi\)
\(464\) 0 0
\(465\) 7367.82 0.734784
\(466\) 0 0
\(467\) −1300.33 −0.128848 −0.0644241 0.997923i \(-0.520521\pi\)
−0.0644241 + 0.997923i \(0.520521\pi\)
\(468\) 0 0
\(469\) −752.497 −0.0740876
\(470\) 0 0
\(471\) 1714.42 0.167720
\(472\) 0 0
\(473\) 10763.6 1.04633
\(474\) 0 0
\(475\) 686.474 0.0663107
\(476\) 0 0
\(477\) −11360.6 −1.09050
\(478\) 0 0
\(479\) −14734.4 −1.40550 −0.702749 0.711438i \(-0.748044\pi\)
−0.702749 + 0.711438i \(0.748044\pi\)
\(480\) 0 0
\(481\) −10678.1 −1.01222
\(482\) 0 0
\(483\) −2074.30 −0.195412
\(484\) 0 0
\(485\) −960.834 −0.0899572
\(486\) 0 0
\(487\) 9192.13 0.855308 0.427654 0.903943i \(-0.359340\pi\)
0.427654 + 0.903943i \(0.359340\pi\)
\(488\) 0 0
\(489\) 2002.57 0.185193
\(490\) 0 0
\(491\) 17240.8 1.58466 0.792330 0.610093i \(-0.208868\pi\)
0.792330 + 0.610093i \(0.208868\pi\)
\(492\) 0 0
\(493\) 7993.70 0.730259
\(494\) 0 0
\(495\) 7516.51 0.682509
\(496\) 0 0
\(497\) −8867.23 −0.800301
\(498\) 0 0
\(499\) 17911.8 1.60690 0.803451 0.595371i \(-0.202995\pi\)
0.803451 + 0.595371i \(0.202995\pi\)
\(500\) 0 0
\(501\) 3005.54 0.268019
\(502\) 0 0
\(503\) −1995.19 −0.176861 −0.0884307 0.996082i \(-0.528185\pi\)
−0.0884307 + 0.996082i \(0.528185\pi\)
\(504\) 0 0
\(505\) −6935.29 −0.611121
\(506\) 0 0
\(507\) 3046.38 0.266853
\(508\) 0 0
\(509\) −4595.38 −0.400170 −0.200085 0.979779i \(-0.564122\pi\)
−0.200085 + 0.979779i \(0.564122\pi\)
\(510\) 0 0
\(511\) 5529.92 0.478726
\(512\) 0 0
\(513\) −2225.80 −0.191563
\(514\) 0 0
\(515\) −1744.86 −0.149296
\(516\) 0 0
\(517\) 9104.21 0.774473
\(518\) 0 0
\(519\) 9035.54 0.764193
\(520\) 0 0
\(521\) −15124.4 −1.27181 −0.635905 0.771768i \(-0.719373\pi\)
−0.635905 + 0.771768i \(0.719373\pi\)
\(522\) 0 0
\(523\) 11770.3 0.984092 0.492046 0.870569i \(-0.336249\pi\)
0.492046 + 0.870569i \(0.336249\pi\)
\(524\) 0 0
\(525\) 844.539 0.0702071
\(526\) 0 0
\(527\) −11329.1 −0.936440
\(528\) 0 0
\(529\) −4292.12 −0.352767
\(530\) 0 0
\(531\) −18723.0 −1.53015
\(532\) 0 0
\(533\) −4642.94 −0.377313
\(534\) 0 0
\(535\) 6765.62 0.546735
\(536\) 0 0
\(537\) 9042.95 0.726689
\(538\) 0 0
\(539\) 9505.58 0.759618
\(540\) 0 0
\(541\) −7134.26 −0.566961 −0.283481 0.958978i \(-0.591489\pi\)
−0.283481 + 0.958978i \(0.591489\pi\)
\(542\) 0 0
\(543\) −2453.20 −0.193880
\(544\) 0 0
\(545\) 7316.50 0.575054
\(546\) 0 0
\(547\) 23355.9 1.82565 0.912823 0.408356i \(-0.133898\pi\)
0.912823 + 0.408356i \(0.133898\pi\)
\(548\) 0 0
\(549\) −7939.16 −0.617186
\(550\) 0 0
\(551\) −4298.33 −0.332332
\(552\) 0 0
\(553\) −5766.82 −0.443454
\(554\) 0 0
\(555\) 7972.62 0.609764
\(556\) 0 0
\(557\) −7717.97 −0.587111 −0.293556 0.955942i \(-0.594839\pi\)
−0.293556 + 0.955942i \(0.594839\pi\)
\(558\) 0 0
\(559\) −8749.29 −0.661995
\(560\) 0 0
\(561\) 3261.31 0.245442
\(562\) 0 0
\(563\) −10920.7 −0.817502 −0.408751 0.912646i \(-0.634035\pi\)
−0.408751 + 0.912646i \(0.634035\pi\)
\(564\) 0 0
\(565\) −10017.3 −0.745894
\(566\) 0 0
\(567\) 2713.77 0.201001
\(568\) 0 0
\(569\) −9060.49 −0.667549 −0.333775 0.942653i \(-0.608322\pi\)
−0.333775 + 0.942653i \(0.608322\pi\)
\(570\) 0 0
\(571\) 13551.5 0.993189 0.496595 0.867983i \(-0.334584\pi\)
0.496595 + 0.867983i \(0.334584\pi\)
\(572\) 0 0
\(573\) −3641.22 −0.265470
\(574\) 0 0
\(575\) −3206.21 −0.232536
\(576\) 0 0
\(577\) 23214.2 1.67491 0.837453 0.546510i \(-0.184044\pi\)
0.837453 + 0.546510i \(0.184044\pi\)
\(578\) 0 0
\(579\) 168.969 0.0121280
\(580\) 0 0
\(581\) −9782.18 −0.698508
\(582\) 0 0
\(583\) −20427.2 −1.45113
\(584\) 0 0
\(585\) −6109.84 −0.431814
\(586\) 0 0
\(587\) 11562.3 0.812993 0.406496 0.913652i \(-0.366750\pi\)
0.406496 + 0.913652i \(0.366750\pi\)
\(588\) 0 0
\(589\) 6091.83 0.426162
\(590\) 0 0
\(591\) 1288.19 0.0896601
\(592\) 0 0
\(593\) −4831.74 −0.334597 −0.167298 0.985906i \(-0.553504\pi\)
−0.167298 + 0.985906i \(0.553504\pi\)
\(594\) 0 0
\(595\) 3194.19 0.220083
\(596\) 0 0
\(597\) 6892.68 0.472527
\(598\) 0 0
\(599\) 7303.29 0.498171 0.249085 0.968482i \(-0.419870\pi\)
0.249085 + 0.968482i \(0.419870\pi\)
\(600\) 0 0
\(601\) 8753.05 0.594083 0.297042 0.954864i \(-0.404000\pi\)
0.297042 + 0.954864i \(0.404000\pi\)
\(602\) 0 0
\(603\) 1652.49 0.111600
\(604\) 0 0
\(605\) 967.770 0.0650338
\(606\) 0 0
\(607\) −10886.6 −0.727965 −0.363982 0.931406i \(-0.618583\pi\)
−0.363982 + 0.931406i \(0.618583\pi\)
\(608\) 0 0
\(609\) −5288.05 −0.351860
\(610\) 0 0
\(611\) −7400.41 −0.489998
\(612\) 0 0
\(613\) −16505.2 −1.08750 −0.543750 0.839247i \(-0.682996\pi\)
−0.543750 + 0.839247i \(0.682996\pi\)
\(614\) 0 0
\(615\) 3466.58 0.227294
\(616\) 0 0
\(617\) 16403.5 1.07031 0.535155 0.844754i \(-0.320253\pi\)
0.535155 + 0.844754i \(0.320253\pi\)
\(618\) 0 0
\(619\) 5618.63 0.364833 0.182417 0.983221i \(-0.441608\pi\)
0.182417 + 0.983221i \(0.441608\pi\)
\(620\) 0 0
\(621\) 10395.7 0.671765
\(622\) 0 0
\(623\) 7940.85 0.510664
\(624\) 0 0
\(625\) −9803.34 −0.627414
\(626\) 0 0
\(627\) −1753.65 −0.111697
\(628\) 0 0
\(629\) −12259.1 −0.777110
\(630\) 0 0
\(631\) 25840.5 1.63026 0.815131 0.579276i \(-0.196665\pi\)
0.815131 + 0.579276i \(0.196665\pi\)
\(632\) 0 0
\(633\) 6256.91 0.392875
\(634\) 0 0
\(635\) −12777.5 −0.798517
\(636\) 0 0
\(637\) −7726.67 −0.480599
\(638\) 0 0
\(639\) 19472.5 1.20551
\(640\) 0 0
\(641\) 17293.1 1.06558 0.532790 0.846248i \(-0.321144\pi\)
0.532790 + 0.846248i \(0.321144\pi\)
\(642\) 0 0
\(643\) 25338.3 1.55404 0.777019 0.629478i \(-0.216731\pi\)
0.777019 + 0.629478i \(0.216731\pi\)
\(644\) 0 0
\(645\) 6532.52 0.398787
\(646\) 0 0
\(647\) −5761.08 −0.350064 −0.175032 0.984563i \(-0.556003\pi\)
−0.175032 + 0.984563i \(0.556003\pi\)
\(648\) 0 0
\(649\) −33665.2 −2.03617
\(650\) 0 0
\(651\) 7494.52 0.451203
\(652\) 0 0
\(653\) 25471.5 1.52646 0.763229 0.646129i \(-0.223613\pi\)
0.763229 + 0.646129i \(0.223613\pi\)
\(654\) 0 0
\(655\) −19757.9 −1.17864
\(656\) 0 0
\(657\) −12143.8 −0.721116
\(658\) 0 0
\(659\) −11251.4 −0.665089 −0.332545 0.943088i \(-0.607907\pi\)
−0.332545 + 0.943088i \(0.607907\pi\)
\(660\) 0 0
\(661\) 11094.9 0.652859 0.326430 0.945222i \(-0.394154\pi\)
0.326430 + 0.945222i \(0.394154\pi\)
\(662\) 0 0
\(663\) −2650.98 −0.155287
\(664\) 0 0
\(665\) −1717.56 −0.100157
\(666\) 0 0
\(667\) 20075.6 1.16541
\(668\) 0 0
\(669\) −3154.26 −0.182288
\(670\) 0 0
\(671\) −14275.2 −0.821291
\(672\) 0 0
\(673\) 108.246 0.00619994 0.00309997 0.999995i \(-0.499013\pi\)
0.00309997 + 0.999995i \(0.499013\pi\)
\(674\) 0 0
\(675\) −4232.56 −0.241350
\(676\) 0 0
\(677\) −8045.86 −0.456761 −0.228381 0.973572i \(-0.573343\pi\)
−0.228381 + 0.973572i \(0.573343\pi\)
\(678\) 0 0
\(679\) −977.357 −0.0552394
\(680\) 0 0
\(681\) 11410.5 0.642073
\(682\) 0 0
\(683\) 26682.8 1.49486 0.747429 0.664341i \(-0.231288\pi\)
0.747429 + 0.664341i \(0.231288\pi\)
\(684\) 0 0
\(685\) −21269.7 −1.18639
\(686\) 0 0
\(687\) −11189.1 −0.621383
\(688\) 0 0
\(689\) 16604.3 0.918106
\(690\) 0 0
\(691\) 872.171 0.0480159 0.0240079 0.999712i \(-0.492357\pi\)
0.0240079 + 0.999712i \(0.492357\pi\)
\(692\) 0 0
\(693\) 7645.77 0.419104
\(694\) 0 0
\(695\) 12036.1 0.656916
\(696\) 0 0
\(697\) −5330.38 −0.289674
\(698\) 0 0
\(699\) −9974.17 −0.539710
\(700\) 0 0
\(701\) −4411.58 −0.237693 −0.118847 0.992913i \(-0.537920\pi\)
−0.118847 + 0.992913i \(0.537920\pi\)
\(702\) 0 0
\(703\) 6591.89 0.353653
\(704\) 0 0
\(705\) 5525.40 0.295176
\(706\) 0 0
\(707\) −7054.55 −0.375267
\(708\) 0 0
\(709\) 12916.0 0.684161 0.342081 0.939671i \(-0.388868\pi\)
0.342081 + 0.939671i \(0.388868\pi\)
\(710\) 0 0
\(711\) 12664.0 0.667985
\(712\) 0 0
\(713\) −28452.2 −1.49445
\(714\) 0 0
\(715\) −10985.9 −0.574616
\(716\) 0 0
\(717\) −10985.5 −0.572192
\(718\) 0 0
\(719\) 20954.9 1.08691 0.543453 0.839439i \(-0.317117\pi\)
0.543453 + 0.839439i \(0.317117\pi\)
\(720\) 0 0
\(721\) −1774.86 −0.0916773
\(722\) 0 0
\(723\) −11776.4 −0.605765
\(724\) 0 0
\(725\) −8173.65 −0.418706
\(726\) 0 0
\(727\) 32170.7 1.64119 0.820596 0.571509i \(-0.193642\pi\)
0.820596 + 0.571509i \(0.193642\pi\)
\(728\) 0 0
\(729\) 1750.72 0.0889457
\(730\) 0 0
\(731\) −10044.7 −0.508232
\(732\) 0 0
\(733\) 14716.9 0.741584 0.370792 0.928716i \(-0.379086\pi\)
0.370792 + 0.928716i \(0.379086\pi\)
\(734\) 0 0
\(735\) 5769.00 0.289514
\(736\) 0 0
\(737\) 2971.30 0.148506
\(738\) 0 0
\(739\) 5677.64 0.282619 0.141309 0.989965i \(-0.454869\pi\)
0.141309 + 0.989965i \(0.454869\pi\)
\(740\) 0 0
\(741\) 1425.47 0.0706693
\(742\) 0 0
\(743\) 7330.81 0.361967 0.180983 0.983486i \(-0.442072\pi\)
0.180983 + 0.983486i \(0.442072\pi\)
\(744\) 0 0
\(745\) 6437.79 0.316594
\(746\) 0 0
\(747\) 21481.8 1.05218
\(748\) 0 0
\(749\) 6881.96 0.335729
\(750\) 0 0
\(751\) −8139.92 −0.395512 −0.197756 0.980251i \(-0.563365\pi\)
−0.197756 + 0.980251i \(0.563365\pi\)
\(752\) 0 0
\(753\) 9180.79 0.444311
\(754\) 0 0
\(755\) −32221.8 −1.55321
\(756\) 0 0
\(757\) 8241.25 0.395685 0.197842 0.980234i \(-0.436607\pi\)
0.197842 + 0.980234i \(0.436607\pi\)
\(758\) 0 0
\(759\) 8190.54 0.391697
\(760\) 0 0
\(761\) 13502.0 0.643165 0.321583 0.946881i \(-0.395785\pi\)
0.321583 + 0.946881i \(0.395785\pi\)
\(762\) 0 0
\(763\) 7442.31 0.353119
\(764\) 0 0
\(765\) −7014.48 −0.331515
\(766\) 0 0
\(767\) 27365.0 1.28826
\(768\) 0 0
\(769\) −35922.0 −1.68450 −0.842249 0.539089i \(-0.818769\pi\)
−0.842249 + 0.539089i \(0.818769\pi\)
\(770\) 0 0
\(771\) 7954.34 0.371554
\(772\) 0 0
\(773\) 18570.5 0.864079 0.432040 0.901855i \(-0.357794\pi\)
0.432040 + 0.901855i \(0.357794\pi\)
\(774\) 0 0
\(775\) 11584.2 0.536923
\(776\) 0 0
\(777\) 8109.72 0.374433
\(778\) 0 0
\(779\) 2866.22 0.131827
\(780\) 0 0
\(781\) 35013.0 1.60418
\(782\) 0 0
\(783\) 26502.0 1.20958
\(784\) 0 0
\(785\) −6630.20 −0.301455
\(786\) 0 0
\(787\) 1029.83 0.0466448 0.0233224 0.999728i \(-0.492576\pi\)
0.0233224 + 0.999728i \(0.492576\pi\)
\(788\) 0 0
\(789\) −11858.9 −0.535092
\(790\) 0 0
\(791\) −10189.5 −0.458026
\(792\) 0 0
\(793\) 11603.7 0.519619
\(794\) 0 0
\(795\) −12397.4 −0.553069
\(796\) 0 0
\(797\) −7192.39 −0.319658 −0.159829 0.987145i \(-0.551094\pi\)
−0.159829 + 0.987145i \(0.551094\pi\)
\(798\) 0 0
\(799\) −8496.13 −0.376185
\(800\) 0 0
\(801\) −17438.2 −0.769223
\(802\) 0 0
\(803\) −21835.3 −0.959591
\(804\) 0 0
\(805\) 8021.97 0.351227
\(806\) 0 0
\(807\) 586.814 0.0255971
\(808\) 0 0
\(809\) 41160.0 1.78876 0.894382 0.447304i \(-0.147616\pi\)
0.894382 + 0.447304i \(0.147616\pi\)
\(810\) 0 0
\(811\) −24315.9 −1.05283 −0.526415 0.850228i \(-0.676464\pi\)
−0.526415 + 0.850228i \(0.676464\pi\)
\(812\) 0 0
\(813\) 3907.83 0.168578
\(814\) 0 0
\(815\) −7744.56 −0.332859
\(816\) 0 0
\(817\) 5401.19 0.231290
\(818\) 0 0
\(819\) −6214.91 −0.265161
\(820\) 0 0
\(821\) 13863.8 0.589343 0.294671 0.955599i \(-0.404790\pi\)
0.294671 + 0.955599i \(0.404790\pi\)
\(822\) 0 0
\(823\) −18436.9 −0.780886 −0.390443 0.920627i \(-0.627678\pi\)
−0.390443 + 0.920627i \(0.627678\pi\)
\(824\) 0 0
\(825\) −3334.73 −0.140728
\(826\) 0 0
\(827\) −13852.5 −0.582466 −0.291233 0.956652i \(-0.594065\pi\)
−0.291233 + 0.956652i \(0.594065\pi\)
\(828\) 0 0
\(829\) −2643.89 −0.110768 −0.0553838 0.998465i \(-0.517638\pi\)
−0.0553838 + 0.998465i \(0.517638\pi\)
\(830\) 0 0
\(831\) −14971.7 −0.624987
\(832\) 0 0
\(833\) −8870.70 −0.368969
\(834\) 0 0
\(835\) −11623.3 −0.481728
\(836\) 0 0
\(837\) −37560.1 −1.55110
\(838\) 0 0
\(839\) −4288.75 −0.176477 −0.0882384 0.996099i \(-0.528124\pi\)
−0.0882384 + 0.996099i \(0.528124\pi\)
\(840\) 0 0
\(841\) 26790.0 1.09844
\(842\) 0 0
\(843\) −9224.26 −0.376869
\(844\) 0 0
\(845\) −11781.3 −0.479633
\(846\) 0 0
\(847\) 984.412 0.0399348
\(848\) 0 0
\(849\) 11191.5 0.452403
\(850\) 0 0
\(851\) −30787.8 −1.24018
\(852\) 0 0
\(853\) −23014.8 −0.923814 −0.461907 0.886928i \(-0.652835\pi\)
−0.461907 + 0.886928i \(0.652835\pi\)
\(854\) 0 0
\(855\) 3771.79 0.150868
\(856\) 0 0
\(857\) −47786.3 −1.90472 −0.952362 0.304971i \(-0.901353\pi\)
−0.952362 + 0.304971i \(0.901353\pi\)
\(858\) 0 0
\(859\) 17545.4 0.696905 0.348453 0.937326i \(-0.386707\pi\)
0.348453 + 0.937326i \(0.386707\pi\)
\(860\) 0 0
\(861\) 3526.19 0.139573
\(862\) 0 0
\(863\) 26675.6 1.05220 0.526100 0.850423i \(-0.323654\pi\)
0.526100 + 0.850423i \(0.323654\pi\)
\(864\) 0 0
\(865\) −34943.3 −1.37353
\(866\) 0 0
\(867\) 8932.59 0.349904
\(868\) 0 0
\(869\) 22770.7 0.888889
\(870\) 0 0
\(871\) −2415.24 −0.0939577
\(872\) 0 0
\(873\) 2146.29 0.0832082
\(874\) 0 0
\(875\) −14565.9 −0.562761
\(876\) 0 0
\(877\) 12172.5 0.468684 0.234342 0.972154i \(-0.424706\pi\)
0.234342 + 0.972154i \(0.424706\pi\)
\(878\) 0 0
\(879\) 11456.4 0.439607
\(880\) 0 0
\(881\) −23201.8 −0.887273 −0.443636 0.896207i \(-0.646312\pi\)
−0.443636 + 0.896207i \(0.646312\pi\)
\(882\) 0 0
\(883\) 26967.8 1.02779 0.513895 0.857853i \(-0.328202\pi\)
0.513895 + 0.857853i \(0.328202\pi\)
\(884\) 0 0
\(885\) −20431.7 −0.776048
\(886\) 0 0
\(887\) −22005.0 −0.832984 −0.416492 0.909139i \(-0.636741\pi\)
−0.416492 + 0.909139i \(0.636741\pi\)
\(888\) 0 0
\(889\) −12997.2 −0.490339
\(890\) 0 0
\(891\) −10715.5 −0.402900
\(892\) 0 0
\(893\) 4568.49 0.171197
\(894\) 0 0
\(895\) −34971.9 −1.30613
\(896\) 0 0
\(897\) −6657.73 −0.247821
\(898\) 0 0
\(899\) −72533.7 −2.69092
\(900\) 0 0
\(901\) 19062.8 0.704855
\(902\) 0 0
\(903\) 6644.86 0.244880
\(904\) 0 0
\(905\) 9487.30 0.348474
\(906\) 0 0
\(907\) 31155.8 1.14059 0.570293 0.821441i \(-0.306830\pi\)
0.570293 + 0.821441i \(0.306830\pi\)
\(908\) 0 0
\(909\) 15491.9 0.565273
\(910\) 0 0
\(911\) −37698.9 −1.37104 −0.685522 0.728052i \(-0.740426\pi\)
−0.685522 + 0.728052i \(0.740426\pi\)
\(912\) 0 0
\(913\) 38625.7 1.40014
\(914\) 0 0
\(915\) −8663.69 −0.313019
\(916\) 0 0
\(917\) −20097.7 −0.723756
\(918\) 0 0
\(919\) 18251.9 0.655142 0.327571 0.944827i \(-0.393770\pi\)
0.327571 + 0.944827i \(0.393770\pi\)
\(920\) 0 0
\(921\) −12722.4 −0.455175
\(922\) 0 0
\(923\) −28460.5 −1.01494
\(924\) 0 0
\(925\) 12535.1 0.445568
\(926\) 0 0
\(927\) 3897.62 0.138095
\(928\) 0 0
\(929\) 38440.4 1.35758 0.678788 0.734334i \(-0.262505\pi\)
0.678788 + 0.734334i \(0.262505\pi\)
\(930\) 0 0
\(931\) 4769.90 0.167913
\(932\) 0 0
\(933\) −16579.1 −0.581754
\(934\) 0 0
\(935\) −12612.5 −0.441148
\(936\) 0 0
\(937\) 44092.7 1.53730 0.768649 0.639671i \(-0.220930\pi\)
0.768649 + 0.639671i \(0.220930\pi\)
\(938\) 0 0
\(939\) 15130.9 0.525855
\(940\) 0 0
\(941\) 13844.9 0.479630 0.239815 0.970819i \(-0.422913\pi\)
0.239815 + 0.970819i \(0.422913\pi\)
\(942\) 0 0
\(943\) −13386.9 −0.462286
\(944\) 0 0
\(945\) 10589.9 0.364539
\(946\) 0 0
\(947\) −22422.6 −0.769416 −0.384708 0.923038i \(-0.625698\pi\)
−0.384708 + 0.923038i \(0.625698\pi\)
\(948\) 0 0
\(949\) 17749.0 0.607119
\(950\) 0 0
\(951\) 12303.8 0.419536
\(952\) 0 0
\(953\) 31743.4 1.07898 0.539491 0.841991i \(-0.318617\pi\)
0.539491 + 0.841991i \(0.318617\pi\)
\(954\) 0 0
\(955\) 14081.7 0.477146
\(956\) 0 0
\(957\) 20880.3 0.705291
\(958\) 0 0
\(959\) −21635.5 −0.728515
\(960\) 0 0
\(961\) 73007.8 2.45067
\(962\) 0 0
\(963\) −15112.9 −0.505717
\(964\) 0 0
\(965\) −653.458 −0.0217985
\(966\) 0 0
\(967\) −9446.38 −0.314142 −0.157071 0.987587i \(-0.550205\pi\)
−0.157071 + 0.987587i \(0.550205\pi\)
\(968\) 0 0
\(969\) 1636.53 0.0542547
\(970\) 0 0
\(971\) −9714.03 −0.321048 −0.160524 0.987032i \(-0.551318\pi\)
−0.160524 + 0.987032i \(0.551318\pi\)
\(972\) 0 0
\(973\) 12243.1 0.403388
\(974\) 0 0
\(975\) 2710.66 0.0890364
\(976\) 0 0
\(977\) −53402.2 −1.74871 −0.874354 0.485288i \(-0.838715\pi\)
−0.874354 + 0.485288i \(0.838715\pi\)
\(978\) 0 0
\(979\) −31355.1 −1.02361
\(980\) 0 0
\(981\) −16343.4 −0.531911
\(982\) 0 0
\(983\) 22085.7 0.716608 0.358304 0.933605i \(-0.383355\pi\)
0.358304 + 0.933605i \(0.383355\pi\)
\(984\) 0 0
\(985\) −4981.84 −0.161152
\(986\) 0 0
\(987\) 5620.42 0.181256
\(988\) 0 0
\(989\) −25226.6 −0.811080
\(990\) 0 0
\(991\) 56382.3 1.80731 0.903654 0.428263i \(-0.140874\pi\)
0.903654 + 0.428263i \(0.140874\pi\)
\(992\) 0 0
\(993\) −18716.9 −0.598150
\(994\) 0 0
\(995\) −26656.1 −0.849303
\(996\) 0 0
\(997\) −3946.90 −0.125376 −0.0626878 0.998033i \(-0.519967\pi\)
−0.0626878 + 0.998033i \(0.519967\pi\)
\(998\) 0 0
\(999\) −40643.3 −1.28719
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.4.a.bg.1.3 7
4.3 odd 2 1216.4.a.bf.1.5 7
8.3 odd 2 608.4.a.k.1.3 yes 7
8.5 even 2 608.4.a.j.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.4.a.j.1.5 7 8.5 even 2
608.4.a.k.1.3 yes 7 8.3 odd 2
1216.4.a.bf.1.5 7 4.3 odd 2
1216.4.a.bg.1.3 7 1.1 even 1 trivial