Properties

Label 1216.4.a.bc
Level $1216$
Weight $4$
Character orbit 1216.a
Self dual yes
Analytic conductor $71.746$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,4,Mod(1,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1216.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.7463225670\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 20x^{3} + 24x^{2} + 2x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 608)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} + 1) q^{3} + (\beta_1 - 5) q^{5} + ( - 3 \beta_{4} - \beta_{2} - \beta_1 + 5) q^{7} + (\beta_{4} + 3 \beta_{2} - 2 \beta_1 + 29) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{3} + 1) q^{3} + (\beta_1 - 5) q^{5} + ( - 3 \beta_{4} - \beta_{2} - \beta_1 + 5) q^{7} + (\beta_{4} + 3 \beta_{2} - 2 \beta_1 + 29) q^{9} + (2 \beta_{4} + \beta_{3} - 3 \beta_{2} + 3 \beta_1 - 12) q^{11} + (5 \beta_{4} - \beta_{2} - 40) q^{13} + (\beta_{4} - 9 \beta_{3} - 7 \beta_{2} + 2 \beta_1 - 9) q^{15} + (5 \beta_{4} - \beta_{3} + 4 \beta_{2} - \beta_1 - 14) q^{17} + 19 q^{19} + ( - 8 \beta_{4} - \beta_{3} + 16 \beta_{2} + 4 \beta_1 + 7) q^{21} + ( - 15 \beta_{4} + 13 \beta_{2} - 6 \beta_1 + 8) q^{23} + ( - 10 \beta_{4} + \beta_{3} - \beta_{2} - 13 \beta_1 - 1) q^{25} + ( - 13 \beta_{4} + 24 \beta_{3} + 3 \beta_{2} - 22 \beta_1) q^{27} + (6 \beta_{4} - 13 \beta_{3} - 4 \beta_{2} - 2 \beta_1 - 1) q^{29} + (17 \beta_{4} - 9 \beta_{3} - 11 \beta_{2} - 147) q^{31} + (27 \beta_{4} - 33 \beta_{3} - 13 \beta_{2} + 22 \beta_1 + 47) q^{33} + ( - 2 \beta_{4} + 15 \beta_{3} + 9 \beta_{2} + 21 \beta_1 - 64) q^{35} + (19 \beta_{4} - 21 \beta_{3} - 7 \beta_{2} - 12 \beta_1 - 41) q^{37} + (25 \beta_{4} - 34 \beta_{3} - 7 \beta_{2} + 6 \beta_1 - 26) q^{39} + ( - \beta_{4} - 15 \beta_{3} + 9 \beta_{2} + 24 \beta_1 + 13) q^{41} + (12 \beta_{4} + \beta_{3} - 9 \beta_{2} - 17 \beta_1 + 76) q^{43} + (32 \beta_{4} - 34 \beta_{3} - 22 \beta_{2} + 37 \beta_1 - 347) q^{45} + (32 \beta_{4} - 10 \beta_{3} + 28 \beta_{2} - \beta_1 - 7) q^{47} + ( - 9 \beta_{4} - 33 \beta_{3} - 20 \beta_{2} + 5 \beta_1 + 203) q^{49} + ( - 2 \beta_{4} + 17 \beta_{3} - 18 \beta_{2} - 24 \beta_1 - 71) q^{51} + ( - 20 \beta_{4} - 3 \beta_{3} + 2 \beta_{2} + 4 \beta_1 - 197) q^{53} + ( - 32 \beta_{4} + 20 \beta_{3} + 14 \beta_{2} - 33 \beta_1 + 291) q^{55} + (19 \beta_{3} + 19) q^{57} + (61 \beta_{4} - 54 \beta_{3} - 45 \beta_{2} + 8 \beta_1 + 96) q^{59} + ( - 28 \beta_{3} - 30 \beta_{2} - 23 \beta_1 - 297) q^{61} + ( - 28 \beta_{4} + 40 \beta_{3} - 36 \beta_{2} - 59 \beta_1 - 279) q^{63} + (12 \beta_{4} + 8 \beta_{2} - 48 \beta_1 + 84) q^{65} + ( - 28 \beta_{4} - 29 \beta_{3} + 42 \beta_{2} + 22 \beta_1 - 183) q^{67} + ( - 131 \beta_{4} + 54 \beta_{3} + 33 \beta_{2} - 90 \beta_1 - 50) q^{69} + ( - 16 \beta_{4} + 22 \beta_{3} + 32 \beta_{2} + 46 \beta_1 + 316) q^{71} + ( - 17 \beta_{4} - 67 \beta_{3} - 20 \beta_{2} + 19 \beta_1 + 528) q^{73} + ( - 47 \beta_{4} + 26 \beta_{3} + 117 \beta_{2} - 22 \beta_1 + 90) q^{75} + ( - 42 \beta_{4} - 32 \beta_{3} + 52 \beta_{2} + 33 \beta_1 - 27) q^{77} + ( - 77 \beta_{4} + 43 \beta_{3} - 13 \beta_{2} + 24 \beta_1 - 107) q^{79} + ( - 92 \beta_{4} + 50 \beta_{3} + 162 \beta_{2} - 56 \beta_1 + 587) q^{81} + ( - 90 \beta_{4} - 42 \beta_{3} + 16 \beta_{2} - 16 \beta_1 + 110) q^{83} + (36 \beta_{4} - 42 \beta_{3} - 24 \beta_{2} - 25 \beta_1 - 111) q^{85} + (29 \beta_{4} + 16 \beta_{3} - 25 \beta_{2} + 46 \beta_1 - 680) q^{87} + ( - 63 \beta_{4} - 79 \beta_{3} - 59 \beta_{2} + 6 \beta_1 + 207) q^{89} + (117 \beta_{4} - 34 \beta_{3} + 61 \beta_{2} - 14 \beta_1 - 662) q^{91} + (114 \beta_{4} - 148 \beta_{3} - 28 \beta_{2} + 84 \beta_1 - 564) q^{93} + (19 \beta_1 - 95) q^{95} + (34 \beta_{4} - 16 \beta_{3} - 96 \beta_{2} + 50 \beta_1 + 104) q^{97} + (108 \beta_{4} - 33 \beta_{3} - 187 \beta_{2} + 107 \beta_1 - 1426) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{3} - 27 q^{5} + 20 q^{7} + 154 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + 3 q^{3} - 27 q^{5} + 20 q^{7} + 154 q^{9} - 67 q^{11} - 191 q^{13} - 36 q^{15} - 52 q^{17} + 95 q^{19} + 29 q^{21} + 35 q^{23} - 2 q^{25} - 27 q^{27} + 33 q^{29} - 694 q^{31} + 298 q^{33} - 387 q^{35} - 108 q^{37} - 31 q^{39} + 54 q^{41} + 427 q^{43} - 1699 q^{45} + 79 q^{47} + 1033 q^{49} - 363 q^{51} - 1025 q^{53} + 1431 q^{55} + 57 q^{57} + 649 q^{59} - 1413 q^{61} - 1449 q^{63} + 548 q^{65} - 915 q^{67} - 407 q^{69} + 1444 q^{71} + 2682 q^{73} + 465 q^{75} - 169 q^{77} - 836 q^{79} + 2925 q^{81} + 502 q^{83} - 373 q^{85} - 3491 q^{87} + 996 q^{89} - 2919 q^{91} - 2492 q^{93} - 513 q^{95} + 424 q^{97} - 7249 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 20x^{3} + 24x^{2} + 2x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{4} + \nu^{3} + 18\nu^{2} - 24\nu + 14 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{4} + 20\nu^{2} - 2\nu - 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - 20\nu^{2} + 6\nu + 7 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 20\nu^{2} + 24\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{4} - 2\beta _1 + 16 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{4} + 11\beta_{3} + 9\beta_{2} - 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -20\beta_{4} - \beta_{3} - 3\beta_{2} - 40\beta _1 + 303 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.14402
−4.53955
−0.389032
0.457551
4.32701
0 −9.59869 0 −0.0570048 0 −24.6071 0 65.1348 0
1.2 0 −6.71806 0 −17.1669 0 31.2505 0 18.1323 0
1.3 0 2.66179 0 7.98961 0 27.0741 0 −19.9149 0
1.4 0 6.60208 0 −1.58045 0 −19.8743 0 16.5875 0
1.5 0 10.0529 0 −16.1852 0 6.15678 0 74.0603 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.4.a.bc 5
4.b odd 2 1 1216.4.a.z 5
8.b even 2 1 608.4.a.f 5
8.d odd 2 1 608.4.a.g yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
608.4.a.f 5 8.b even 2 1
608.4.a.g yes 5 8.d odd 2 1
1216.4.a.z 5 4.b odd 2 1
1216.4.a.bc 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1216))\):

\( T_{3}^{5} - 3T_{3}^{4} - 140T_{3}^{3} + 384T_{3}^{2} + 4256T_{3} - 11392 \) Copy content Toggle raw display
\( T_{5}^{5} + 27T_{5}^{4} + 53T_{5}^{3} - 2199T_{5}^{2} - 3634T_{5} - 200 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 3 T^{4} - 140 T^{3} + \cdots - 11392 \) Copy content Toggle raw display
$5$ \( T^{5} + 27 T^{4} + 53 T^{3} + \cdots - 200 \) Copy content Toggle raw display
$7$ \( T^{5} - 20 T^{4} - 1174 T^{3} + \cdots - 2547508 \) Copy content Toggle raw display
$11$ \( T^{5} + 67 T^{4} - 1415 T^{3} + \cdots + 42711800 \) Copy content Toggle raw display
$13$ \( T^{5} + 191 T^{4} + \cdots - 38142080 \) Copy content Toggle raw display
$17$ \( T^{5} + 52 T^{4} - 6732 T^{3} + \cdots - 9857070 \) Copy content Toggle raw display
$19$ \( (T - 19)^{5} \) Copy content Toggle raw display
$23$ \( T^{5} - 35 T^{4} + \cdots - 5659603968 \) Copy content Toggle raw display
$29$ \( T^{5} - 33 T^{4} + \cdots + 1528050752 \) Copy content Toggle raw display
$31$ \( T^{5} + 694 T^{4} + \cdots + 1546708480 \) Copy content Toggle raw display
$37$ \( T^{5} + 108 T^{4} + \cdots + 264959360 \) Copy content Toggle raw display
$41$ \( T^{5} - 54 T^{4} + \cdots + 397858568960 \) Copy content Toggle raw display
$43$ \( T^{5} - 427 T^{4} + \cdots - 331567864112 \) Copy content Toggle raw display
$47$ \( T^{5} - 79 T^{4} + \cdots - 905506740224 \) Copy content Toggle raw display
$53$ \( T^{5} + 1025 T^{4} + \cdots - 210846255280 \) Copy content Toggle raw display
$59$ \( T^{5} - 649 T^{4} + \cdots - 34775624292320 \) Copy content Toggle raw display
$61$ \( T^{5} + 1413 T^{4} + \cdots - 29987676575940 \) Copy content Toggle raw display
$67$ \( T^{5} + 915 T^{4} + \cdots + 24348069855968 \) Copy content Toggle raw display
$71$ \( T^{5} - 1444 T^{4} + \cdots + 35176103924480 \) Copy content Toggle raw display
$73$ \( T^{5} - 2682 T^{4} + \cdots + 71728412586510 \) Copy content Toggle raw display
$79$ \( T^{5} + 836 T^{4} + \cdots - 31064499767680 \) Copy content Toggle raw display
$83$ \( T^{5} - 502 T^{4} + \cdots - 8567040270336 \) Copy content Toggle raw display
$89$ \( T^{5} - 996 T^{4} + \cdots - 13823629765888 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 461524239069440 \) Copy content Toggle raw display
show more
show less