Properties

Label 1216.4.a.a
Level $1216$
Weight $4$
Character orbit 1216.a
Self dual yes
Analytic conductor $71.746$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,4,Mod(1,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1216.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.7463225670\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 5 q^{3} + 12 q^{5} - 11 q^{7} - 2 q^{9} - 54 q^{11} - 11 q^{13} - 60 q^{15} - 93 q^{17} + 19 q^{19} + 55 q^{21} - 183 q^{23} + 19 q^{25} + 145 q^{27} + 249 q^{29} - 56 q^{31} + 270 q^{33} - 132 q^{35}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −5.00000 0 12.0000 0 −11.0000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.4.a.a 1
4.b odd 2 1 1216.4.a.f 1
8.b even 2 1 304.4.a.b 1
8.d odd 2 1 19.4.a.a 1
24.f even 2 1 171.4.a.d 1
40.e odd 2 1 475.4.a.e 1
40.k even 4 2 475.4.b.c 2
56.e even 2 1 931.4.a.a 1
88.g even 2 1 2299.4.a.b 1
152.b even 2 1 361.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.4.a.a 1 8.d odd 2 1
171.4.a.d 1 24.f even 2 1
304.4.a.b 1 8.b even 2 1
361.4.a.b 1 152.b even 2 1
475.4.a.e 1 40.e odd 2 1
475.4.b.c 2 40.k even 4 2
931.4.a.a 1 56.e even 2 1
1216.4.a.a 1 1.a even 1 1 trivial
1216.4.a.f 1 4.b odd 2 1
2299.4.a.b 1 88.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1216))\):

\( T_{3} + 5 \) Copy content Toggle raw display
\( T_{5} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 5 \) Copy content Toggle raw display
$5$ \( T - 12 \) Copy content Toggle raw display
$7$ \( T + 11 \) Copy content Toggle raw display
$11$ \( T + 54 \) Copy content Toggle raw display
$13$ \( T + 11 \) Copy content Toggle raw display
$17$ \( T + 93 \) Copy content Toggle raw display
$19$ \( T - 19 \) Copy content Toggle raw display
$23$ \( T + 183 \) Copy content Toggle raw display
$29$ \( T - 249 \) Copy content Toggle raw display
$31$ \( T + 56 \) Copy content Toggle raw display
$37$ \( T - 250 \) Copy content Toggle raw display
$41$ \( T - 240 \) Copy content Toggle raw display
$43$ \( T + 196 \) Copy content Toggle raw display
$47$ \( T - 168 \) Copy content Toggle raw display
$53$ \( T + 435 \) Copy content Toggle raw display
$59$ \( T - 195 \) Copy content Toggle raw display
$61$ \( T - 358 \) Copy content Toggle raw display
$67$ \( T + 961 \) Copy content Toggle raw display
$71$ \( T - 246 \) Copy content Toggle raw display
$73$ \( T - 353 \) Copy content Toggle raw display
$79$ \( T - 34 \) Copy content Toggle raw display
$83$ \( T - 234 \) Copy content Toggle raw display
$89$ \( T + 168 \) Copy content Toggle raw display
$97$ \( T - 758 \) Copy content Toggle raw display
show more
show less