Properties

Label 1216.3.g.c.417.6
Level $1216$
Weight $3$
Character 1216.417
Analytic conductor $33.134$
Analytic rank $0$
Dimension $8$
CM discriminant -19
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,3,Mod(417,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.417");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1216.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.1336001462\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2702336256.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 417.6
Root \(1.52274 + 1.63746i\) of defining polynomial
Character \(\chi\) \(=\) 1216.417
Dual form 1216.3.g.c.417.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.61478i q^{5} +10.8685 q^{7} -9.00000 q^{9} +O(q^{10})\) \(q+5.61478i q^{5} +10.8685 q^{7} -9.00000 q^{9} -17.3746i q^{11} -33.9244 q^{17} +19.0000i q^{19} -34.8712 q^{23} -6.52575 q^{25} +61.0241i q^{35} +31.1752i q^{43} -50.5330i q^{45} -93.2847 q^{47} +69.1238 q^{49} +97.5545 q^{55} -56.5089i q^{61} -97.8163 q^{63} -137.072 q^{73} -188.835i q^{77} +81.0000 q^{81} -90.0000i q^{83} -190.478i q^{85} -106.681 q^{95} +156.371i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 72 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 72 q^{9} - 60 q^{17} - 324 q^{25} + 100 q^{49} - 100 q^{73} + 648 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) 5.61478i 1.12296i 0.827492 + 0.561478i \(0.189767\pi\)
−0.827492 + 0.561478i \(0.810233\pi\)
\(6\) 0 0
\(7\) 10.8685 1.55264 0.776320 0.630339i \(-0.217084\pi\)
0.776320 + 0.630339i \(0.217084\pi\)
\(8\) 0 0
\(9\) −9.00000 −1.00000
\(10\) 0 0
\(11\) − 17.3746i − 1.57951i −0.613424 0.789754i \(-0.710208\pi\)
0.613424 0.789754i \(-0.289792\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −33.9244 −1.99555 −0.997777 0.0666402i \(-0.978772\pi\)
−0.997777 + 0.0666402i \(0.978772\pi\)
\(18\) 0 0
\(19\) 19.0000i 1.00000i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −34.8712 −1.51614 −0.758069 0.652174i \(-0.773857\pi\)
−0.758069 + 0.652174i \(0.773857\pi\)
\(24\) 0 0
\(25\) −6.52575 −0.261030
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 61.0241i 1.74355i
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 31.1752i 0.725006i 0.931983 + 0.362503i \(0.118078\pi\)
−0.931983 + 0.362503i \(0.881922\pi\)
\(44\) 0 0
\(45\) − 50.5330i − 1.12296i
\(46\) 0 0
\(47\) −93.2847 −1.98478 −0.992391 0.123127i \(-0.960708\pi\)
−0.992391 + 0.123127i \(0.960708\pi\)
\(48\) 0 0
\(49\) 69.1238 1.41069
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 97.5545 1.77372
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) − 56.5089i − 0.926375i −0.886260 0.463187i \(-0.846706\pi\)
0.886260 0.463187i \(-0.153294\pi\)
\(62\) 0 0
\(63\) −97.8163 −1.55264
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −137.072 −1.87770 −0.938851 0.344323i \(-0.888108\pi\)
−0.938851 + 0.344323i \(0.888108\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 188.835i − 2.45241i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 81.0000 1.00000
\(82\) 0 0
\(83\) − 90.0000i − 1.08434i −0.840270 0.542169i \(-0.817603\pi\)
0.840270 0.542169i \(-0.182397\pi\)
\(84\) 0 0
\(85\) − 190.478i − 2.24092i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −106.681 −1.12296
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 156.371i 1.57951i
\(100\) 0 0
\(101\) 174.356i 1.72630i 0.504950 + 0.863148i \(0.331511\pi\)
−0.504950 + 0.863148i \(0.668489\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) − 195.794i − 1.70256i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −368.707 −3.09838
\(120\) 0 0
\(121\) −180.876 −1.49484
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 103.729i 0.829831i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 25.6221i − 0.195589i −0.995207 0.0977943i \(-0.968821\pi\)
0.995207 0.0977943i \(-0.0311787\pi\)
\(132\) 0 0
\(133\) 206.501i 1.55264i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −214.323 −1.56440 −0.782201 0.623026i \(-0.785903\pi\)
−0.782201 + 0.623026i \(0.785903\pi\)
\(138\) 0 0
\(139\) 268.371i 1.93073i 0.260906 + 0.965364i \(0.415979\pi\)
−0.260906 + 0.965364i \(0.584021\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 273.156i − 1.83326i −0.399733 0.916632i \(-0.630897\pi\)
0.399733 0.916632i \(-0.369103\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 305.320 1.99555
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 313.841i − 1.99899i −0.0318471 0.999493i \(-0.510139\pi\)
0.0318471 0.999493i \(-0.489861\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −378.997 −2.35402
\(162\) 0 0
\(163\) 250.000i 1.53374i 0.641801 + 0.766871i \(0.278187\pi\)
−0.641801 + 0.766871i \(0.721813\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −169.000 −1.00000
\(170\) 0 0
\(171\) − 171.000i − 1.00000i
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) −70.9249 −0.405285
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 589.423i 3.15199i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 104.713 0.548235 0.274117 0.961696i \(-0.411614\pi\)
0.274117 + 0.961696i \(0.411614\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 383.583i − 1.94712i −0.228426 0.973561i \(-0.573358\pi\)
0.228426 0.973561i \(-0.426642\pi\)
\(198\) 0 0
\(199\) 33.1291 0.166478 0.0832388 0.996530i \(-0.473474\pi\)
0.0832388 + 0.996530i \(0.473474\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 313.841 1.51614
\(208\) 0 0
\(209\) 330.117 1.57951
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −175.042 −0.814149
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 58.7317 0.261030
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 214.120i 0.935021i 0.883988 + 0.467510i \(0.154849\pi\)
−0.883988 + 0.467510i \(0.845151\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 206.076 0.884445 0.442222 0.896905i \(-0.354190\pi\)
0.442222 + 0.896905i \(0.354190\pi\)
\(234\) 0 0
\(235\) − 523.773i − 2.22882i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 468.590 1.96063 0.980314 0.197443i \(-0.0632638\pi\)
0.980314 + 0.197443i \(0.0632638\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 388.115i 1.58414i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 447.615i − 1.78333i −0.452697 0.891664i \(-0.649538\pi\)
0.452697 0.891664i \(-0.350462\pi\)
\(252\) 0 0
\(253\) 605.873i 2.39475i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 182.923 0.695523 0.347762 0.937583i \(-0.386942\pi\)
0.347762 + 0.937583i \(0.386942\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −523.068 −1.93014 −0.965070 0.261993i \(-0.915620\pi\)
−0.965070 + 0.261993i \(0.915620\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 113.382i 0.412299i
\(276\) 0 0
\(277\) − 535.245i − 1.93229i −0.257992 0.966147i \(-0.583061\pi\)
0.257992 0.966147i \(-0.416939\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 153.567i 0.542641i 0.962489 + 0.271320i \(0.0874603\pi\)
−0.962489 + 0.271320i \(0.912540\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 861.866 2.98224
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 338.827i 1.12567i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 317.285 1.04028
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −445.933 −1.43387 −0.716933 0.697142i \(-0.754455\pi\)
−0.716933 + 0.697142i \(0.754455\pi\)
\(312\) 0 0
\(313\) −590.000 −1.88498 −0.942492 0.334229i \(-0.891524\pi\)
−0.942492 + 0.334229i \(0.891524\pi\)
\(314\) 0 0
\(315\) − 549.217i − 1.74355i
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 644.564i − 1.99555i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1013.86 −3.08165
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 218.715 0.637652
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 197.828i 0.570110i 0.958511 + 0.285055i \(0.0920118\pi\)
−0.958511 + 0.285055i \(0.907988\pi\)
\(348\) 0 0
\(349\) 685.238i 1.96343i 0.190353 + 0.981716i \(0.439037\pi\)
−0.190353 + 0.981716i \(0.560963\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 510.000 1.44476 0.722380 0.691497i \(-0.243048\pi\)
0.722380 + 0.691497i \(0.243048\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −127.370 −0.354792 −0.177396 0.984140i \(-0.556767\pi\)
−0.177396 + 0.984140i \(0.556767\pi\)
\(360\) 0 0
\(361\) −361.000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 769.631i − 2.10858i
\(366\) 0 0
\(367\) 732.295 1.99535 0.997677 0.0681199i \(-0.0217000\pi\)
0.997677 + 0.0681199i \(0.0217000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 1060.27 2.75394
\(386\) 0 0
\(387\) − 280.577i − 0.725006i
\(388\) 0 0
\(389\) 513.906i 1.32109i 0.750785 + 0.660547i \(0.229676\pi\)
−0.750785 + 0.660547i \(0.770324\pi\)
\(390\) 0 0
\(391\) 1182.98 3.02554
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 782.494i 1.97102i 0.169622 + 0.985509i \(0.445745\pi\)
−0.169622 + 0.985509i \(0.554255\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 454.797i 1.12296i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 505.330 1.21766
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 762.000i 1.81862i 0.416124 + 0.909308i \(0.363388\pi\)
−0.416124 + 0.909308i \(0.636612\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 839.563 1.98478
\(424\) 0 0
\(425\) 221.382 0.520899
\(426\) 0 0
\(427\) − 614.165i − 1.43833i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 662.553i − 1.51614i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −622.114 −1.41069
\(442\) 0 0
\(443\) 743.808i 1.67903i 0.543340 + 0.839513i \(0.317159\pi\)
−0.543340 + 0.839513i \(0.682841\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 890.062 1.94762 0.973810 0.227363i \(-0.0730105\pi\)
0.973810 + 0.227363i \(0.0730105\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 790.312i 1.71434i 0.515032 + 0.857171i \(0.327780\pi\)
−0.515032 + 0.857171i \(0.672220\pi\)
\(462\) 0 0
\(463\) 385.777 0.833211 0.416606 0.909087i \(-0.363220\pi\)
0.416606 + 0.909087i \(0.363220\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 619.821i 1.32724i 0.748070 + 0.663620i \(0.230981\pi\)
−0.748070 + 0.663620i \(0.769019\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 541.657 1.14515
\(474\) 0 0
\(475\) − 123.989i − 0.261030i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 174.356 0.364000 0.182000 0.983299i \(-0.441743\pi\)
0.182000 + 0.983299i \(0.441743\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 918.000i 1.86965i 0.355104 + 0.934827i \(0.384446\pi\)
−0.355104 + 0.934827i \(0.615554\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −877.990 −1.77372
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 997.609i − 1.99922i −0.0279946 0.999608i \(-0.508912\pi\)
0.0279946 0.999608i \(-0.491088\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 383.583 0.762591 0.381295 0.924453i \(-0.375478\pi\)
0.381295 + 0.924453i \(0.375478\pi\)
\(504\) 0 0
\(505\) −978.970 −1.93855
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) −1489.77 −2.91539
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1620.78i 3.13498i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 687.000 1.29868
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 1201.00i − 2.22819i
\(540\) 0 0
\(541\) − 94.6025i − 0.174866i −0.996170 0.0874330i \(-0.972134\pi\)
0.996170 0.0874330i \(-0.0278664\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 508.580i 0.926375i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 845.864i − 1.51861i −0.650737 0.759303i \(-0.725540\pi\)
0.650737 0.759303i \(-0.274460\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 880.347 1.55264
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) − 458.000i − 0.802102i −0.916056 0.401051i \(-0.868645\pi\)
0.916056 0.401051i \(-0.131355\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 227.561 0.395757
\(576\) 0 0
\(577\) −697.072 −1.20810 −0.604049 0.796947i \(-0.706447\pi\)
−0.604049 + 0.796947i \(0.706447\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 978.163i − 1.68358i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 853.169i 1.45344i 0.686934 + 0.726719i \(0.258956\pi\)
−0.686934 + 0.726719i \(0.741044\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 30.0000 0.0505902 0.0252951 0.999680i \(-0.491947\pi\)
0.0252951 + 0.999680i \(0.491947\pi\)
\(594\) 0 0
\(595\) − 2070.21i − 3.47934i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 1015.58i − 1.67864i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 850.467i − 1.38739i −0.720271 0.693693i \(-0.755983\pi\)
0.720271 0.693693i \(-0.244017\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.31316 0.0118528 0.00592639 0.999982i \(-0.498114\pi\)
0.00592639 + 0.999982i \(0.498114\pi\)
\(618\) 0 0
\(619\) 662.000i 1.06947i 0.845021 + 0.534733i \(0.179588\pi\)
−0.845021 + 0.534733i \(0.820412\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −745.558 −1.19289
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −538.459 −0.853343 −0.426671 0.904407i \(-0.640314\pi\)
−0.426671 + 0.904407i \(0.640314\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) − 1112.41i − 1.73004i −0.501741 0.865018i \(-0.667307\pi\)
0.501741 0.865018i \(-0.332693\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1277.91 −1.97514 −0.987568 0.157194i \(-0.949755\pi\)
−0.987568 + 0.157194i \(0.949755\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 300.742i 0.460555i 0.973125 + 0.230278i \(0.0739634\pi\)
−0.973125 + 0.230278i \(0.926037\pi\)
\(654\) 0 0
\(655\) 143.862 0.219637
\(656\) 0 0
\(657\) 1233.65 1.87770
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1159.46 −1.74355
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −981.818 −1.46322
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) − 1203.38i − 1.75675i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1110.60i 1.60723i 0.595147 + 0.803617i \(0.297094\pi\)
−0.595147 + 0.803617i \(0.702906\pi\)
\(692\) 0 0
\(693\) 1699.52i 2.45241i
\(694\) 0 0
\(695\) −1506.85 −2.16812
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 871.780i − 1.24362i −0.783167 0.621812i \(-0.786397\pi\)
0.783167 0.621812i \(-0.213603\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1894.98i 2.68032i
\(708\) 0 0
\(709\) − 523.068i − 0.737754i −0.929478 0.368877i \(-0.879742\pi\)
0.929478 0.368877i \(-0.120258\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1367.95 1.90257 0.951285 0.308313i \(-0.0997646\pi\)
0.951285 + 0.308313i \(0.0997646\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −652.145 −0.897035 −0.448518 0.893774i \(-0.648048\pi\)
−0.448518 + 0.893774i \(0.648048\pi\)
\(728\) 0 0
\(729\) −729.000 −1.00000
\(730\) 0 0
\(731\) − 1057.60i − 1.44679i
\(732\) 0 0
\(733\) − 732.295i − 0.999038i −0.866303 0.499519i \(-0.833510\pi\)
0.866303 0.499519i \(-0.166490\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1462.60i 1.97916i 0.143986 + 0.989580i \(0.454008\pi\)
−0.143986 + 0.989580i \(0.545992\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 1533.71 2.05867
\(746\) 0 0
\(747\) 810.000i 1.08434i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 32.5334i − 0.0429768i −0.999769 0.0214884i \(-0.993160\pi\)
0.999769 0.0214884i \(-0.00684050\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −959.120 −1.26034 −0.630171 0.776456i \(-0.717015\pi\)
−0.630171 + 0.776456i \(0.717015\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1714.30i 2.24092i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1494.10 1.94292 0.971459 0.237208i \(-0.0762322\pi\)
0.971459 + 0.237208i \(0.0762322\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1762.15 2.24477
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 3164.63 3.96074
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2381.57i 2.96585i
\(804\) 0 0
\(805\) − 2127.98i − 2.64346i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1041.87 −1.28785 −0.643924 0.765089i \(-0.722695\pi\)
−0.643924 + 0.765089i \(0.722695\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1403.69 −1.72232
\(816\) 0 0
\(817\) −592.330 −0.725006
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1588.21i 1.93448i 0.253869 + 0.967239i \(0.418297\pi\)
−0.253869 + 0.967239i \(0.581703\pi\)
\(822\) 0 0
\(823\) −1100.33 −1.33698 −0.668490 0.743721i \(-0.733059\pi\)
−0.668490 + 0.743721i \(0.733059\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2344.98 −2.81511
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −841.000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 948.898i − 1.12296i
\(846\) 0 0
\(847\) −1965.85 −2.32096
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 1359.98i − 1.59435i −0.603751 0.797173i \(-0.706328\pi\)
0.603751 0.797173i \(-0.293672\pi\)
\(854\) 0 0
\(855\) 960.127 1.12296
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 10.3911i 0.0120968i 0.999982 + 0.00604839i \(0.00192528\pi\)
−0.999982 + 0.00604839i \(0.998075\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1127.37i 1.28843i
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1721.84 −1.95442 −0.977209 0.212277i \(-0.931912\pi\)
−0.977209 + 0.212277i \(0.931912\pi\)
\(882\) 0 0
\(883\) − 930.145i − 1.05339i −0.850054 0.526696i \(-0.823431\pi\)
0.850054 0.526696i \(-0.176569\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 1407.34i − 1.57951i
\(892\) 0 0
\(893\) − 1772.41i − 1.98478i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) − 1569.20i − 1.72630i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −1563.71 −1.71272
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 278.473i − 0.303679i
\(918\) 0 0
\(919\) 523.068 0.569171 0.284585 0.958651i \(-0.408144\pi\)
0.284585 + 0.958651i \(0.408144\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −642.000 −0.691066 −0.345533 0.938407i \(-0.612302\pi\)
−0.345533 + 0.938407i \(0.612302\pi\)
\(930\) 0 0
\(931\) 1313.35i 1.41069i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3309.48 −3.53955
\(936\) 0 0
\(937\) −1764.29 −1.88291 −0.941457 0.337134i \(-0.890543\pi\)
−0.941457 + 0.337134i \(0.890543\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1830.00i − 1.93242i −0.257760 0.966209i \(-0.582984\pi\)
0.257760 0.966209i \(-0.417016\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 587.939i 0.615643i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2329.37 −2.42895
\(960\) 0 0
\(961\) 961.000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −732.295 −0.757285 −0.378643 0.925543i \(-0.623609\pi\)
−0.378643 + 0.925543i \(0.623609\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 2916.79i 2.99773i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 2153.73 2.18653
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 1087.12i − 1.09921i
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 186.012i 0.186947i
\(996\) 0 0
\(997\) − 1573.09i − 1.57783i −0.614503 0.788914i \(-0.710644\pi\)
0.614503 0.788914i \(-0.289356\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.3.g.c.417.6 yes 8
4.3 odd 2 inner 1216.3.g.c.417.5 yes 8
8.3 odd 2 inner 1216.3.g.c.417.3 8
8.5 even 2 inner 1216.3.g.c.417.4 yes 8
19.18 odd 2 CM 1216.3.g.c.417.6 yes 8
76.75 even 2 inner 1216.3.g.c.417.5 yes 8
152.37 odd 2 inner 1216.3.g.c.417.4 yes 8
152.75 even 2 inner 1216.3.g.c.417.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1216.3.g.c.417.3 8 8.3 odd 2 inner
1216.3.g.c.417.3 8 152.75 even 2 inner
1216.3.g.c.417.4 yes 8 8.5 even 2 inner
1216.3.g.c.417.4 yes 8 152.37 odd 2 inner
1216.3.g.c.417.5 yes 8 4.3 odd 2 inner
1216.3.g.c.417.5 yes 8 76.75 even 2 inner
1216.3.g.c.417.6 yes 8 1.1 even 1 trivial
1216.3.g.c.417.6 yes 8 19.18 odd 2 CM