Properties

Label 1216.3.g.c.417.1
Level $1216$
Weight $3$
Character 1216.417
Analytic conductor $33.134$
Analytic rank $0$
Dimension $8$
CM discriminant -19
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,3,Mod(417,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.417");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1216.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.1336001462\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2702336256.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 417.1
Root \(-0.656712 + 2.13746i\) of defining polynomial
Character \(\chi\) \(=\) 1216.417
Dual form 1216.3.g.c.417.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.97368i q^{5} -2.20822 q^{7} -9.00000 q^{9} +O(q^{10})\) \(q-9.97368i q^{5} -2.20822 q^{7} -9.00000 q^{9} -20.3746i q^{11} +18.9244 q^{17} -19.0000i q^{19} +34.8712 q^{23} -74.4743 q^{25} +22.0241i q^{35} -53.8248i q^{43} +89.7631i q^{45} -36.6191 q^{47} -44.1238 q^{49} -203.210 q^{55} +121.892i q^{61} +19.8740 q^{63} +112.072 q^{73} +44.9916i q^{77} +81.0000 q^{81} +90.0000i q^{83} -188.746i q^{85} -189.500 q^{95} +183.371i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 72 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 72 q^{9} - 60 q^{17} - 324 q^{25} + 100 q^{49} - 100 q^{73} + 648 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) − 9.97368i − 1.99474i −0.0725083 0.997368i \(-0.523100\pi\)
0.0725083 0.997368i \(-0.476900\pi\)
\(6\) 0 0
\(7\) −2.20822 −0.315460 −0.157730 0.987482i \(-0.550418\pi\)
−0.157730 + 0.987482i \(0.550418\pi\)
\(8\) 0 0
\(9\) −9.00000 −1.00000
\(10\) 0 0
\(11\) − 20.3746i − 1.85224i −0.377235 0.926118i \(-0.623125\pi\)
0.377235 0.926118i \(-0.376875\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 18.9244 1.11320 0.556601 0.830780i \(-0.312105\pi\)
0.556601 + 0.830780i \(0.312105\pi\)
\(18\) 0 0
\(19\) − 19.0000i − 1.00000i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 34.8712 1.51614 0.758069 0.652174i \(-0.226143\pi\)
0.758069 + 0.652174i \(0.226143\pi\)
\(24\) 0 0
\(25\) −74.4743 −2.97897
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 22.0241i 0.629260i
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) − 53.8248i − 1.25174i −0.779928 0.625869i \(-0.784744\pi\)
0.779928 0.625869i \(-0.215256\pi\)
\(44\) 0 0
\(45\) 89.7631i 1.99474i
\(46\) 0 0
\(47\) −36.6191 −0.779129 −0.389564 0.920999i \(-0.627374\pi\)
−0.389564 + 0.920999i \(0.627374\pi\)
\(48\) 0 0
\(49\) −44.1238 −0.900485
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) −203.210 −3.69472
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 121.892i 1.99824i 0.0419980 + 0.999118i \(0.486628\pi\)
−0.0419980 + 0.999118i \(0.513372\pi\)
\(62\) 0 0
\(63\) 19.8740 0.315460
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 112.072 1.53524 0.767618 0.640907i \(-0.221442\pi\)
0.767618 + 0.640907i \(0.221442\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 44.9916i 0.584306i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 81.0000 1.00000
\(82\) 0 0
\(83\) 90.0000i 1.08434i 0.840270 + 0.542169i \(0.182397\pi\)
−0.840270 + 0.542169i \(0.817603\pi\)
\(84\) 0 0
\(85\) − 188.746i − 2.22054i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −189.500 −1.99474
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 183.371i 1.85224i
\(100\) 0 0
\(101\) 174.356i 1.72630i 0.504950 + 0.863148i \(0.331511\pi\)
−0.504950 + 0.863148i \(0.668489\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) − 347.794i − 3.02430i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −41.7893 −0.351171
\(120\) 0 0
\(121\) −294.124 −2.43077
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 493.440i 3.94752i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 238.622i − 1.82154i −0.412911 0.910771i \(-0.635488\pi\)
0.412911 0.910771i \(-0.364512\pi\)
\(132\) 0 0
\(133\) 41.9562i 0.315460i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −40.6769 −0.296912 −0.148456 0.988919i \(-0.547430\pi\)
−0.148456 + 0.988919i \(0.547430\pi\)
\(138\) 0 0
\(139\) 71.3713i 0.513462i 0.966483 + 0.256731i \(0.0826455\pi\)
−0.966483 + 0.256731i \(0.917354\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 33.4168i 0.224274i 0.993693 + 0.112137i \(0.0357695\pi\)
−0.993693 + 0.112137i \(0.964231\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) −170.320 −1.11320
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 313.841i − 1.99899i −0.0318471 0.999493i \(-0.510139\pi\)
0.0318471 0.999493i \(-0.489861\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −77.0033 −0.478281
\(162\) 0 0
\(163\) − 250.000i − 1.53374i −0.641801 0.766871i \(-0.721813\pi\)
0.641801 0.766871i \(-0.278187\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −169.000 −1.00000
\(170\) 0 0
\(171\) 171.000i 1.00000i
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 164.456 0.939747
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 385.577i − 2.06191i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −265.794 −1.39159 −0.695795 0.718241i \(-0.744948\pi\)
−0.695795 + 0.718241i \(0.744948\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 383.583i − 1.94712i −0.228426 0.973561i \(-0.573358\pi\)
0.228426 0.973561i \(-0.426642\pi\)
\(198\) 0 0
\(199\) 360.046 1.80928 0.904639 0.426178i \(-0.140140\pi\)
0.904639 + 0.426178i \(0.140140\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −313.841 −1.51614
\(208\) 0 0
\(209\) −387.117 −1.85224
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −536.831 −2.49689
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 670.268 2.97897
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 243.565i 1.06360i 0.846870 + 0.531800i \(0.178484\pi\)
−0.846870 + 0.531800i \(0.821516\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 258.924 1.11126 0.555632 0.831428i \(-0.312476\pi\)
0.555632 + 0.831428i \(0.312476\pi\)
\(234\) 0 0
\(235\) 365.227i 1.55416i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 316.029 1.32230 0.661148 0.750255i \(-0.270070\pi\)
0.661148 + 0.750255i \(0.270070\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 440.076i 1.79623i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 420.615i − 1.67576i −0.545855 0.837879i \(-0.683795\pi\)
0.545855 0.837879i \(-0.316205\pi\)
\(252\) 0 0
\(253\) − 710.486i − 2.80825i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 518.558 1.97170 0.985852 0.167621i \(-0.0536085\pi\)
0.985852 + 0.167621i \(0.0536085\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 523.068 1.93014 0.965070 0.261993i \(-0.0843796\pi\)
0.965070 + 0.261993i \(0.0843796\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1517.38i 5.51775i
\(276\) 0 0
\(277\) 391.402i 1.41300i 0.707712 + 0.706501i \(0.249728\pi\)
−0.707712 + 0.706501i \(0.750272\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 548.567i 1.93840i 0.246274 + 0.969200i \(0.420794\pi\)
−0.246274 + 0.969200i \(0.579206\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 69.1337 0.239217
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 118.857i 0.394874i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1215.72 3.98595
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −598.494 −1.92442 −0.962209 0.272312i \(-0.912212\pi\)
−0.962209 + 0.272312i \(0.912212\pi\)
\(312\) 0 0
\(313\) −590.000 −1.88498 −0.942492 0.334229i \(-0.891524\pi\)
−0.942492 + 0.334229i \(0.891524\pi\)
\(314\) 0 0
\(315\) − 198.217i − 0.629260i
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 359.564i − 1.11320i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 80.8630 0.245784
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 205.638 0.599527
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 477.172i − 1.37514i −0.726120 0.687568i \(-0.758678\pi\)
0.726120 0.687568i \(-0.241322\pi\)
\(348\) 0 0
\(349\) − 227.553i − 0.652015i −0.945367 0.326007i \(-0.894297\pi\)
0.945367 0.326007i \(-0.105703\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 510.000 1.44476 0.722380 0.691497i \(-0.243048\pi\)
0.722380 + 0.691497i \(0.243048\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 548.259 1.52718 0.763592 0.645699i \(-0.223434\pi\)
0.763592 + 0.645699i \(0.223434\pi\)
\(360\) 0 0
\(361\) −361.000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 1117.77i − 3.06239i
\(366\) 0 0
\(367\) −732.295 −1.99535 −0.997677 0.0681199i \(-0.978300\pi\)
−0.997677 + 0.0681199i \(0.978300\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 448.732 1.16554
\(386\) 0 0
\(387\) 484.423i 1.25174i
\(388\) 0 0
\(389\) 248.902i 0.639850i 0.947443 + 0.319925i \(0.103658\pi\)
−0.947443 + 0.319925i \(0.896342\pi\)
\(390\) 0 0
\(391\) 659.917 1.68777
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 507.884i − 1.27930i −0.768665 0.639652i \(-0.779079\pi\)
0.768665 0.639652i \(-0.220921\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 807.868i − 1.99474i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 897.631 2.16297
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 762.000i − 1.81862i −0.416124 0.909308i \(-0.636612\pi\)
0.416124 0.909308i \(-0.363388\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 329.572 0.779129
\(424\) 0 0
\(425\) −1409.38 −3.31619
\(426\) 0 0
\(427\) − 269.165i − 0.630364i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 662.553i − 1.51614i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 397.114 0.900485
\(442\) 0 0
\(443\) 788.808i 1.78061i 0.455369 + 0.890303i \(0.349507\pi\)
−0.455369 + 0.890303i \(0.650493\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −265.062 −0.580005 −0.290003 0.957026i \(-0.593656\pi\)
−0.290003 + 0.957026i \(0.593656\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.0848i 0.0348911i 0.999848 + 0.0174455i \(0.00555337\pi\)
−0.999848 + 0.0174455i \(0.994447\pi\)
\(462\) 0 0
\(463\) 921.921 1.99119 0.995596 0.0937525i \(-0.0298862\pi\)
0.995596 + 0.0937525i \(0.0298862\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 295.179i − 0.632074i −0.948747 0.316037i \(-0.897648\pi\)
0.948747 0.316037i \(-0.102352\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1096.66 −2.31851
\(474\) 0 0
\(475\) 1415.01i 2.97897i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −174.356 −0.364000 −0.182000 0.983299i \(-0.558257\pi\)
−0.182000 + 0.983299i \(0.558257\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 918.000i − 1.86965i −0.355104 0.934827i \(-0.615554\pi\)
0.355104 0.934827i \(-0.384446\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 1828.89 3.69472
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 474.609i − 0.951120i −0.879683 0.475560i \(-0.842245\pi\)
0.879683 0.475560i \(-0.157755\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −383.583 −0.762591 −0.381295 0.924453i \(-0.624522\pi\)
−0.381295 + 0.924453i \(0.624522\pi\)
\(504\) 0 0
\(505\) 1738.97 3.44351
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) −247.480 −0.484306
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 746.098i 1.44313i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 687.000 1.29868
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 899.003i 1.66791i
\(540\) 0 0
\(541\) − 886.150i − 1.63798i −0.573804 0.818992i \(-0.694533\pi\)
0.573804 0.818992i \(-0.305467\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) − 1097.03i − 1.99824i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1050.73i 1.88641i 0.332207 + 0.943206i \(0.392207\pi\)
−0.332207 + 0.943206i \(0.607793\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −178.866 −0.315460
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 458.000i 0.802102i 0.916056 + 0.401051i \(0.131355\pi\)
−0.916056 + 0.401051i \(0.868645\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2597.01 −4.51653
\(576\) 0 0
\(577\) −447.928 −0.776305 −0.388152 0.921595i \(-0.626887\pi\)
−0.388152 + 0.921595i \(0.626887\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 198.740i − 0.342065i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 271.831i − 0.463086i −0.972825 0.231543i \(-0.925623\pi\)
0.972825 0.231543i \(-0.0743774\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 30.0000 0.0505902 0.0252951 0.999680i \(-0.491947\pi\)
0.0252951 + 0.999680i \(0.491947\pi\)
\(594\) 0 0
\(595\) 416.793i 0.700493i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2933.50i 4.84875i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 339.512i − 0.553854i −0.960891 0.276927i \(-0.910684\pi\)
0.960891 0.276927i \(-0.0893159\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1072.31 −1.73795 −0.868973 0.494859i \(-0.835220\pi\)
−0.868973 + 0.494859i \(0.835220\pi\)
\(618\) 0 0
\(619\) − 662.000i − 1.06947i −0.845021 0.534733i \(-0.820412\pi\)
0.845021 0.534733i \(-0.179588\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3059.56 4.89529
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1257.68 −1.99315 −0.996575 0.0826952i \(-0.973647\pi\)
−0.996575 + 0.0826952i \(0.973647\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 2.58717i 0.00402359i 0.999998 + 0.00201180i \(0.000640375\pi\)
−0.999998 + 0.00201180i \(0.999360\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −462.798 −0.715299 −0.357650 0.933856i \(-0.616422\pi\)
−0.357650 + 0.933856i \(0.616422\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 950.262i 1.45522i 0.685989 + 0.727612i \(0.259370\pi\)
−0.685989 + 0.727612i \(0.740630\pi\)
\(654\) 0 0
\(655\) −2379.94 −3.63350
\(656\) 0 0
\(657\) −1008.65 −1.53524
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 418.458 0.629260
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2483.51 3.70120
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 405.698i 0.592260i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1267.60i 1.83444i 0.398380 + 0.917221i \(0.369573\pi\)
−0.398380 + 0.917221i \(0.630427\pi\)
\(692\) 0 0
\(693\) − 404.924i − 0.584306i
\(694\) 0 0
\(695\) 711.834 1.02422
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 871.780i − 1.24362i −0.783167 0.621812i \(-0.786397\pi\)
0.783167 0.621812i \(-0.213603\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 385.017i − 0.544578i
\(708\) 0 0
\(709\) − 523.068i − 0.737754i −0.929478 0.368877i \(-0.879742\pi\)
0.929478 0.368877i \(-0.120258\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 300.017 0.417270 0.208635 0.977994i \(-0.433098\pi\)
0.208635 + 0.977994i \(0.433098\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 799.369 1.09954 0.549772 0.835315i \(-0.314715\pi\)
0.549772 + 0.835315i \(0.314715\pi\)
\(728\) 0 0
\(729\) −729.000 −1.00000
\(730\) 0 0
\(731\) − 1018.60i − 1.39344i
\(732\) 0 0
\(733\) − 732.295i − 0.999038i −0.866303 0.499519i \(-0.833510\pi\)
0.866303 0.499519i \(-0.166490\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 915.599i 1.23897i 0.785008 + 0.619485i \(0.212659\pi\)
−0.785008 + 0.619485i \(0.787341\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 333.288 0.447367
\(746\) 0 0
\(747\) − 810.000i − 1.08434i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1327.13i 1.75314i 0.481275 + 0.876570i \(0.340174\pi\)
−0.481275 + 0.876570i \(0.659826\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −543.880 −0.714691 −0.357345 0.933972i \(-0.616318\pi\)
−0.357345 + 0.933972i \(0.616318\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1698.71i 2.22054i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −431.104 −0.560603 −0.280302 0.959912i \(-0.590434\pi\)
−0.280302 + 0.959912i \(0.590434\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3130.15 −3.98745
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) −692.995 −0.867327
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 2283.43i − 2.84362i
\(804\) 0 0
\(805\) 768.006i 0.954045i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −551.130 −0.681249 −0.340624 0.940199i \(-0.610638\pi\)
−0.340624 + 0.940199i \(0.610638\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2493.42 −3.05941
\(816\) 0 0
\(817\) −1022.67 −1.25174
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 433.098i − 0.527524i −0.964588 0.263762i \(-0.915037\pi\)
0.964588 0.263762i \(-0.0849634\pi\)
\(822\) 0 0
\(823\) −1610.33 −1.95665 −0.978326 0.207068i \(-0.933608\pi\)
−0.978326 + 0.207068i \(0.933608\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −835.017 −1.00242
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −841.000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1685.55i 1.99474i
\(846\) 0 0
\(847\) 649.490 0.766813
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 1359.98i − 1.59435i −0.603751 0.797173i \(-0.706328\pi\)
0.603751 0.797173i \(-0.293672\pi\)
\(854\) 0 0
\(855\) 1705.50 1.99474
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) − 1482.61i − 1.72597i −0.505229 0.862985i \(-0.668592\pi\)
0.505229 0.862985i \(-0.331408\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 1089.63i − 1.24529i
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1184.84 1.34488 0.672442 0.740150i \(-0.265245\pi\)
0.672442 + 0.740150i \(0.265245\pi\)
\(882\) 0 0
\(883\) − 1765.15i − 1.99903i −0.0311055 0.999516i \(-0.509903\pi\)
0.0311055 0.999516i \(-0.490097\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 1650.34i − 1.85224i
\(892\) 0 0
\(893\) 695.762i 0.779129i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) − 1569.20i − 1.72630i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 1833.71 2.00845
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 526.930i 0.574624i
\(918\) 0 0
\(919\) −523.068 −0.569171 −0.284585 0.958651i \(-0.591856\pi\)
−0.284585 + 0.958651i \(0.591856\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −642.000 −0.691066 −0.345533 0.938407i \(-0.612302\pi\)
−0.345533 + 0.938407i \(0.612302\pi\)
\(930\) 0 0
\(931\) 838.351i 0.900485i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3845.62 −4.11297
\(936\) 0 0
\(937\) 1429.29 1.52539 0.762695 0.646759i \(-0.223876\pi\)
0.762695 + 0.646759i \(0.223876\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1830.00i 1.93242i 0.257760 + 0.966209i \(0.417016\pi\)
−0.257760 + 0.966209i \(0.582984\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 2650.94i 2.77585i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 89.8236 0.0936638
\(960\) 0 0
\(961\) 961.000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 732.295 0.757285 0.378643 0.925543i \(-0.376391\pi\)
0.378643 + 0.925543i \(0.376391\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) − 157.604i − 0.161977i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) −3825.73 −3.88399
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 1876.93i − 1.89781i
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 3590.99i − 3.60903i
\(996\) 0 0
\(997\) 1847.71i 1.85327i 0.375968 + 0.926633i \(0.377310\pi\)
−0.375968 + 0.926633i \(0.622690\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.3.g.c.417.1 8
4.3 odd 2 inner 1216.3.g.c.417.2 yes 8
8.3 odd 2 inner 1216.3.g.c.417.8 yes 8
8.5 even 2 inner 1216.3.g.c.417.7 yes 8
19.18 odd 2 CM 1216.3.g.c.417.1 8
76.75 even 2 inner 1216.3.g.c.417.2 yes 8
152.37 odd 2 inner 1216.3.g.c.417.7 yes 8
152.75 even 2 inner 1216.3.g.c.417.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1216.3.g.c.417.1 8 1.1 even 1 trivial
1216.3.g.c.417.1 8 19.18 odd 2 CM
1216.3.g.c.417.2 yes 8 4.3 odd 2 inner
1216.3.g.c.417.2 yes 8 76.75 even 2 inner
1216.3.g.c.417.7 yes 8 8.5 even 2 inner
1216.3.g.c.417.7 yes 8 152.37 odd 2 inner
1216.3.g.c.417.8 yes 8 8.3 odd 2 inner
1216.3.g.c.417.8 yes 8 152.75 even 2 inner