Properties

Label 1216.3.g.c
Level $1216$
Weight $3$
Character orbit 1216.g
Analytic conductor $33.134$
Analytic rank $0$
Dimension $8$
CM discriminant -19
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1216.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(33.1336001462\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2702336256.1
Defining polynomial: \(x^{8} + 9 x^{6} + 56 x^{4} + 225 x^{2} + 625\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -\beta_{3} - \beta_{6} ) q^{5} + ( \beta_{1} - \beta_{7} ) q^{7} -9 q^{9} +O(q^{10})\) \( q + ( -\beta_{3} - \beta_{6} ) q^{5} + ( \beta_{1} - \beta_{7} ) q^{7} -9 q^{9} + ( 5 \beta_{2} - 4 \beta_{5} ) q^{11} + ( -11 - 7 \beta_{4} ) q^{17} -19 \beta_{5} q^{19} + ( -2 \beta_{1} + 7 \beta_{7} ) q^{23} + ( -36 + 9 \beta_{4} ) q^{25} + ( -11 \beta_{2} - 14 \beta_{5} ) q^{35} + ( 3 \beta_{2} - 44 \beta_{5} ) q^{43} + ( 9 \beta_{3} + 9 \beta_{6} ) q^{45} + ( -11 \beta_{1} + \beta_{7} ) q^{47} + ( 20 + 15 \beta_{4} ) q^{49} + ( \beta_{1} - 34 \beta_{7} ) q^{55} + ( 11 \beta_{3} + 13 \beta_{6} ) q^{61} + ( -9 \beta_{1} + 9 \beta_{7} ) q^{63} + ( -29 - 33 \beta_{4} ) q^{73} + ( 21 \beta_{3} - 6 \beta_{6} ) q^{77} + 81 q^{81} + 90 \beta_{5} q^{83} + ( 11 \beta_{3} - 38 \beta_{6} ) q^{85} + ( -19 \beta_{1} - 19 \beta_{7} ) q^{95} + ( -45 \beta_{2} + 36 \beta_{5} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 72q^{9} + O(q^{10}) \) \( 8q - 72q^{9} - 60q^{17} - 324q^{25} + 100q^{49} - 100q^{73} + 648q^{81} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} + 9 x^{6} + 56 x^{4} + 225 x^{2} + 625\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -\nu^{7} - 84 \nu^{5} - 356 \nu^{3} - 925 \nu \)\()/500\)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{7} - 14 \nu^{5} - 126 \nu^{3} - 855 \nu \)\()/350\)
\(\beta_{3}\)\(=\)\((\)\( -19 \nu^{6} - 196 \nu^{4} - 1764 \nu^{2} - 4975 \)\()/700\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{6} - 9 \nu^{4} - 31 \nu^{2} - 125 \)\()/25\)
\(\beta_{5}\)\(=\)\((\)\( 9 \nu^{7} + 56 \nu^{5} + 154 \nu^{3} + 625 \nu \)\()/1750\)
\(\beta_{6}\)\(=\)\((\)\( -17 \nu^{6} - 28 \nu^{4} - 252 \nu^{2} - 325 \)\()/350\)
\(\beta_{7}\)\(=\)\((\)\( \nu^{7} + 4 \nu^{5} + 36 \nu^{3} + 45 \nu \)\()/50\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-3 \beta_{7} + 8 \beta_{5} - 8 \beta_{2} + 2 \beta_{1}\)\()/16\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{6} + 8 \beta_{4} - 10 \beta_{3} - 32\)\()/16\)
\(\nu^{3}\)\(=\)\((\)\(7 \beta_{7} - 28 \beta_{5} - 2 \beta_{1}\)\()/4\)
\(\nu^{4}\)\(=\)\((\)\(47 \beta_{6} - 72 \beta_{4} + 22 \beta_{3} - 160\)\()/16\)
\(\nu^{5}\)\(=\)\((\)\(-89 \beta_{7} + 360 \beta_{5} + 88 \beta_{2} - 90 \beta_{1}\)\()/16\)
\(\nu^{6}\)\(=\)\((\)\(-49 \beta_{6} + 14 \beta_{3} + 54\)\()/2\)
\(\nu^{7}\)\(=\)\((\)\(283 \beta_{7} + 2232 \beta_{5} + 8 \beta_{2} + 558 \beta_{1}\)\()/16\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
417.1
−0.656712 + 2.13746i
0.656712 2.13746i
−1.52274 + 1.63746i
1.52274 1.63746i
−1.52274 1.63746i
1.52274 + 1.63746i
−0.656712 2.13746i
0.656712 + 2.13746i
0 0 0 9.97368i 0 −2.20822 0 −9.00000 0
417.2 0 0 0 9.97368i 0 2.20822 0 −9.00000 0
417.3 0 0 0 5.61478i 0 −10.8685 0 −9.00000 0
417.4 0 0 0 5.61478i 0 10.8685 0 −9.00000 0
417.5 0 0 0 5.61478i 0 −10.8685 0 −9.00000 0
417.6 0 0 0 5.61478i 0 10.8685 0 −9.00000 0
417.7 0 0 0 9.97368i 0 −2.20822 0 −9.00000 0
417.8 0 0 0 9.97368i 0 2.20822 0 −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 417.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
76.d even 2 1 inner
152.b even 2 1 inner
152.g odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.3.g.c 8
4.b odd 2 1 inner 1216.3.g.c 8
8.b even 2 1 inner 1216.3.g.c 8
8.d odd 2 1 inner 1216.3.g.c 8
19.b odd 2 1 CM 1216.3.g.c 8
76.d even 2 1 inner 1216.3.g.c 8
152.b even 2 1 inner 1216.3.g.c 8
152.g odd 2 1 inner 1216.3.g.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1216.3.g.c 8 1.a even 1 1 trivial
1216.3.g.c 8 4.b odd 2 1 inner
1216.3.g.c 8 8.b even 2 1 inner
1216.3.g.c 8 8.d odd 2 1 inner
1216.3.g.c 8 19.b odd 2 1 CM
1216.3.g.c 8 76.d even 2 1 inner
1216.3.g.c 8 152.b even 2 1 inner
1216.3.g.c 8 152.g odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1216, [\chi])\):

\( T_{3} \)
\( T_{5}^{4} + 131 T_{5}^{2} + 3136 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \)
$3$ \( T^{8} \)
$5$ \( ( 3136 + 131 T^{2} + T^{4} )^{2} \)
$7$ \( ( 576 - 123 T^{2} + T^{4} )^{2} \)
$11$ \( ( 125316 + 717 T^{2} + T^{4} )^{2} \)
$13$ \( T^{8} \)
$17$ \( ( -642 + 15 T + T^{2} )^{4} \)
$19$ \( ( 361 + T^{2} )^{4} \)
$23$ \( ( -1216 + T^{2} )^{4} \)
$29$ \( T^{8} \)
$31$ \( T^{8} \)
$37$ \( T^{8} \)
$41$ \( T^{8} \)
$43$ \( ( 2815684 + 3869 T^{2} + T^{4} )^{2} \)
$47$ \( ( 11669056 - 10043 T^{2} + T^{4} )^{2} \)
$53$ \( T^{8} \)
$59$ \( T^{8} \)
$61$ \( ( 47444544 + 18051 T^{2} + T^{4} )^{2} \)
$67$ \( T^{8} \)
$71$ \( T^{8} \)
$73$ \( ( -15362 + 25 T + T^{2} )^{4} \)
$79$ \( T^{8} \)
$83$ \( ( 8100 + T^{2} )^{4} \)
$89$ \( T^{8} \)
$97$ \( T^{8} \)
show more
show less