Properties

Label 1216.3.g.a.417.1
Level $1216$
Weight $3$
Character 1216.417
Analytic conductor $33.134$
Analytic rank $0$
Dimension $4$
CM discriminant -19
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,3,Mod(417,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.417");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1216.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.1336001462\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 417.1
Root \(2.17945 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1216.417
Dual form 1216.3.g.a.417.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.35890i q^{5} -13.0767 q^{7} -9.00000 q^{9} +O(q^{10})\) \(q-4.35890i q^{5} -13.0767 q^{7} -9.00000 q^{9} +3.00000i q^{11} +15.0000 q^{17} -19.0000i q^{19} -34.8712 q^{23} +6.00000 q^{25} +57.0000i q^{35} +85.0000i q^{43} +39.2301i q^{45} +56.6657 q^{47} +122.000 q^{49} +13.0767 q^{55} +65.3835i q^{61} +117.690 q^{63} +25.0000 q^{73} -39.2301i q^{77} +81.0000 q^{81} +90.0000i q^{83} -65.3835i q^{85} -82.8191 q^{95} -27.0000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 36 q^{9} + 60 q^{17} + 24 q^{25} + 488 q^{49} + 100 q^{73} + 324 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) − 4.35890i − 0.871780i −0.900000 0.435890i \(-0.856434\pi\)
0.900000 0.435890i \(-0.143566\pi\)
\(6\) 0 0
\(7\) −13.0767 −1.86810 −0.934050 0.357143i \(-0.883751\pi\)
−0.934050 + 0.357143i \(0.883751\pi\)
\(8\) 0 0
\(9\) −9.00000 −1.00000
\(10\) 0 0
\(11\) 3.00000i 0.272727i 0.990659 + 0.136364i \(0.0435416\pi\)
−0.990659 + 0.136364i \(0.956458\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 15.0000 0.882353 0.441176 0.897420i \(-0.354561\pi\)
0.441176 + 0.897420i \(0.354561\pi\)
\(18\) 0 0
\(19\) − 19.0000i − 1.00000i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −34.8712 −1.51614 −0.758069 0.652174i \(-0.773857\pi\)
−0.758069 + 0.652174i \(0.773857\pi\)
\(24\) 0 0
\(25\) 6.00000 0.240000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 57.0000i 1.62857i
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 85.0000i 1.97674i 0.152055 + 0.988372i \(0.451411\pi\)
−0.152055 + 0.988372i \(0.548589\pi\)
\(44\) 0 0
\(45\) 39.2301i 0.871780i
\(46\) 0 0
\(47\) 56.6657 1.20565 0.602826 0.797872i \(-0.294041\pi\)
0.602826 + 0.797872i \(0.294041\pi\)
\(48\) 0 0
\(49\) 122.000 2.48980
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 13.0767 0.237758
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 65.3835i 1.07186i 0.844262 + 0.535930i \(0.180039\pi\)
−0.844262 + 0.535930i \(0.819961\pi\)
\(62\) 0 0
\(63\) 117.690 1.86810
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 25.0000 0.342466 0.171233 0.985231i \(-0.445225\pi\)
0.171233 + 0.985231i \(0.445225\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 39.2301i − 0.509482i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 81.0000 1.00000
\(82\) 0 0
\(83\) 90.0000i 1.08434i 0.840270 + 0.542169i \(0.182397\pi\)
−0.840270 + 0.542169i \(0.817603\pi\)
\(84\) 0 0
\(85\) − 65.3835i − 0.769217i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −82.8191 −0.871780
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) − 27.0000i − 0.272727i
\(100\) 0 0
\(101\) − 174.356i − 1.72630i −0.504950 0.863148i \(-0.668489\pi\)
0.504950 0.863148i \(-0.331511\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 152.000i 1.32174i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −196.150 −1.64832
\(120\) 0 0
\(121\) 112.000 0.925620
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 135.126i − 1.08101i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 213.000i 1.62595i 0.582296 + 0.812977i \(0.302155\pi\)
−0.582296 + 0.812977i \(0.697845\pi\)
\(132\) 0 0
\(133\) 248.457i 1.86810i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 255.000 1.86131 0.930657 0.365893i \(-0.119236\pi\)
0.930657 + 0.365893i \(0.119236\pi\)
\(138\) 0 0
\(139\) 197.000i 1.41727i 0.705577 + 0.708633i \(0.250688\pi\)
−0.705577 + 0.708633i \(0.749312\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 239.739i − 1.60899i −0.593960 0.804495i \(-0.702436\pi\)
0.593960 0.804495i \(-0.297564\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) −135.000 −0.882353
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 313.841i 1.99899i 0.0318471 + 0.999493i \(0.489861\pi\)
−0.0318471 + 0.999493i \(0.510139\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 456.000 2.83230
\(162\) 0 0
\(163\) − 250.000i − 1.53374i −0.641801 0.766871i \(-0.721813\pi\)
0.641801 0.766871i \(-0.278187\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −169.000 −1.00000
\(170\) 0 0
\(171\) 171.000i 1.00000i
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) −78.4602 −0.448344
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 45.0000i 0.240642i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −370.506 −1.93982 −0.969912 0.243455i \(-0.921719\pi\)
−0.969912 + 0.243455i \(0.921719\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 383.583i 1.94712i 0.228426 + 0.973561i \(0.426642\pi\)
−0.228426 + 0.973561i \(0.573358\pi\)
\(198\) 0 0
\(199\) 326.917 1.64280 0.821401 0.570352i \(-0.193193\pi\)
0.821401 + 0.570352i \(0.193193\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 313.841 1.51614
\(208\) 0 0
\(209\) 57.0000 0.272727
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 370.506 1.72329
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) −54.0000 −0.240000
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 457.684i 1.99862i 0.0371179 + 0.999311i \(0.488182\pi\)
−0.0371179 + 0.999311i \(0.511818\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −465.000 −1.99571 −0.997854 0.0654770i \(-0.979143\pi\)
−0.997854 + 0.0654770i \(0.979143\pi\)
\(234\) 0 0
\(235\) − 247.000i − 1.05106i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −152.561 −0.638332 −0.319166 0.947699i \(-0.603403\pi\)
−0.319166 + 0.947699i \(0.603403\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 531.786i − 2.17055i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 27.0000i − 0.107570i −0.998553 0.0537849i \(-0.982871\pi\)
0.998553 0.0537849i \(-0.0171285\pi\)
\(252\) 0 0
\(253\) − 104.614i − 0.413492i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 335.635 1.27618 0.638090 0.769962i \(-0.279725\pi\)
0.638090 + 0.769962i \(0.279725\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −523.068 −1.93014 −0.965070 0.261993i \(-0.915620\pi\)
−0.965070 + 0.261993i \(0.915620\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 18.0000i 0.0654545i
\(276\) 0 0
\(277\) − 143.844i − 0.519291i −0.965704 0.259646i \(-0.916394\pi\)
0.965704 0.259646i \(-0.0836057\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) − 395.000i − 1.39576i −0.716215 0.697880i \(-0.754127\pi\)
0.716215 0.697880i \(-0.245873\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −64.0000 −0.221453
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) − 1111.52i − 3.69275i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 285.000 0.934426
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −152.561 −0.490551 −0.245276 0.969453i \(-0.578878\pi\)
−0.245276 + 0.969453i \(0.578878\pi\)
\(312\) 0 0
\(313\) −590.000 −1.88498 −0.942492 0.334229i \(-0.891524\pi\)
−0.942492 + 0.334229i \(0.891524\pi\)
\(314\) 0 0
\(315\) − 513.000i − 1.62857i
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 285.000i − 0.882353i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −741.000 −2.25228
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −954.599 −2.78309
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 675.000i 1.94524i 0.232391 + 0.972622i \(0.425345\pi\)
−0.232391 + 0.972622i \(0.574655\pi\)
\(348\) 0 0
\(349\) 457.684i 1.31142i 0.755014 + 0.655708i \(0.227630\pi\)
−0.755014 + 0.655708i \(0.772370\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 510.000 1.44476 0.722380 0.691497i \(-0.243048\pi\)
0.722380 + 0.691497i \(0.243048\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 675.629 1.88198 0.940988 0.338440i \(-0.109899\pi\)
0.940988 + 0.338440i \(0.109899\pi\)
\(360\) 0 0
\(361\) −361.000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 108.972i − 0.298555i
\(366\) 0 0
\(367\) 732.295 1.99535 0.997677 0.0681199i \(-0.0217000\pi\)
0.997677 + 0.0681199i \(0.0217000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) −171.000 −0.444156
\(386\) 0 0
\(387\) − 765.000i − 1.97674i
\(388\) 0 0
\(389\) 762.807i 1.96094i 0.196658 + 0.980472i \(0.436991\pi\)
−0.196658 + 0.980472i \(0.563009\pi\)
\(390\) 0 0
\(391\) −523.068 −1.33777
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 274.611i 0.691714i 0.938287 + 0.345857i \(0.112412\pi\)
−0.938287 + 0.345857i \(0.887588\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 353.071i − 0.871780i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 392.301 0.945303
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 762.000i − 1.81862i −0.416124 0.909308i \(-0.636612\pi\)
0.416124 0.909308i \(-0.363388\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) −509.991 −1.20565
\(424\) 0 0
\(425\) 90.0000 0.211765
\(426\) 0 0
\(427\) − 855.000i − 2.00234i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 662.553i 1.51614i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −1098.00 −2.48980
\(442\) 0 0
\(443\) − 45.0000i − 0.101580i −0.998709 0.0507901i \(-0.983826\pi\)
0.998709 0.0507901i \(-0.0161739\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −625.000 −1.36761 −0.683807 0.729663i \(-0.739677\pi\)
−0.683807 + 0.729663i \(0.739677\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 806.396i 1.74923i 0.484816 + 0.874616i \(0.338887\pi\)
−0.484816 + 0.874616i \(0.661113\pi\)
\(462\) 0 0
\(463\) 536.145 1.15798 0.578990 0.815335i \(-0.303447\pi\)
0.578990 + 0.815335i \(0.303447\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 915.000i 1.95931i 0.200677 + 0.979657i \(0.435686\pi\)
−0.200677 + 0.979657i \(0.564314\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −255.000 −0.539112
\(474\) 0 0
\(475\) − 114.000i − 0.240000i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 174.356 0.364000 0.182000 0.983299i \(-0.441743\pi\)
0.182000 + 0.983299i \(0.441743\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 918.000i − 1.86965i −0.355104 0.934827i \(-0.615554\pi\)
0.355104 0.934827i \(-0.384446\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −117.690 −0.237758
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 523.000i − 1.04810i −0.851689 0.524048i \(-0.824421\pi\)
0.851689 0.524048i \(-0.175579\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 383.583 0.762591 0.381295 0.924453i \(-0.375478\pi\)
0.381295 + 0.924453i \(0.375478\pi\)
\(504\) 0 0
\(505\) −760.000 −1.50495
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) −326.917 −0.639760
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 169.997i 0.328814i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 687.000 1.29868
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 366.000i 0.679035i
\(540\) 0 0
\(541\) − 980.752i − 1.81285i −0.422366 0.906425i \(-0.638800\pi\)
0.422366 0.906425i \(-0.361200\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) − 588.451i − 1.07186i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 204.868i 0.367807i 0.982944 + 0.183903i \(0.0588733\pi\)
−0.982944 + 0.183903i \(0.941127\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1059.21 −1.86810
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 458.000i 0.802102i 0.916056 + 0.401051i \(0.131355\pi\)
−0.916056 + 0.401051i \(0.868645\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −209.227 −0.363873
\(576\) 0 0
\(577\) 1145.00 1.98440 0.992201 0.124648i \(-0.0397801\pi\)
0.992201 + 0.124648i \(0.0397801\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 1176.90i − 2.02565i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1125.00i 1.91652i 0.285890 + 0.958262i \(0.407711\pi\)
−0.285890 + 0.958262i \(0.592289\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 30.0000 0.0505902 0.0252951 0.999680i \(-0.491947\pi\)
0.0252951 + 0.999680i \(0.491947\pi\)
\(594\) 0 0
\(595\) 855.000i 1.43697i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 488.197i − 0.806937i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 1189.98i − 1.94124i −0.240620 0.970619i \(-0.577351\pi\)
0.240620 0.970619i \(-0.422649\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1065.00 1.72609 0.863047 0.505124i \(-0.168553\pi\)
0.863047 + 0.505124i \(0.168553\pi\)
\(618\) 0 0
\(619\) − 662.000i − 1.06947i −0.845021 0.534733i \(-0.820412\pi\)
0.845021 0.534733i \(-0.179588\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −439.000 −0.702400
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −719.218 −1.13981 −0.569904 0.821712i \(-0.693019\pi\)
−0.569904 + 0.821712i \(0.693019\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) − 1115.00i − 1.73406i −0.498257 0.867030i \(-0.666026\pi\)
0.498257 0.867030i \(-0.333974\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 815.114 1.25984 0.629918 0.776662i \(-0.283088\pi\)
0.629918 + 0.776662i \(0.283088\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1251.00i 1.91578i 0.287136 + 0.957890i \(0.407297\pi\)
−0.287136 + 0.957890i \(0.592703\pi\)
\(654\) 0 0
\(655\) 928.445 1.41747
\(656\) 0 0
\(657\) −225.000 −0.342466
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1083.00 1.62857
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −196.150 −0.292326
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) − 1111.52i − 1.62266i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 157.000i − 0.227207i −0.993526 0.113603i \(-0.963761\pi\)
0.993526 0.113603i \(-0.0362393\pi\)
\(692\) 0 0
\(693\) 353.071i 0.509482i
\(694\) 0 0
\(695\) 858.703 1.23554
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 871.780i 1.24362i 0.783167 + 0.621812i \(0.213603\pi\)
−0.783167 + 0.621812i \(0.786397\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2280.00i 3.22489i
\(708\) 0 0
\(709\) 523.068i 0.737754i 0.929478 + 0.368877i \(0.120258\pi\)
−0.929478 + 0.368877i \(0.879742\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1067.93 −1.48530 −0.742650 0.669680i \(-0.766431\pi\)
−0.742650 + 0.669680i \(0.766431\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1451.51 1.99658 0.998290 0.0584594i \(-0.0186188\pi\)
0.998290 + 0.0584594i \(0.0186188\pi\)
\(728\) 0 0
\(729\) −729.000 −1.00000
\(730\) 0 0
\(731\) 1275.00i 1.74419i
\(732\) 0 0
\(733\) 732.295i 0.999038i 0.866303 + 0.499519i \(0.166490\pi\)
−0.866303 + 0.499519i \(0.833510\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 547.000i 0.740189i 0.928994 + 0.370095i \(0.120675\pi\)
−0.928994 + 0.370095i \(0.879325\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) −1045.00 −1.40268
\(746\) 0 0
\(747\) − 810.000i − 1.08434i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1294.59i 1.71016i 0.518494 + 0.855081i \(0.326493\pi\)
−0.518494 + 0.855081i \(0.673507\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1503.00 1.97503 0.987516 0.157516i \(-0.0503486\pi\)
0.987516 + 0.157516i \(0.0503486\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 588.451i 0.769217i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −1063.00 −1.38231 −0.691157 0.722704i \(-0.742899\pi\)
−0.691157 + 0.722704i \(0.742899\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1368.00 1.74268
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 849.985 1.06381
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 75.0000i 0.0933998i
\(804\) 0 0
\(805\) − 1987.66i − 2.46914i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1593.00 1.96910 0.984549 0.175110i \(-0.0560282\pi\)
0.984549 + 0.175110i \(0.0560282\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1089.72 −1.33709
\(816\) 0 0
\(817\) 1615.00 1.97674
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1155.11i 1.40695i 0.710719 + 0.703476i \(0.248370\pi\)
−0.710719 + 0.703476i \(0.751630\pi\)
\(822\) 0 0
\(823\) −509.991 −0.619673 −0.309837 0.950790i \(-0.600274\pi\)
−0.309837 + 0.950790i \(0.600274\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1830.00 2.19688
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −841.000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 736.654i 0.871780i
\(846\) 0 0
\(847\) −1464.59 −1.72915
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 1359.98i 1.59435i 0.603751 + 0.797173i \(0.293672\pi\)
−0.603751 + 0.797173i \(0.706328\pi\)
\(854\) 0 0
\(855\) 745.372 0.871780
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 1493.00i 1.73807i 0.494753 + 0.869034i \(0.335259\pi\)
−0.494753 + 0.869034i \(0.664741\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1767.00i 2.01943i
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 537.000 0.609535 0.304767 0.952427i \(-0.401421\pi\)
0.304767 + 0.952427i \(0.401421\pi\)
\(882\) 0 0
\(883\) 835.000i 0.945640i 0.881159 + 0.472820i \(0.156764\pi\)
−0.881159 + 0.472820i \(0.843236\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 243.000i 0.272727i
\(892\) 0 0
\(893\) − 1076.65i − 1.20565i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 1569.20i 1.72630i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −270.000 −0.295728
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 2785.34i − 3.03744i
\(918\) 0 0
\(919\) 523.068 0.569171 0.284585 0.958651i \(-0.408144\pi\)
0.284585 + 0.958651i \(0.408144\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −642.000 −0.691066 −0.345533 0.938407i \(-0.612302\pi\)
−0.345533 + 0.938407i \(0.612302\pi\)
\(930\) 0 0
\(931\) − 2318.00i − 2.48980i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 196.150 0.209787
\(936\) 0 0
\(937\) 335.000 0.357524 0.178762 0.983892i \(-0.442791\pi\)
0.178762 + 0.983892i \(0.442791\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1830.00i 1.93242i 0.257760 + 0.966209i \(0.417016\pi\)
−0.257760 + 0.966209i \(0.582984\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 1615.00i 1.69110i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3334.56 −3.47712
\(960\) 0 0
\(961\) 961.000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −732.295 −0.757285 −0.378643 0.925543i \(-0.623609\pi\)
−0.378643 + 0.925543i \(0.623609\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) − 2576.11i − 2.64759i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 1672.00 1.69746
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 2964.05i − 2.99702i
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 1425.00i − 1.43216i
\(996\) 0 0
\(997\) 274.611i 0.275437i 0.990471 + 0.137718i \(0.0439769\pi\)
−0.990471 + 0.137718i \(0.956023\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.3.g.a.417.1 4
4.3 odd 2 inner 1216.3.g.a.417.2 yes 4
8.3 odd 2 inner 1216.3.g.a.417.4 yes 4
8.5 even 2 inner 1216.3.g.a.417.3 yes 4
19.18 odd 2 CM 1216.3.g.a.417.1 4
76.75 even 2 inner 1216.3.g.a.417.2 yes 4
152.37 odd 2 inner 1216.3.g.a.417.3 yes 4
152.75 even 2 inner 1216.3.g.a.417.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1216.3.g.a.417.1 4 1.1 even 1 trivial
1216.3.g.a.417.1 4 19.18 odd 2 CM
1216.3.g.a.417.2 yes 4 4.3 odd 2 inner
1216.3.g.a.417.2 yes 4 76.75 even 2 inner
1216.3.g.a.417.3 yes 4 8.5 even 2 inner
1216.3.g.a.417.3 yes 4 152.37 odd 2 inner
1216.3.g.a.417.4 yes 4 8.3 odd 2 inner
1216.3.g.a.417.4 yes 4 152.75 even 2 inner