Properties

Label 1216.2.t.a
Level $1216$
Weight $2$
Character orbit 1216.t
Analytic conductor $9.710$
Analytic rank $0$
Dimension $8$
CM discriminant -8
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1216,2,Mod(353,1216)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1216.353"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1216, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + \beta_1) q^{3} + ( - \beta_{7} + 4 \beta_{2}) q^{9} + ( - \beta_{6} - 2 \beta_{4}) q^{11} + ( - 6 \beta_{2} + 6) q^{17} + (\beta_{6} + \beta_{4} - \beta_{3} + \beta_1) q^{19} - 5 \beta_{2} q^{25}+ \cdots + (2 \beta_{6} + \beta_{4} + \cdots - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{9} + 24 q^{17} - 20 q^{25} + 12 q^{33} - 12 q^{41} - 56 q^{49} + 8 q^{57} + 4 q^{73} - 76 q^{81} - 72 q^{89} + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 2\zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{24}^{4} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{24}^{7} - \zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24}^{2} + 2\zeta_{24} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -2\zeta_{24}^{6} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -2\zeta_{24}^{7} - 2\zeta_{24}^{5} - 2\zeta_{24}^{3} + 4\zeta_{24} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -2\zeta_{24}^{7} + \zeta_{24}^{6} - \zeta_{24}^{5} + \zeta_{24}^{3} - \zeta_{24} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -2\zeta_{24}^{7} + 4\zeta_{24}^{5} + 4\zeta_{24}^{3} - 2\zeta_{24} \) Copy content Toggle raw display
\(\zeta_{24}\)\(=\) \( ( \beta_{7} - 2\beta_{6} + 2\beta_{5} - \beta_{4} + 2\beta_{3} - \beta_1 ) / 12 \) Copy content Toggle raw display
\(\zeta_{24}^{2}\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{3}\)\(=\) \( ( \beta_{7} + 2\beta_{6} - \beta_{5} + \beta_{4} + 4\beta_{3} - 2\beta_1 ) / 12 \) Copy content Toggle raw display
\(\zeta_{24}^{4}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\zeta_{24}^{5}\)\(=\) \( ( 2\beta_{7} - 4\beta_{6} + \beta_{5} - 2\beta_{4} - 2\beta_{3} + \beta_1 ) / 12 \) Copy content Toggle raw display
\(\zeta_{24}^{6}\)\(=\) \( ( -\beta_{4} ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{7}\)\(=\) \( ( -\beta_{7} - 2\beta_{6} - 2\beta_{5} - \beta_{4} + 2\beta_{3} - \beta_1 ) / 12 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(1\) \(-\beta_{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
353.1
−0.258819 + 0.965926i
0.965926 + 0.258819i
0.258819 0.965926i
−0.965926 0.258819i
−0.258819 0.965926i
0.965926 0.258819i
0.258819 + 0.965926i
−0.965926 + 0.258819i
0 −2.98735 1.72474i 0 0 0 0 0 4.44949 + 7.70674i 0
353.2 0 −1.25529 0.724745i 0 0 0 0 0 −0.449490 0.778539i 0
353.3 0 1.25529 + 0.724745i 0 0 0 0 0 −0.449490 0.778539i 0
353.4 0 2.98735 + 1.72474i 0 0 0 0 0 4.44949 + 7.70674i 0
1185.1 0 −2.98735 + 1.72474i 0 0 0 0 0 4.44949 7.70674i 0
1185.2 0 −1.25529 + 0.724745i 0 0 0 0 0 −0.449490 + 0.778539i 0
1185.3 0 1.25529 0.724745i 0 0 0 0 0 −0.449490 + 0.778539i 0
1185.4 0 2.98735 1.72474i 0 0 0 0 0 4.44949 7.70674i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 353.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
4.b odd 2 1 inner
8.b even 2 1 inner
19.c even 3 1 inner
76.g odd 6 1 inner
152.k odd 6 1 inner
152.p even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.2.t.a 8
4.b odd 2 1 inner 1216.2.t.a 8
8.b even 2 1 inner 1216.2.t.a 8
8.d odd 2 1 CM 1216.2.t.a 8
19.c even 3 1 inner 1216.2.t.a 8
76.g odd 6 1 inner 1216.2.t.a 8
152.k odd 6 1 inner 1216.2.t.a 8
152.p even 6 1 inner 1216.2.t.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1216.2.t.a 8 1.a even 1 1 trivial
1216.2.t.a 8 4.b odd 2 1 inner
1216.2.t.a 8 8.b even 2 1 inner
1216.2.t.a 8 8.d odd 2 1 CM
1216.2.t.a 8 19.c even 3 1 inner
1216.2.t.a 8 76.g odd 6 1 inner
1216.2.t.a 8 152.k odd 6 1 inner
1216.2.t.a 8 152.p even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1216, [\chi])\):

\( T_{3}^{8} - 14T_{3}^{6} + 171T_{3}^{4} - 350T_{3}^{2} + 625 \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - 14 T^{6} + \cdots + 625 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{4} + 30 T^{2} + 9)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( (T^{2} - 6 T + 36)^{4} \) Copy content Toggle raw display
$19$ \( T^{8} + 34 T^{6} + \cdots + 130321 \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( (T^{4} + 6 T^{3} + \cdots + 7569)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} - 100 T^{2} + 10000)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} - 318 T^{6} + \cdots + 395254161 \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} - 206 T^{6} + \cdots + 625 \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( (T^{4} - 2 T^{3} + \cdots + 46225)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( (T^{4} + 174 T^{2} + 5625)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 18 T + 324)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} - 10 T^{3} + \cdots + 36481)^{2} \) Copy content Toggle raw display
show more
show less