# Properties

 Label 1216.2.i.h Level $1216$ Weight $2$ Character orbit 1216.i Analytic conductor $9.710$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1216 = 2^{6} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1216.i (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$9.70980888579$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 38) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 1 - \zeta_{6} ) q^{3} -4 q^{7} + 2 \zeta_{6} q^{9} +O(q^{10})$$ $$q + ( 1 - \zeta_{6} ) q^{3} -4 q^{7} + 2 \zeta_{6} q^{9} -3 q^{11} + 2 \zeta_{6} q^{13} + ( 6 - 6 \zeta_{6} ) q^{17} + ( 2 + 3 \zeta_{6} ) q^{19} + ( -4 + 4 \zeta_{6} ) q^{21} + 6 \zeta_{6} q^{23} + 5 \zeta_{6} q^{25} + 5 q^{27} + 2 q^{31} + ( -3 + 3 \zeta_{6} ) q^{33} + 10 q^{37} + 2 q^{39} + ( -9 + 9 \zeta_{6} ) q^{41} + ( -4 + 4 \zeta_{6} ) q^{43} + 9 q^{49} -6 \zeta_{6} q^{51} + 6 \zeta_{6} q^{53} + ( 5 - 2 \zeta_{6} ) q^{57} + ( -9 + 9 \zeta_{6} ) q^{59} -4 \zeta_{6} q^{61} -8 \zeta_{6} q^{63} -7 \zeta_{6} q^{67} + 6 q^{69} + ( 6 - 6 \zeta_{6} ) q^{71} + ( 1 - \zeta_{6} ) q^{73} + 5 q^{75} + 12 q^{77} + ( 4 - 4 \zeta_{6} ) q^{79} + ( -1 + \zeta_{6} ) q^{81} -3 q^{83} -6 \zeta_{6} q^{89} -8 \zeta_{6} q^{91} + ( 2 - 2 \zeta_{6} ) q^{93} + ( -17 + 17 \zeta_{6} ) q^{97} -6 \zeta_{6} q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + q^{3} - 8q^{7} + 2q^{9} + O(q^{10})$$ $$2q + q^{3} - 8q^{7} + 2q^{9} - 6q^{11} + 2q^{13} + 6q^{17} + 7q^{19} - 4q^{21} + 6q^{23} + 5q^{25} + 10q^{27} + 4q^{31} - 3q^{33} + 20q^{37} + 4q^{39} - 9q^{41} - 4q^{43} + 18q^{49} - 6q^{51} + 6q^{53} + 8q^{57} - 9q^{59} - 4q^{61} - 8q^{63} - 7q^{67} + 12q^{69} + 6q^{71} + q^{73} + 10q^{75} + 24q^{77} + 4q^{79} - q^{81} - 6q^{83} - 6q^{89} - 8q^{91} + 2q^{93} - 17q^{97} - 6q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$705$$ $$837$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
577.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 0.500000 + 0.866025i 0 0 0 −4.00000 0 1.00000 1.73205i 0
961.1 0 0.500000 0.866025i 0 0 0 −4.00000 0 1.00000 + 1.73205i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.2.i.h 2
4.b odd 2 1 1216.2.i.d 2
8.b even 2 1 38.2.c.a 2
8.d odd 2 1 304.2.i.c 2
19.c even 3 1 inner 1216.2.i.h 2
24.f even 2 1 2736.2.s.m 2
24.h odd 2 1 342.2.g.b 2
40.f even 2 1 950.2.e.d 2
40.i odd 4 2 950.2.j.e 4
76.g odd 6 1 1216.2.i.d 2
152.g odd 2 1 722.2.c.b 2
152.k odd 6 1 304.2.i.c 2
152.k odd 6 1 5776.2.a.g 1
152.l odd 6 1 722.2.a.d 1
152.l odd 6 1 722.2.c.b 2
152.o even 6 1 5776.2.a.n 1
152.p even 6 1 38.2.c.a 2
152.p even 6 1 722.2.a.c 1
152.s odd 18 6 722.2.e.i 6
152.t even 18 6 722.2.e.j 6
456.u even 6 1 2736.2.s.m 2
456.v even 6 1 6498.2.a.e 1
456.x odd 6 1 342.2.g.b 2
456.x odd 6 1 6498.2.a.s 1
760.z even 6 1 950.2.e.d 2
760.br odd 12 2 950.2.j.e 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.2.c.a 2 8.b even 2 1
38.2.c.a 2 152.p even 6 1
304.2.i.c 2 8.d odd 2 1
304.2.i.c 2 152.k odd 6 1
342.2.g.b 2 24.h odd 2 1
342.2.g.b 2 456.x odd 6 1
722.2.a.c 1 152.p even 6 1
722.2.a.d 1 152.l odd 6 1
722.2.c.b 2 152.g odd 2 1
722.2.c.b 2 152.l odd 6 1
722.2.e.i 6 152.s odd 18 6
722.2.e.j 6 152.t even 18 6
950.2.e.d 2 40.f even 2 1
950.2.e.d 2 760.z even 6 1
950.2.j.e 4 40.i odd 4 2
950.2.j.e 4 760.br odd 12 2
1216.2.i.d 2 4.b odd 2 1
1216.2.i.d 2 76.g odd 6 1
1216.2.i.h 2 1.a even 1 1 trivial
1216.2.i.h 2 19.c even 3 1 inner
2736.2.s.m 2 24.f even 2 1
2736.2.s.m 2 456.u even 6 1
5776.2.a.g 1 152.k odd 6 1
5776.2.a.n 1 152.o even 6 1
6498.2.a.e 1 456.v even 6 1
6498.2.a.s 1 456.x odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1216, [\chi])$$:

 $$T_{3}^{2} - T_{3} + 1$$ $$T_{5}$$ $$T_{7} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$1 - T + T^{2}$$
$5$ $$T^{2}$$
$7$ $$( 4 + T )^{2}$$
$11$ $$( 3 + T )^{2}$$
$13$ $$4 - 2 T + T^{2}$$
$17$ $$36 - 6 T + T^{2}$$
$19$ $$19 - 7 T + T^{2}$$
$23$ $$36 - 6 T + T^{2}$$
$29$ $$T^{2}$$
$31$ $$( -2 + T )^{2}$$
$37$ $$( -10 + T )^{2}$$
$41$ $$81 + 9 T + T^{2}$$
$43$ $$16 + 4 T + T^{2}$$
$47$ $$T^{2}$$
$53$ $$36 - 6 T + T^{2}$$
$59$ $$81 + 9 T + T^{2}$$
$61$ $$16 + 4 T + T^{2}$$
$67$ $$49 + 7 T + T^{2}$$
$71$ $$36 - 6 T + T^{2}$$
$73$ $$1 - T + T^{2}$$
$79$ $$16 - 4 T + T^{2}$$
$83$ $$( 3 + T )^{2}$$
$89$ $$36 + 6 T + T^{2}$$
$97$ $$289 + 17 T + T^{2}$$