Properties

Label 1216.2.c.i.609.2
Level $1216$
Weight $2$
Character 1216.609
Analytic conductor $9.710$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(609,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.609");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2702336256.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 609.2
Root \(0.656712 + 2.13746i\) of defining polynomial
Character \(\chi\) \(=\) 1216.609
Dual form 1216.2.c.i.609.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.04547i q^{5} +0.418627 q^{7} +3.00000 q^{9} +O(q^{10})\) \(q-3.04547i q^{5} +0.418627 q^{7} +3.00000 q^{9} +5.27492i q^{11} +2.62685i q^{13} +3.27492 q^{17} +1.00000i q^{19} +3.46410 q^{23} -4.27492 q^{25} +2.62685i q^{29} +6.09095 q^{31} -1.27492i q^{35} -9.55505i q^{37} +4.54983 q^{41} +2.72508i q^{43} -9.13642i q^{45} -0.418627 q^{47} -6.82475 q^{49} -10.3923i q^{53} +16.0646 q^{55} -6.54983i q^{59} -3.04547i q^{61} +1.25588 q^{63} +8.00000 q^{65} -6.54983i q^{67} -11.3446 q^{71} -3.27492 q^{73} +2.20822i q^{77} +13.0192 q^{79} +9.00000 q^{81} +17.0997i q^{83} -9.97368i q^{85} -10.0000 q^{89} +1.09967i q^{91} +3.04547 q^{95} +16.5498 q^{97} +15.8248i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 24 q^{9} - 4 q^{17} - 4 q^{25} - 24 q^{41} + 36 q^{49} + 64 q^{65} + 4 q^{73} + 72 q^{81} - 80 q^{89} + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 0 0
\(5\) − 3.04547i − 1.36198i −0.732294 0.680989i \(-0.761550\pi\)
0.732294 0.680989i \(-0.238450\pi\)
\(6\) 0 0
\(7\) 0.418627 0.158226 0.0791130 0.996866i \(-0.474791\pi\)
0.0791130 + 0.996866i \(0.474791\pi\)
\(8\) 0 0
\(9\) 3.00000 1.00000
\(10\) 0 0
\(11\) 5.27492i 1.59045i 0.606316 + 0.795224i \(0.292647\pi\)
−0.606316 + 0.795224i \(0.707353\pi\)
\(12\) 0 0
\(13\) 2.62685i 0.728557i 0.931290 + 0.364278i \(0.118684\pi\)
−0.931290 + 0.364278i \(0.881316\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.27492 0.794284 0.397142 0.917757i \(-0.370002\pi\)
0.397142 + 0.917757i \(0.370002\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.46410 0.722315 0.361158 0.932505i \(-0.382382\pi\)
0.361158 + 0.932505i \(0.382382\pi\)
\(24\) 0 0
\(25\) −4.27492 −0.854983
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.62685i 0.487793i 0.969801 + 0.243897i \(0.0784258\pi\)
−0.969801 + 0.243897i \(0.921574\pi\)
\(30\) 0 0
\(31\) 6.09095 1.09397 0.546983 0.837143i \(-0.315776\pi\)
0.546983 + 0.837143i \(0.315776\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 1.27492i − 0.215500i
\(36\) 0 0
\(37\) − 9.55505i − 1.57084i −0.618963 0.785420i \(-0.712447\pi\)
0.618963 0.785420i \(-0.287553\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.54983 0.710565 0.355282 0.934759i \(-0.384385\pi\)
0.355282 + 0.934759i \(0.384385\pi\)
\(42\) 0 0
\(43\) 2.72508i 0.415571i 0.978174 + 0.207786i \(0.0666256\pi\)
−0.978174 + 0.207786i \(0.933374\pi\)
\(44\) 0 0
\(45\) − 9.13642i − 1.36198i
\(46\) 0 0
\(47\) −0.418627 −0.0610630 −0.0305315 0.999534i \(-0.509720\pi\)
−0.0305315 + 0.999534i \(0.509720\pi\)
\(48\) 0 0
\(49\) −6.82475 −0.974965
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 10.3923i − 1.42749i −0.700404 0.713746i \(-0.746997\pi\)
0.700404 0.713746i \(-0.253003\pi\)
\(54\) 0 0
\(55\) 16.0646 2.16615
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 6.54983i − 0.852716i −0.904555 0.426358i \(-0.859796\pi\)
0.904555 0.426358i \(-0.140204\pi\)
\(60\) 0 0
\(61\) − 3.04547i − 0.389933i −0.980810 0.194967i \(-0.937540\pi\)
0.980810 0.194967i \(-0.0624598\pi\)
\(62\) 0 0
\(63\) 1.25588 0.158226
\(64\) 0 0
\(65\) 8.00000 0.992278
\(66\) 0 0
\(67\) − 6.54983i − 0.800190i −0.916474 0.400095i \(-0.868977\pi\)
0.916474 0.400095i \(-0.131023\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −11.3446 −1.34636 −0.673181 0.739478i \(-0.735072\pi\)
−0.673181 + 0.739478i \(0.735072\pi\)
\(72\) 0 0
\(73\) −3.27492 −0.383300 −0.191650 0.981463i \(-0.561384\pi\)
−0.191650 + 0.981463i \(0.561384\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.20822i 0.251650i
\(78\) 0 0
\(79\) 13.0192 1.46477 0.732385 0.680891i \(-0.238407\pi\)
0.732385 + 0.680891i \(0.238407\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 17.0997i 1.87693i 0.345371 + 0.938466i \(0.387753\pi\)
−0.345371 + 0.938466i \(0.612247\pi\)
\(84\) 0 0
\(85\) − 9.97368i − 1.08180i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 1.09967i 0.115277i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.04547 0.312459
\(96\) 0 0
\(97\) 16.5498 1.68038 0.840191 0.542291i \(-0.182443\pi\)
0.840191 + 0.542291i \(0.182443\pi\)
\(98\) 0 0
\(99\) 15.8248i 1.59045i
\(100\) 0 0
\(101\) 13.8564i 1.37876i 0.724398 + 0.689382i \(0.242118\pi\)
−0.724398 + 0.689382i \(0.757882\pi\)
\(102\) 0 0
\(103\) 6.09095 0.600159 0.300080 0.953914i \(-0.402987\pi\)
0.300080 + 0.953914i \(0.402987\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.45017i 0.140193i 0.997540 + 0.0700964i \(0.0223307\pi\)
−0.997540 + 0.0700964i \(0.977669\pi\)
\(108\) 0 0
\(109\) 3.46410i 0.331801i 0.986143 + 0.165900i \(0.0530530\pi\)
−0.986143 + 0.165900i \(0.946947\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.5498 1.18059 0.590295 0.807188i \(-0.299012\pi\)
0.590295 + 0.807188i \(0.299012\pi\)
\(114\) 0 0
\(115\) − 10.5498i − 0.983777i
\(116\) 0 0
\(117\) 7.88054i 0.728557i
\(118\) 0 0
\(119\) 1.37097 0.125676
\(120\) 0 0
\(121\) −16.8248 −1.52952
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 2.20822i − 0.197509i
\(126\) 0 0
\(127\) −17.4356 −1.54716 −0.773579 0.633699i \(-0.781536\pi\)
−0.773579 + 0.633699i \(0.781536\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.27492i 0.460872i 0.973088 + 0.230436i \(0.0740152\pi\)
−0.973088 + 0.230436i \(0.925985\pi\)
\(132\) 0 0
\(133\) 0.418627i 0.0362995i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.7251 −1.08718 −0.543589 0.839352i \(-0.682935\pi\)
−0.543589 + 0.839352i \(0.682935\pi\)
\(138\) 0 0
\(139\) 2.72508i 0.231139i 0.993299 + 0.115569i \(0.0368692\pi\)
−0.993299 + 0.115569i \(0.963131\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −13.8564 −1.15873
\(144\) 0 0
\(145\) 8.00000 0.664364
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.0646i 1.31607i 0.752989 + 0.658033i \(0.228611\pi\)
−0.752989 + 0.658033i \(0.771389\pi\)
\(150\) 0 0
\(151\) −0.837253 −0.0681347 −0.0340674 0.999420i \(-0.510846\pi\)
−0.0340674 + 0.999420i \(0.510846\pi\)
\(152\) 0 0
\(153\) 9.82475 0.794284
\(154\) 0 0
\(155\) − 18.5498i − 1.48996i
\(156\) 0 0
\(157\) − 12.1819i − 0.972221i −0.873897 0.486111i \(-0.838415\pi\)
0.873897 0.486111i \(-0.161585\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.45017 0.114289
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −19.1101 −1.47878 −0.739392 0.673275i \(-0.764887\pi\)
−0.739392 + 0.673275i \(0.764887\pi\)
\(168\) 0 0
\(169\) 6.09967 0.469205
\(170\) 0 0
\(171\) 3.00000i 0.229416i
\(172\) 0 0
\(173\) 8.71780i 0.662802i 0.943490 + 0.331401i \(0.107521\pi\)
−0.943490 + 0.331401i \(0.892479\pi\)
\(174\) 0 0
\(175\) −1.78959 −0.135281
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 21.0997i − 1.57706i −0.614994 0.788532i \(-0.710842\pi\)
0.614994 0.788532i \(-0.289158\pi\)
\(180\) 0 0
\(181\) − 3.46410i − 0.257485i −0.991678 0.128742i \(-0.958906\pi\)
0.991678 0.128742i \(-0.0410940\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −29.0997 −2.13945
\(186\) 0 0
\(187\) 17.2749i 1.26327i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.7633 0.851161 0.425580 0.904921i \(-0.360070\pi\)
0.425580 + 0.904921i \(0.360070\pi\)
\(192\) 0 0
\(193\) 11.0997 0.798972 0.399486 0.916739i \(-0.369189\pi\)
0.399486 + 0.916739i \(0.369189\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 5.25370i − 0.374310i −0.982330 0.187155i \(-0.940073\pi\)
0.982330 0.187155i \(-0.0599267\pi\)
\(198\) 0 0
\(199\) −14.2750 −1.01193 −0.505965 0.862554i \(-0.668864\pi\)
−0.505965 + 0.862554i \(0.668864\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.09967i 0.0771816i
\(204\) 0 0
\(205\) − 13.8564i − 0.967773i
\(206\) 0 0
\(207\) 10.3923 0.722315
\(208\) 0 0
\(209\) −5.27492 −0.364874
\(210\) 0 0
\(211\) − 26.5498i − 1.82777i −0.405978 0.913883i \(-0.633069\pi\)
0.405978 0.913883i \(-0.366931\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.29917 0.565999
\(216\) 0 0
\(217\) 2.54983 0.173094
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.60271i 0.578681i
\(222\) 0 0
\(223\) 17.4356 1.16757 0.583787 0.811907i \(-0.301570\pi\)
0.583787 + 0.811907i \(0.301570\pi\)
\(224\) 0 0
\(225\) −12.8248 −0.854983
\(226\) 0 0
\(227\) 4.00000i 0.265489i 0.991150 + 0.132745i \(0.0423790\pi\)
−0.991150 + 0.132745i \(0.957621\pi\)
\(228\) 0 0
\(229\) 17.7391i 1.17224i 0.810226 + 0.586118i \(0.199344\pi\)
−0.810226 + 0.586118i \(0.800656\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −20.3746 −1.33478 −0.667392 0.744707i \(-0.732589\pi\)
−0.667392 + 0.744707i \(0.732589\pi\)
\(234\) 0 0
\(235\) 1.27492i 0.0831664i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −25.6197 −1.65720 −0.828600 0.559842i \(-0.810862\pi\)
−0.828600 + 0.559842i \(0.810862\pi\)
\(240\) 0 0
\(241\) −12.5498 −0.808406 −0.404203 0.914669i \(-0.632451\pi\)
−0.404203 + 0.914669i \(0.632451\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 20.7846i 1.32788i
\(246\) 0 0
\(247\) −2.62685 −0.167142
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 10.7251i − 0.676961i −0.940973 0.338481i \(-0.890087\pi\)
0.940973 0.338481i \(-0.109913\pi\)
\(252\) 0 0
\(253\) 18.2728i 1.14880i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.45017 0.464729 0.232364 0.972629i \(-0.425354\pi\)
0.232364 + 0.972629i \(0.425354\pi\)
\(258\) 0 0
\(259\) − 4.00000i − 0.248548i
\(260\) 0 0
\(261\) 7.88054i 0.487793i
\(262\) 0 0
\(263\) 1.25588 0.0774409 0.0387204 0.999250i \(-0.487672\pi\)
0.0387204 + 0.999250i \(0.487672\pi\)
\(264\) 0 0
\(265\) −31.6495 −1.94421
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.13861i 0.313306i 0.987654 + 0.156653i \(0.0500705\pi\)
−0.987654 + 0.156653i \(0.949929\pi\)
\(270\) 0 0
\(271\) −27.8279 −1.69042 −0.845212 0.534431i \(-0.820526\pi\)
−0.845212 + 0.534431i \(0.820526\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 22.5498i − 1.35981i
\(276\) 0 0
\(277\) − 16.0646i − 0.965230i −0.875833 0.482615i \(-0.839687\pi\)
0.875833 0.482615i \(-0.160313\pi\)
\(278\) 0 0
\(279\) 18.2728 1.09397
\(280\) 0 0
\(281\) 11.0997 0.662151 0.331075 0.943604i \(-0.392589\pi\)
0.331075 + 0.943604i \(0.392589\pi\)
\(282\) 0 0
\(283\) − 26.3746i − 1.56781i −0.620883 0.783903i \(-0.713226\pi\)
0.620883 0.783903i \(-0.286774\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.90468 0.112430
\(288\) 0 0
\(289\) −6.27492 −0.369113
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 30.3397i 1.77246i 0.463244 + 0.886231i \(0.346685\pi\)
−0.463244 + 0.886231i \(0.653315\pi\)
\(294\) 0 0
\(295\) −19.9474 −1.16138
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.09967i 0.526247i
\(300\) 0 0
\(301\) 1.14079i 0.0657542i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −9.27492 −0.531080
\(306\) 0 0
\(307\) − 1.45017i − 0.0827653i −0.999143 0.0413827i \(-0.986824\pi\)
0.999143 0.0413827i \(-0.0131763\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.7824 −1.40528 −0.702641 0.711544i \(-0.747996\pi\)
−0.702641 + 0.711544i \(0.747996\pi\)
\(312\) 0 0
\(313\) 15.0997 0.853484 0.426742 0.904373i \(-0.359661\pi\)
0.426742 + 0.904373i \(0.359661\pi\)
\(314\) 0 0
\(315\) − 3.82475i − 0.215500i
\(316\) 0 0
\(317\) − 8.71780i − 0.489640i −0.969569 0.244820i \(-0.921271\pi\)
0.969569 0.244820i \(-0.0787289\pi\)
\(318\) 0 0
\(319\) −13.8564 −0.775810
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.27492i 0.182221i
\(324\) 0 0
\(325\) − 11.2296i − 0.622904i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.175248 −0.00966175
\(330\) 0 0
\(331\) 9.45017i 0.519428i 0.965686 + 0.259714i \(0.0836283\pi\)
−0.965686 + 0.259714i \(0.916372\pi\)
\(332\) 0 0
\(333\) − 28.6652i − 1.57084i
\(334\) 0 0
\(335\) −19.9474 −1.08984
\(336\) 0 0
\(337\) 33.6495 1.83301 0.916503 0.400029i \(-0.131000\pi\)
0.916503 + 0.400029i \(0.131000\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 32.1293i 1.73990i
\(342\) 0 0
\(343\) −5.78741 −0.312491
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.82475i 0.420055i 0.977696 + 0.210027i \(0.0673553\pi\)
−0.977696 + 0.210027i \(0.932645\pi\)
\(348\) 0 0
\(349\) 12.7156i 0.680651i 0.940308 + 0.340326i \(0.110537\pi\)
−0.940308 + 0.340326i \(0.889463\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −10.0000 −0.532246 −0.266123 0.963939i \(-0.585743\pi\)
−0.266123 + 0.963939i \(0.585743\pi\)
\(354\) 0 0
\(355\) 34.5498i 1.83371i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.6005 −0.665030 −0.332515 0.943098i \(-0.607897\pi\)
−0.332515 + 0.943098i \(0.607897\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.97368i 0.522046i
\(366\) 0 0
\(367\) 15.6460 0.816715 0.408357 0.912822i \(-0.366102\pi\)
0.408357 + 0.912822i \(0.366102\pi\)
\(368\) 0 0
\(369\) 13.6495 0.710565
\(370\) 0 0
\(371\) − 4.35050i − 0.225867i
\(372\) 0 0
\(373\) 0.952341i 0.0493104i 0.999696 + 0.0246552i \(0.00784878\pi\)
−0.999696 + 0.0246552i \(0.992151\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.90033 −0.355385
\(378\) 0 0
\(379\) 23.6495i 1.21479i 0.794399 + 0.607397i \(0.207786\pi\)
−0.794399 + 0.607397i \(0.792214\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −32.1293 −1.64173 −0.820864 0.571124i \(-0.806508\pi\)
−0.820864 + 0.571124i \(0.806508\pi\)
\(384\) 0 0
\(385\) 6.72508 0.342742
\(386\) 0 0
\(387\) 8.17525i 0.415571i
\(388\) 0 0
\(389\) − 4.71998i − 0.239313i −0.992815 0.119656i \(-0.961821\pi\)
0.992815 0.119656i \(-0.0381793\pi\)
\(390\) 0 0
\(391\) 11.3446 0.573723
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 39.6495i − 1.99498i
\(396\) 0 0
\(397\) 32.6630i 1.63931i 0.572859 + 0.819654i \(0.305834\pi\)
−0.572859 + 0.819654i \(0.694166\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 35.0997 1.75279 0.876397 0.481590i \(-0.159940\pi\)
0.876397 + 0.481590i \(0.159940\pi\)
\(402\) 0 0
\(403\) 16.0000i 0.797017i
\(404\) 0 0
\(405\) − 27.4093i − 1.36198i
\(406\) 0 0
\(407\) 50.4021 2.49834
\(408\) 0 0
\(409\) 18.0000 0.890043 0.445021 0.895520i \(-0.353196\pi\)
0.445021 + 0.895520i \(0.353196\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 2.74194i − 0.134922i
\(414\) 0 0
\(415\) 52.0766 2.55634
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.0000i 0.586238i 0.956076 + 0.293119i \(0.0946933\pi\)
−0.956076 + 0.293119i \(0.905307\pi\)
\(420\) 0 0
\(421\) − 24.2487i − 1.18181i −0.806741 0.590905i \(-0.798771\pi\)
0.806741 0.590905i \(-0.201229\pi\)
\(422\) 0 0
\(423\) −1.25588 −0.0610630
\(424\) 0 0
\(425\) −14.0000 −0.679100
\(426\) 0 0
\(427\) − 1.27492i − 0.0616976i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.67451 0.0806582 0.0403291 0.999186i \(-0.487159\pi\)
0.0403291 + 0.999186i \(0.487159\pi\)
\(432\) 0 0
\(433\) −17.6495 −0.848181 −0.424091 0.905620i \(-0.639406\pi\)
−0.424091 + 0.905620i \(0.639406\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.46410i 0.165710i
\(438\) 0 0
\(439\) −31.2920 −1.49349 −0.746743 0.665113i \(-0.768383\pi\)
−0.746743 + 0.665113i \(0.768383\pi\)
\(440\) 0 0
\(441\) −20.4743 −0.974965
\(442\) 0 0
\(443\) − 10.3746i − 0.492911i −0.969154 0.246456i \(-0.920734\pi\)
0.969154 0.246456i \(-0.0792660\pi\)
\(444\) 0 0
\(445\) 30.4547i 1.44369i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −20.5498 −0.969807 −0.484903 0.874568i \(-0.661145\pi\)
−0.484903 + 0.874568i \(0.661145\pi\)
\(450\) 0 0
\(451\) 24.0000i 1.13012i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.34901 0.157004
\(456\) 0 0
\(457\) −15.2749 −0.714530 −0.357265 0.934003i \(-0.616291\pi\)
−0.357265 + 0.934003i \(0.616291\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.7156i 0.592225i 0.955153 + 0.296113i \(0.0956904\pi\)
−0.955153 + 0.296113i \(0.904310\pi\)
\(462\) 0 0
\(463\) −2.93039 −0.136187 −0.0680933 0.997679i \(-0.521692\pi\)
−0.0680933 + 0.997679i \(0.521692\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 8.17525i − 0.378305i −0.981948 0.189153i \(-0.939426\pi\)
0.981948 0.189153i \(-0.0605741\pi\)
\(468\) 0 0
\(469\) − 2.74194i − 0.126611i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −14.3746 −0.660944
\(474\) 0 0
\(475\) − 4.27492i − 0.196147i
\(476\) 0 0
\(477\) − 31.1769i − 1.42749i
\(478\) 0 0
\(479\) −17.3205 −0.791394 −0.395697 0.918381i \(-0.629497\pi\)
−0.395697 + 0.918381i \(0.629497\pi\)
\(480\) 0 0
\(481\) 25.0997 1.14445
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 50.4021i − 2.28864i
\(486\) 0 0
\(487\) 39.0575 1.76986 0.884931 0.465722i \(-0.154205\pi\)
0.884931 + 0.465722i \(0.154205\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000i 0.541552i 0.962642 + 0.270776i \(0.0872803\pi\)
−0.962642 + 0.270776i \(0.912720\pi\)
\(492\) 0 0
\(493\) 8.60271i 0.387447i
\(494\) 0 0
\(495\) 48.1939 2.16615
\(496\) 0 0
\(497\) −4.74917 −0.213029
\(498\) 0 0
\(499\) − 26.7251i − 1.19638i −0.801355 0.598190i \(-0.795887\pi\)
0.801355 0.598190i \(-0.204113\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −41.6843 −1.85861 −0.929306 0.369311i \(-0.879594\pi\)
−0.929306 + 0.369311i \(0.879594\pi\)
\(504\) 0 0
\(505\) 42.1993 1.87785
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 4.30136i − 0.190654i −0.995446 0.0953271i \(-0.969610\pi\)
0.995446 0.0953271i \(-0.0303897\pi\)
\(510\) 0 0
\(511\) −1.37097 −0.0606480
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 18.5498i − 0.817403i
\(516\) 0 0
\(517\) − 2.20822i − 0.0971175i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −27.0997 −1.18726 −0.593629 0.804739i \(-0.702305\pi\)
−0.593629 + 0.804739i \(0.702305\pi\)
\(522\) 0 0
\(523\) − 5.45017i − 0.238319i −0.992875 0.119160i \(-0.961980\pi\)
0.992875 0.119160i \(-0.0380200\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 19.9474 0.868920
\(528\) 0 0
\(529\) −11.0000 −0.478261
\(530\) 0 0
\(531\) − 19.6495i − 0.852716i
\(532\) 0 0
\(533\) 11.9517i 0.517687i
\(534\) 0 0
\(535\) 4.41644 0.190939
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 36.0000i − 1.55063i
\(540\) 0 0
\(541\) − 29.0838i − 1.25041i −0.780461 0.625205i \(-0.785015\pi\)
0.780461 0.625205i \(-0.214985\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.5498 0.451905
\(546\) 0 0
\(547\) 32.0000i 1.36822i 0.729378 + 0.684111i \(0.239809\pi\)
−0.729378 + 0.684111i \(0.760191\pi\)
\(548\) 0 0
\(549\) − 9.13642i − 0.389933i
\(550\) 0 0
\(551\) −2.62685 −0.111907
\(552\) 0 0
\(553\) 5.45017 0.231765
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 29.9210i − 1.26779i −0.773417 0.633897i \(-0.781454\pi\)
0.773417 0.633897i \(-0.218546\pi\)
\(558\) 0 0
\(559\) −7.15838 −0.302767
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 24.0000i − 1.01148i −0.862686 0.505740i \(-0.831220\pi\)
0.862686 0.505740i \(-0.168780\pi\)
\(564\) 0 0
\(565\) − 38.2202i − 1.60794i
\(566\) 0 0
\(567\) 3.76764 0.158226
\(568\) 0 0
\(569\) −19.4502 −0.815393 −0.407697 0.913117i \(-0.633668\pi\)
−0.407697 + 0.913117i \(0.633668\pi\)
\(570\) 0 0
\(571\) 41.0997i 1.71997i 0.510321 + 0.859984i \(0.329526\pi\)
−0.510321 + 0.859984i \(0.670474\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −14.8087 −0.617567
\(576\) 0 0
\(577\) 23.2749 0.968947 0.484474 0.874806i \(-0.339011\pi\)
0.484474 + 0.874806i \(0.339011\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.15838i 0.296980i
\(582\) 0 0
\(583\) 54.8185 2.27035
\(584\) 0 0
\(585\) 24.0000 0.992278
\(586\) 0 0
\(587\) 37.2749i 1.53850i 0.638948 + 0.769250i \(0.279370\pi\)
−0.638948 + 0.769250i \(0.720630\pi\)
\(588\) 0 0
\(589\) 6.09095i 0.250973i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.0997 0.784329 0.392165 0.919895i \(-0.371726\pi\)
0.392165 + 0.919895i \(0.371726\pi\)
\(594\) 0 0
\(595\) − 4.17525i − 0.171168i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −9.43996 −0.385706 −0.192853 0.981228i \(-0.561774\pi\)
−0.192853 + 0.981228i \(0.561774\pi\)
\(600\) 0 0
\(601\) 11.0997 0.452765 0.226382 0.974038i \(-0.427310\pi\)
0.226382 + 0.974038i \(0.427310\pi\)
\(602\) 0 0
\(603\) − 19.6495i − 0.800190i
\(604\) 0 0
\(605\) 51.2394i 2.08318i
\(606\) 0 0
\(607\) 29.3873 1.19279 0.596397 0.802689i \(-0.296598\pi\)
0.596397 + 0.802689i \(0.296598\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 1.09967i − 0.0444878i
\(612\) 0 0
\(613\) − 29.9210i − 1.20850i −0.796795 0.604250i \(-0.793473\pi\)
0.796795 0.604250i \(-0.206527\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.7251 0.512293 0.256146 0.966638i \(-0.417547\pi\)
0.256146 + 0.966638i \(0.417547\pi\)
\(618\) 0 0
\(619\) − 4.00000i − 0.160774i −0.996764 0.0803868i \(-0.974384\pi\)
0.996764 0.0803868i \(-0.0256155\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.18627 −0.167719
\(624\) 0 0
\(625\) −28.0997 −1.12399
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 31.2920i − 1.24769i
\(630\) 0 0
\(631\) 13.4378 0.534950 0.267475 0.963565i \(-0.413811\pi\)
0.267475 + 0.963565i \(0.413811\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 53.0997i 2.10720i
\(636\) 0 0
\(637\) − 17.9276i − 0.710317i
\(638\) 0 0
\(639\) −34.0339 −1.34636
\(640\) 0 0
\(641\) −12.5498 −0.495689 −0.247844 0.968800i \(-0.579722\pi\)
−0.247844 + 0.968800i \(0.579722\pi\)
\(642\) 0 0
\(643\) 44.9244i 1.77165i 0.464023 + 0.885823i \(0.346405\pi\)
−0.464023 + 0.885823i \(0.653595\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 25.6197 1.00721 0.503607 0.863933i \(-0.332006\pi\)
0.503607 + 0.863933i \(0.332006\pi\)
\(648\) 0 0
\(649\) 34.5498 1.35620
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 16.0646i − 0.628657i −0.949314 0.314329i \(-0.898221\pi\)
0.949314 0.314329i \(-0.101779\pi\)
\(654\) 0 0
\(655\) 16.0646 0.627697
\(656\) 0 0
\(657\) −9.82475 −0.383300
\(658\) 0 0
\(659\) 13.4502i 0.523944i 0.965075 + 0.261972i \(0.0843728\pi\)
−0.965075 + 0.261972i \(0.915627\pi\)
\(660\) 0 0
\(661\) − 9.55505i − 0.371648i −0.982583 0.185824i \(-0.940505\pi\)
0.982583 0.185824i \(-0.0594955\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.27492 0.0494392
\(666\) 0 0
\(667\) 9.09967i 0.352341i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.0646 0.620168
\(672\) 0 0
\(673\) −47.0997 −1.81556 −0.907779 0.419448i \(-0.862224\pi\)
−0.907779 + 0.419448i \(0.862224\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 0.722166i − 0.0277551i −0.999904 0.0138775i \(-0.995582\pi\)
0.999904 0.0138775i \(-0.00441750\pi\)
\(678\) 0 0
\(679\) 6.92820 0.265880
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 22.1993i − 0.849434i −0.905326 0.424717i \(-0.860374\pi\)
0.905326 0.424717i \(-0.139626\pi\)
\(684\) 0 0
\(685\) 38.7539i 1.48071i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 27.2990 1.04001
\(690\) 0 0
\(691\) − 23.4743i − 0.893003i −0.894783 0.446501i \(-0.852670\pi\)
0.894783 0.446501i \(-0.147330\pi\)
\(692\) 0 0
\(693\) 6.62466i 0.251650i
\(694\) 0 0
\(695\) 8.29917 0.314806
\(696\) 0 0
\(697\) 14.9003 0.564390
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 21.0148i − 0.793717i −0.917880 0.396859i \(-0.870100\pi\)
0.917880 0.396859i \(-0.129900\pi\)
\(702\) 0 0
\(703\) 9.55505 0.360376
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.80066i 0.218156i
\(708\) 0 0
\(709\) 38.2202i 1.43539i 0.696358 + 0.717695i \(0.254803\pi\)
−0.696358 + 0.717695i \(0.745197\pi\)
\(710\) 0 0
\(711\) 39.0575 1.46477
\(712\) 0 0
\(713\) 21.0997 0.790189
\(714\) 0 0
\(715\) 42.1993i 1.57817i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 51.6580 1.92652 0.963259 0.268575i \(-0.0865526\pi\)
0.963259 + 0.268575i \(0.0865526\pi\)
\(720\) 0 0
\(721\) 2.54983 0.0949608
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 11.2296i − 0.417055i
\(726\) 0 0
\(727\) −10.9260 −0.405224 −0.202612 0.979259i \(-0.564943\pi\)
−0.202612 + 0.979259i \(0.564943\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 8.92442i 0.330082i
\(732\) 0 0
\(733\) − 19.1101i − 0.705848i −0.935652 0.352924i \(-0.885187\pi\)
0.935652 0.352924i \(-0.114813\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 34.5498 1.27266
\(738\) 0 0
\(739\) − 7.82475i − 0.287838i −0.989589 0.143919i \(-0.954029\pi\)
0.989589 0.143919i \(-0.0459705\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −52.9139 −1.94122 −0.970611 0.240655i \(-0.922638\pi\)
−0.970611 + 0.240655i \(0.922638\pi\)
\(744\) 0 0
\(745\) 48.9244 1.79245
\(746\) 0 0
\(747\) 51.2990i 1.87693i
\(748\) 0 0
\(749\) 0.607078i 0.0221822i
\(750\) 0 0
\(751\) −36.3155 −1.32517 −0.662586 0.748986i \(-0.730541\pi\)
−0.662586 + 0.748986i \(0.730541\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.54983i 0.0927980i
\(756\) 0 0
\(757\) 3.04547i 0.110690i 0.998467 + 0.0553448i \(0.0176258\pi\)
−0.998467 + 0.0553448i \(0.982374\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.27492 0.118716 0.0593578 0.998237i \(-0.481095\pi\)
0.0593578 + 0.998237i \(0.481095\pi\)
\(762\) 0 0
\(763\) 1.45017i 0.0524995i
\(764\) 0 0
\(765\) − 29.9210i − 1.08180i
\(766\) 0 0
\(767\) 17.2054 0.621252
\(768\) 0 0
\(769\) −13.8248 −0.498533 −0.249267 0.968435i \(-0.580190\pi\)
−0.249267 + 0.968435i \(0.580190\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 34.7561i 1.25009i 0.780589 + 0.625045i \(0.214919\pi\)
−0.780589 + 0.625045i \(0.785081\pi\)
\(774\) 0 0
\(775\) −26.0383 −0.935324
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.54983i 0.163015i
\(780\) 0 0
\(781\) − 59.8421i − 2.14132i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −37.0997 −1.32414
\(786\) 0 0
\(787\) 14.1993i 0.506152i 0.967446 + 0.253076i \(0.0814422\pi\)
−0.967446 + 0.253076i \(0.918558\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.25370 0.186800
\(792\) 0 0
\(793\) 8.00000 0.284088
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 24.2487i 0.858933i 0.903083 + 0.429467i \(0.141298\pi\)
−0.903083 + 0.429467i \(0.858702\pi\)
\(798\) 0 0
\(799\) −1.37097 −0.0485014
\(800\) 0 0
\(801\) −30.0000 −1.06000
\(802\) 0 0
\(803\) − 17.2749i − 0.609619i
\(804\) 0 0
\(805\) − 4.41644i − 0.155659i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.82475 −0.204787 −0.102394 0.994744i \(-0.532650\pi\)
−0.102394 + 0.994744i \(0.532650\pi\)
\(810\) 0 0
\(811\) − 47.2990i − 1.66089i −0.557099 0.830446i \(-0.688085\pi\)
0.557099 0.830446i \(-0.311915\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 12.1819 0.426713
\(816\) 0 0
\(817\) −2.72508 −0.0953386
\(818\) 0 0
\(819\) 3.29901i 0.115277i
\(820\) 0 0
\(821\) 26.5720i 0.927370i 0.886000 + 0.463685i \(0.153473\pi\)
−0.886000 + 0.463685i \(0.846527\pi\)
\(822\) 0 0
\(823\) −21.4334 −0.747122 −0.373561 0.927606i \(-0.621863\pi\)
−0.373561 + 0.927606i \(0.621863\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 47.6495i − 1.65694i −0.560037 0.828468i \(-0.689213\pi\)
0.560037 0.828468i \(-0.310787\pi\)
\(828\) 0 0
\(829\) − 25.3161i − 0.879266i −0.898178 0.439633i \(-0.855109\pi\)
0.898178 0.439633i \(-0.144891\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −22.3505 −0.774399
\(834\) 0 0
\(835\) 58.1993i 2.01407i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −47.6602 −1.64541 −0.822706 0.568467i \(-0.807537\pi\)
−0.822706 + 0.568467i \(0.807537\pi\)
\(840\) 0 0
\(841\) 22.0997 0.762058
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 18.5764i − 0.639047i
\(846\) 0 0
\(847\) −7.04329 −0.242010
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 33.0997i − 1.13464i
\(852\) 0 0
\(853\) 32.9665i 1.12875i 0.825518 + 0.564376i \(0.190883\pi\)
−0.825518 + 0.564376i \(0.809117\pi\)
\(854\) 0 0
\(855\) 9.13642 0.312459
\(856\) 0 0
\(857\) −16.1993 −0.553359 −0.276679 0.960962i \(-0.589234\pi\)
−0.276679 + 0.960962i \(0.589234\pi\)
\(858\) 0 0
\(859\) − 55.4743i − 1.89276i −0.323060 0.946379i \(-0.604711\pi\)
0.323060 0.946379i \(-0.395289\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −41.7994 −1.42287 −0.711434 0.702753i \(-0.751954\pi\)
−0.711434 + 0.702753i \(0.751954\pi\)
\(864\) 0 0
\(865\) 26.5498 0.902721
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 68.6750i 2.32964i
\(870\) 0 0
\(871\) 17.2054 0.582983
\(872\) 0 0
\(873\) 49.6495 1.68038
\(874\) 0 0
\(875\) − 0.924421i − 0.0312511i
\(876\) 0 0
\(877\) − 31.4071i − 1.06054i −0.847828 0.530271i \(-0.822090\pi\)
0.847828 0.530271i \(-0.177910\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.82475 0.0614774 0.0307387 0.999527i \(-0.490214\pi\)
0.0307387 + 0.999527i \(0.490214\pi\)
\(882\) 0 0
\(883\) − 13.6254i − 0.458532i −0.973364 0.229266i \(-0.926367\pi\)
0.973364 0.229266i \(-0.0736325\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.837253 0.0281122 0.0140561 0.999901i \(-0.495526\pi\)
0.0140561 + 0.999901i \(0.495526\pi\)
\(888\) 0 0
\(889\) −7.29901 −0.244801
\(890\) 0 0
\(891\) 47.4743i 1.59045i
\(892\) 0 0
\(893\) − 0.418627i − 0.0140088i
\(894\) 0 0
\(895\) −64.2585 −2.14793
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.0000i 0.533630i
\(900\) 0 0
\(901\) − 34.0339i − 1.13383i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10.5498 −0.350688
\(906\) 0 0
\(907\) − 23.6495i − 0.785269i −0.919695 0.392634i \(-0.871564\pi\)
0.919695 0.392634i \(-0.128436\pi\)
\(908\) 0 0
\(909\) 41.5692i 1.37876i
\(910\) 0 0
\(911\) 34.0339 1.12759 0.563797 0.825913i \(-0.309340\pi\)
0.563797 + 0.825913i \(0.309340\pi\)
\(912\) 0 0
\(913\) −90.1993 −2.98516
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.20822i 0.0729219i
\(918\) 0 0
\(919\) 0.115088 0.00379639 0.00189820 0.999998i \(-0.499396\pi\)
0.00189820 + 0.999998i \(0.499396\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 29.8007i − 0.980901i
\(924\) 0 0
\(925\) 40.8471i 1.34304i
\(926\) 0 0
\(927\) 18.2728 0.600159
\(928\) 0 0
\(929\) −7.09967 −0.232933 −0.116466 0.993195i \(-0.537157\pi\)
−0.116466 + 0.993195i \(0.537157\pi\)
\(930\) 0 0
\(931\) − 6.82475i − 0.223672i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 52.6103 1.72054
\(936\) 0 0
\(937\) −14.9244 −0.487560 −0.243780 0.969831i \(-0.578387\pi\)
−0.243780 + 0.969831i \(0.578387\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 31.1769i − 1.01634i −0.861257 0.508169i \(-0.830322\pi\)
0.861257 0.508169i \(-0.169678\pi\)
\(942\) 0 0
\(943\) 15.7611 0.513252
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 30.1993i − 0.981347i −0.871344 0.490673i \(-0.836751\pi\)
0.871344 0.490673i \(-0.163249\pi\)
\(948\) 0 0
\(949\) − 8.60271i − 0.279256i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −45.2990 −1.46738 −0.733689 0.679485i \(-0.762203\pi\)
−0.733689 + 0.679485i \(0.762203\pi\)
\(954\) 0 0
\(955\) − 35.8248i − 1.15926i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5.32706 −0.172020
\(960\) 0 0
\(961\) 6.09967 0.196764
\(962\) 0 0
\(963\) 4.35050i 0.140193i
\(964\) 0 0
\(965\) − 33.8038i − 1.08818i
\(966\) 0 0
\(967\) 55.5407 1.78607 0.893034 0.449988i \(-0.148572\pi\)
0.893034 + 0.449988i \(0.148572\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 44.0000i 1.41203i 0.708198 + 0.706014i \(0.249508\pi\)
−0.708198 + 0.706014i \(0.750492\pi\)
\(972\) 0 0
\(973\) 1.14079i 0.0365721i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −28.1993 −0.902177 −0.451088 0.892479i \(-0.648964\pi\)
−0.451088 + 0.892479i \(0.648964\pi\)
\(978\) 0 0
\(979\) − 52.7492i − 1.68587i
\(980\) 0 0
\(981\) 10.3923i 0.331801i
\(982\) 0 0
\(983\) −22.6893 −0.723676 −0.361838 0.932241i \(-0.617851\pi\)
−0.361838 + 0.932241i \(0.617851\pi\)
\(984\) 0 0
\(985\) −16.0000 −0.509802
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.43996i 0.300173i
\(990\) 0 0
\(991\) 47.0531 1.49469 0.747345 0.664436i \(-0.231328\pi\)
0.747345 + 0.664436i \(0.231328\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 43.4743i 1.37823i
\(996\) 0 0
\(997\) − 42.1029i − 1.33341i −0.745320 0.666707i \(-0.767703\pi\)
0.745320 0.666707i \(-0.232297\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.c.i.609.2 yes 8
4.3 odd 2 inner 1216.2.c.i.609.1 8
8.3 odd 2 inner 1216.2.c.i.609.7 yes 8
8.5 even 2 inner 1216.2.c.i.609.8 yes 8
16.3 odd 4 4864.2.a.bj.1.1 4
16.5 even 4 4864.2.a.bj.1.4 4
16.11 odd 4 4864.2.a.bk.1.4 4
16.13 even 4 4864.2.a.bk.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1216.2.c.i.609.1 8 4.3 odd 2 inner
1216.2.c.i.609.2 yes 8 1.1 even 1 trivial
1216.2.c.i.609.7 yes 8 8.3 odd 2 inner
1216.2.c.i.609.8 yes 8 8.5 even 2 inner
4864.2.a.bj.1.1 4 16.3 odd 4
4864.2.a.bj.1.4 4 16.5 even 4
4864.2.a.bk.1.1 4 16.13 even 4
4864.2.a.bk.1.4 4 16.11 odd 4