Properties

Label 1216.2.c.h
Level $1216$
Weight $2$
Character orbit 1216.c
Analytic conductor $9.710$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1216,2,Mod(609,1216)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1216, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1216.609"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-44,0,0,0,0,0,0,0,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.303595776.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + \beta_1 q^{5} + (2 \beta_{6} - \beta_{3}) q^{7} + (\beta_{7} - 5) q^{9} + ( - \beta_{4} - \beta_{2}) q^{11} + ( - \beta_{5} + 3 \beta_1) q^{13} + (2 \beta_{6} + 2 \beta_{3}) q^{15}+ \cdots + ( - 3 \beta_{4} + 5 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 44 q^{9} + 40 q^{17} + 12 q^{25} + 64 q^{33} + 32 q^{49} + 4 q^{57} - 72 q^{65} - 24 q^{73} + 104 q^{81} - 32 q^{89} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{6} + 4\nu^{4} + 20\nu^{2} + 27 ) / 36 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} + 8\nu^{5} + 40\nu^{3} + 165\nu ) / 72 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} + 4\nu^{5} + 2\nu^{3} - 9\nu ) / 54 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 5\nu^{7} + 16\nu^{5} + 8\nu^{3} + 81\nu ) / 216 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 5\nu^{6} + 16\nu^{4} + 80\nu^{2} + 153 ) / 72 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} + 5\nu^{5} + 16\nu^{3} + 18\nu ) / 27 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{6} + 5\nu^{4} + 7\nu^{2} + 18 ) / 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{6} + \beta_{4} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{7} + 2\beta_{5} + \beta _1 - 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{6} - 4\beta_{4} - \beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 5\beta_{7} - 6\beta_{5} + 5\beta _1 - 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -\beta_{6} + 15\beta_{4} + 16\beta_{3} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 8\beta_{5} - 16\beta _1 - 5 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 13\beta_{6} + 35\beta_{4} - 48\beta_{3} - 13\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
609.1
1.26217 1.18614i
−1.26217 1.18614i
−0.396143 1.68614i
0.396143 1.68614i
0.396143 + 1.68614i
−0.396143 + 1.68614i
−1.26217 + 1.18614i
1.26217 + 1.18614i
0 3.37228i 0 2.52434i 0 −3.31662 0 −8.37228 0
609.2 0 3.37228i 0 2.52434i 0 3.31662 0 −8.37228 0
609.3 0 2.37228i 0 0.792287i 0 3.31662 0 −2.62772 0
609.4 0 2.37228i 0 0.792287i 0 −3.31662 0 −2.62772 0
609.5 0 2.37228i 0 0.792287i 0 −3.31662 0 −2.62772 0
609.6 0 2.37228i 0 0.792287i 0 3.31662 0 −2.62772 0
609.7 0 3.37228i 0 2.52434i 0 3.31662 0 −8.37228 0
609.8 0 3.37228i 0 2.52434i 0 −3.31662 0 −8.37228 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 609.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.2.c.h 8
4.b odd 2 1 inner 1216.2.c.h 8
8.b even 2 1 inner 1216.2.c.h 8
8.d odd 2 1 inner 1216.2.c.h 8
16.e even 4 1 4864.2.a.bi 4
16.e even 4 1 4864.2.a.bl 4
16.f odd 4 1 4864.2.a.bi 4
16.f odd 4 1 4864.2.a.bl 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1216.2.c.h 8 1.a even 1 1 trivial
1216.2.c.h 8 4.b odd 2 1 inner
1216.2.c.h 8 8.b even 2 1 inner
1216.2.c.h 8 8.d odd 2 1 inner
4864.2.a.bi 4 16.e even 4 1
4864.2.a.bi 4 16.f odd 4 1
4864.2.a.bl 4 16.e even 4 1
4864.2.a.bl 4 16.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1216, [\chi])\):

\( T_{3}^{4} + 17T_{3}^{2} + 64 \) Copy content Toggle raw display
\( T_{5}^{4} + 7T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} - 11 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 17 T^{2} + 64)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} + 7 T^{2} + 4)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 11)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} + 17 T^{2} + 64)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 51 T^{2} + 576)^{2} \) Copy content Toggle raw display
$17$ \( (T - 5)^{8} \) Copy content Toggle raw display
$19$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} - 7 T^{2} + 4)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 43 T^{2} + 256)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 12)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} + 112 T^{2} + 1024)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} + 101 T^{2} + 1156)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 87 T^{2} + 36)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 127 T^{2} + 3364)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 21 T^{2} + 36)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 231 T^{2} + 4356)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 77 T^{2} + 484)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 44)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 6 T - 123)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} - 184 T^{2} + 16)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 64)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + 8 T - 116)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 6 T - 24)^{4} \) Copy content Toggle raw display
show more
show less