Properties

Label 1216.2.c.d.609.2
Level $1216$
Weight $2$
Character 1216.609
Analytic conductor $9.710$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(609,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.609");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 609.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1216.609
Dual form 1216.2.c.d.609.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +3.00000 q^{7} +2.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{3} +3.00000 q^{7} +2.00000 q^{9} +3.00000i q^{13} +3.00000 q^{17} -1.00000i q^{19} +3.00000i q^{21} -9.00000 q^{23} +5.00000 q^{25} +5.00000i q^{27} -9.00000i q^{29} +6.00000 q^{31} -6.00000i q^{37} -3.00000 q^{39} +6.00000 q^{41} +8.00000i q^{43} +2.00000 q^{49} +3.00000i q^{51} +9.00000i q^{53} +1.00000 q^{57} +3.00000i q^{59} +6.00000i q^{61} +6.00000 q^{63} +5.00000i q^{67} -9.00000i q^{69} +11.0000 q^{73} +5.00000i q^{75} -12.0000 q^{79} +1.00000 q^{81} +6.00000i q^{83} +9.00000 q^{87} +9.00000i q^{91} +6.00000i q^{93} -8.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{7} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 6 q^{7} + 4 q^{9} + 6 q^{17} - 18 q^{23} + 10 q^{25} + 12 q^{31} - 6 q^{39} + 12 q^{41} + 4 q^{49} + 2 q^{57} + 12 q^{63} + 22 q^{73} - 24 q^{79} + 2 q^{81} + 18 q^{87} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i 0.957427 + 0.288675i \(0.0932147\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) 0 0
\(9\) 2.00000 0.666667
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 3.00000i 0.832050i 0.909353 + 0.416025i \(0.136577\pi\)
−0.909353 + 0.416025i \(0.863423\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) − 1.00000i − 0.229416i
\(20\) 0 0
\(21\) 3.00000i 0.654654i
\(22\) 0 0
\(23\) −9.00000 −1.87663 −0.938315 0.345782i \(-0.887614\pi\)
−0.938315 + 0.345782i \(0.887614\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) 5.00000i 0.962250i
\(28\) 0 0
\(29\) − 9.00000i − 1.67126i −0.549294 0.835629i \(-0.685103\pi\)
0.549294 0.835629i \(-0.314897\pi\)
\(30\) 0 0
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 6.00000i − 0.986394i −0.869918 0.493197i \(-0.835828\pi\)
0.869918 0.493197i \(-0.164172\pi\)
\(38\) 0 0
\(39\) −3.00000 −0.480384
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i 0.792406 + 0.609994i \(0.208828\pi\)
−0.792406 + 0.609994i \(0.791172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 3.00000i 0.420084i
\(52\) 0 0
\(53\) 9.00000i 1.23625i 0.786082 + 0.618123i \(0.212106\pi\)
−0.786082 + 0.618123i \(0.787894\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.00000 0.132453
\(58\) 0 0
\(59\) 3.00000i 0.390567i 0.980747 + 0.195283i \(0.0625627\pi\)
−0.980747 + 0.195283i \(0.937437\pi\)
\(60\) 0 0
\(61\) 6.00000i 0.768221i 0.923287 + 0.384111i \(0.125492\pi\)
−0.923287 + 0.384111i \(0.874508\pi\)
\(62\) 0 0
\(63\) 6.00000 0.755929
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.00000i 0.610847i 0.952217 + 0.305424i \(0.0987981\pi\)
−0.952217 + 0.305424i \(0.901202\pi\)
\(68\) 0 0
\(69\) − 9.00000i − 1.08347i
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 11.0000 1.28745 0.643726 0.765256i \(-0.277388\pi\)
0.643726 + 0.765256i \(0.277388\pi\)
\(74\) 0 0
\(75\) 5.00000i 0.577350i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 9.00000 0.964901
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 9.00000i 0.943456i
\(92\) 0 0
\(93\) 6.00000i 0.622171i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 6.00000 0.591198 0.295599 0.955312i \(-0.404481\pi\)
0.295599 + 0.955312i \(0.404481\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 3.00000i − 0.290021i −0.989430 0.145010i \(-0.953678\pi\)
0.989430 0.145010i \(-0.0463216\pi\)
\(108\) 0 0
\(109\) 9.00000i 0.862044i 0.902342 + 0.431022i \(0.141847\pi\)
−0.902342 + 0.431022i \(0.858153\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.00000i 0.554700i
\(118\) 0 0
\(119\) 9.00000 0.825029
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 6.00000i 0.541002i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −18.0000 −1.59724 −0.798621 0.601834i \(-0.794437\pi\)
−0.798621 + 0.601834i \(0.794437\pi\)
\(128\) 0 0
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) − 12.0000i − 1.04844i −0.851581 0.524222i \(-0.824356\pi\)
0.851581 0.524222i \(-0.175644\pi\)
\(132\) 0 0
\(133\) − 3.00000i − 0.260133i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.00000 0.768922 0.384461 0.923141i \(-0.374387\pi\)
0.384461 + 0.923141i \(0.374387\pi\)
\(138\) 0 0
\(139\) − 14.0000i − 1.18746i −0.804663 0.593732i \(-0.797654\pi\)
0.804663 0.593732i \(-0.202346\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.00000i 0.164957i
\(148\) 0 0
\(149\) − 18.0000i − 1.47462i −0.675556 0.737309i \(-0.736096\pi\)
0.675556 0.737309i \(-0.263904\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 24.0000i − 1.91541i −0.287754 0.957704i \(-0.592909\pi\)
0.287754 0.957704i \(-0.407091\pi\)
\(158\) 0 0
\(159\) −9.00000 −0.713746
\(160\) 0 0
\(161\) −27.0000 −2.12790
\(162\) 0 0
\(163\) − 2.00000i − 0.156652i −0.996928 0.0783260i \(-0.975042\pi\)
0.996928 0.0783260i \(-0.0249575\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −18.0000 −1.39288 −0.696441 0.717614i \(-0.745234\pi\)
−0.696441 + 0.717614i \(0.745234\pi\)
\(168\) 0 0
\(169\) 4.00000 0.307692
\(170\) 0 0
\(171\) − 2.00000i − 0.152944i
\(172\) 0 0
\(173\) − 18.0000i − 1.36851i −0.729241 0.684257i \(-0.760127\pi\)
0.729241 0.684257i \(-0.239873\pi\)
\(174\) 0 0
\(175\) 15.0000 1.13389
\(176\) 0 0
\(177\) −3.00000 −0.225494
\(178\) 0 0
\(179\) − 12.0000i − 0.896922i −0.893802 0.448461i \(-0.851972\pi\)
0.893802 0.448461i \(-0.148028\pi\)
\(180\) 0 0
\(181\) 18.0000i 1.33793i 0.743294 + 0.668965i \(0.233262\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 0 0
\(183\) −6.00000 −0.443533
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 15.0000i 1.09109i
\(190\) 0 0
\(191\) 9.00000 0.651217 0.325609 0.945505i \(-0.394431\pi\)
0.325609 + 0.945505i \(0.394431\pi\)
\(192\) 0 0
\(193\) −4.00000 −0.287926 −0.143963 0.989583i \(-0.545985\pi\)
−0.143963 + 0.989583i \(0.545985\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 0 0
\(199\) 15.0000 1.06332 0.531661 0.846957i \(-0.321568\pi\)
0.531661 + 0.846957i \(0.321568\pi\)
\(200\) 0 0
\(201\) −5.00000 −0.352673
\(202\) 0 0
\(203\) − 27.0000i − 1.89503i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −18.0000 −1.25109
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 5.00000i 0.344214i 0.985078 + 0.172107i \(0.0550575\pi\)
−0.985078 + 0.172107i \(0.944942\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 18.0000 1.22192
\(218\) 0 0
\(219\) 11.0000i 0.743311i
\(220\) 0 0
\(221\) 9.00000i 0.605406i
\(222\) 0 0
\(223\) −6.00000 −0.401790 −0.200895 0.979613i \(-0.564385\pi\)
−0.200895 + 0.979613i \(0.564385\pi\)
\(224\) 0 0
\(225\) 10.0000 0.666667
\(226\) 0 0
\(227\) − 27.0000i − 1.79205i −0.444001 0.896026i \(-0.646441\pi\)
0.444001 0.896026i \(-0.353559\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i 0.980152 + 0.198246i \(0.0635244\pi\)
−0.980152 + 0.198246i \(0.936476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 12.0000i − 0.779484i
\(238\) 0 0
\(239\) 9.00000 0.582162 0.291081 0.956698i \(-0.405985\pi\)
0.291081 + 0.956698i \(0.405985\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 16.0000i 1.02640i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.00000 0.190885
\(248\) 0 0
\(249\) −6.00000 −0.380235
\(250\) 0 0
\(251\) − 24.0000i − 1.51487i −0.652913 0.757433i \(-0.726453\pi\)
0.652913 0.757433i \(-0.273547\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −24.0000 −1.49708 −0.748539 0.663090i \(-0.769245\pi\)
−0.748539 + 0.663090i \(0.769245\pi\)
\(258\) 0 0
\(259\) − 18.0000i − 1.11847i
\(260\) 0 0
\(261\) − 18.0000i − 1.11417i
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.0000i 1.09748i 0.835993 + 0.548740i \(0.184892\pi\)
−0.835993 + 0.548740i \(0.815108\pi\)
\(270\) 0 0
\(271\) 9.00000 0.546711 0.273356 0.961913i \(-0.411866\pi\)
0.273356 + 0.961913i \(0.411866\pi\)
\(272\) 0 0
\(273\) −9.00000 −0.544705
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 18.0000i − 1.08152i −0.841178 0.540758i \(-0.818138\pi\)
0.841178 0.540758i \(-0.181862\pi\)
\(278\) 0 0
\(279\) 12.0000 0.718421
\(280\) 0 0
\(281\) −24.0000 −1.43172 −0.715860 0.698244i \(-0.753965\pi\)
−0.715860 + 0.698244i \(0.753965\pi\)
\(282\) 0 0
\(283\) − 14.0000i − 0.832214i −0.909316 0.416107i \(-0.863394\pi\)
0.909316 0.416107i \(-0.136606\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 18.0000 1.06251
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) − 8.00000i − 0.468968i
\(292\) 0 0
\(293\) − 9.00000i − 0.525786i −0.964825 0.262893i \(-0.915323\pi\)
0.964825 0.262893i \(-0.0846766\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 27.0000i − 1.56145i
\(300\) 0 0
\(301\) 24.0000i 1.38334i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 20.0000i 1.14146i 0.821138 + 0.570730i \(0.193340\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(308\) 0 0
\(309\) 6.00000i 0.341328i
\(310\) 0 0
\(311\) −9.00000 −0.510343 −0.255172 0.966896i \(-0.582132\pi\)
−0.255172 + 0.966896i \(0.582132\pi\)
\(312\) 0 0
\(313\) −17.0000 −0.960897 −0.480448 0.877023i \(-0.659526\pi\)
−0.480448 + 0.877023i \(0.659526\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.00000i 0.505490i 0.967533 + 0.252745i \(0.0813334\pi\)
−0.967533 + 0.252745i \(0.918667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 3.00000 0.167444
\(322\) 0 0
\(323\) − 3.00000i − 0.166924i
\(324\) 0 0
\(325\) 15.0000i 0.832050i
\(326\) 0 0
\(327\) −9.00000 −0.497701
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.00000i 0.0549650i 0.999622 + 0.0274825i \(0.00874905\pi\)
−0.999622 + 0.0274825i \(0.991251\pi\)
\(332\) 0 0
\(333\) − 12.0000i − 0.657596i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4.00000 0.217894 0.108947 0.994048i \(-0.465252\pi\)
0.108947 + 0.994048i \(0.465252\pi\)
\(338\) 0 0
\(339\) − 12.0000i − 0.651751i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.0000i 0.966291i 0.875540 + 0.483145i \(0.160506\pi\)
−0.875540 + 0.483145i \(0.839494\pi\)
\(348\) 0 0
\(349\) − 24.0000i − 1.28469i −0.766415 0.642345i \(-0.777962\pi\)
0.766415 0.642345i \(-0.222038\pi\)
\(350\) 0 0
\(351\) −15.0000 −0.800641
\(352\) 0 0
\(353\) −27.0000 −1.43706 −0.718532 0.695493i \(-0.755186\pi\)
−0.718532 + 0.695493i \(0.755186\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 9.00000i 0.476331i
\(358\) 0 0
\(359\) 9.00000 0.475002 0.237501 0.971387i \(-0.423672\pi\)
0.237501 + 0.971387i \(0.423672\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) 11.0000i 0.577350i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −24.0000 −1.25279 −0.626395 0.779506i \(-0.715470\pi\)
−0.626395 + 0.779506i \(0.715470\pi\)
\(368\) 0 0
\(369\) 12.0000 0.624695
\(370\) 0 0
\(371\) 27.0000i 1.40177i
\(372\) 0 0
\(373\) − 9.00000i − 0.466002i −0.972476 0.233001i \(-0.925145\pi\)
0.972476 0.233001i \(-0.0748546\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 27.0000 1.39057
\(378\) 0 0
\(379\) − 25.0000i − 1.28416i −0.766636 0.642082i \(-0.778071\pi\)
0.766636 0.642082i \(-0.221929\pi\)
\(380\) 0 0
\(381\) − 18.0000i − 0.922168i
\(382\) 0 0
\(383\) 18.0000 0.919757 0.459879 0.887982i \(-0.347893\pi\)
0.459879 + 0.887982i \(0.347893\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 16.0000i 0.813326i
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) −27.0000 −1.36545
\(392\) 0 0
\(393\) 12.0000 0.605320
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 6.00000i − 0.301131i −0.988600 0.150566i \(-0.951890\pi\)
0.988600 0.150566i \(-0.0481095\pi\)
\(398\) 0 0
\(399\) 3.00000 0.150188
\(400\) 0 0
\(401\) −36.0000 −1.79775 −0.898877 0.438201i \(-0.855616\pi\)
−0.898877 + 0.438201i \(0.855616\pi\)
\(402\) 0 0
\(403\) 18.0000i 0.896644i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −22.0000 −1.08783 −0.543915 0.839140i \(-0.683059\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 0 0
\(411\) 9.00000i 0.443937i
\(412\) 0 0
\(413\) 9.00000i 0.442861i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 14.0000 0.685583
\(418\) 0 0
\(419\) − 36.0000i − 1.75872i −0.476162 0.879358i \(-0.657972\pi\)
0.476162 0.879358i \(-0.342028\pi\)
\(420\) 0 0
\(421\) − 27.0000i − 1.31590i −0.753062 0.657950i \(-0.771424\pi\)
0.753062 0.657950i \(-0.228576\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 15.0000 0.727607
\(426\) 0 0
\(427\) 18.0000i 0.871081i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.0000 0.867029 0.433515 0.901146i \(-0.357273\pi\)
0.433515 + 0.901146i \(0.357273\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.00000i 0.430528i
\(438\) 0 0
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 0 0
\(441\) 4.00000 0.190476
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 18.0000 0.851371
\(448\) 0 0
\(449\) −36.0000 −1.69895 −0.849473 0.527633i \(-0.823080\pi\)
−0.849473 + 0.527633i \(0.823080\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 35.0000 1.63723 0.818615 0.574342i \(-0.194742\pi\)
0.818615 + 0.574342i \(0.194742\pi\)
\(458\) 0 0
\(459\) 15.0000i 0.700140i
\(460\) 0 0
\(461\) 36.0000i 1.67669i 0.545142 + 0.838344i \(0.316476\pi\)
−0.545142 + 0.838344i \(0.683524\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.0000i 1.11059i 0.831654 + 0.555294i \(0.187394\pi\)
−0.831654 + 0.555294i \(0.812606\pi\)
\(468\) 0 0
\(469\) 15.0000i 0.692636i
\(470\) 0 0
\(471\) 24.0000 1.10586
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 5.00000i − 0.229416i
\(476\) 0 0
\(477\) 18.0000i 0.824163i
\(478\) 0 0
\(479\) −36.0000 −1.64488 −0.822441 0.568850i \(-0.807388\pi\)
−0.822441 + 0.568850i \(0.807388\pi\)
\(480\) 0 0
\(481\) 18.0000 0.820729
\(482\) 0 0
\(483\) − 27.0000i − 1.22854i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 18.0000 0.815658 0.407829 0.913058i \(-0.366286\pi\)
0.407829 + 0.913058i \(0.366286\pi\)
\(488\) 0 0
\(489\) 2.00000 0.0904431
\(490\) 0 0
\(491\) − 24.0000i − 1.08310i −0.840667 0.541552i \(-0.817837\pi\)
0.840667 0.541552i \(-0.182163\pi\)
\(492\) 0 0
\(493\) − 27.0000i − 1.21602i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 32.0000i 1.43252i 0.697835 + 0.716258i \(0.254147\pi\)
−0.697835 + 0.716258i \(0.745853\pi\)
\(500\) 0 0
\(501\) − 18.0000i − 0.804181i
\(502\) 0 0
\(503\) −9.00000 −0.401290 −0.200645 0.979664i \(-0.564304\pi\)
−0.200645 + 0.979664i \(0.564304\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 4.00000i 0.177646i
\(508\) 0 0
\(509\) − 18.0000i − 0.797836i −0.916987 0.398918i \(-0.869386\pi\)
0.916987 0.398918i \(-0.130614\pi\)
\(510\) 0 0
\(511\) 33.0000 1.45983
\(512\) 0 0
\(513\) 5.00000 0.220755
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 18.0000 0.790112
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) 29.0000i 1.26808i 0.773300 + 0.634041i \(0.218605\pi\)
−0.773300 + 0.634041i \(0.781395\pi\)
\(524\) 0 0
\(525\) 15.0000i 0.654654i
\(526\) 0 0
\(527\) 18.0000 0.784092
\(528\) 0 0
\(529\) 58.0000 2.52174
\(530\) 0 0
\(531\) 6.00000i 0.260378i
\(532\) 0 0
\(533\) 18.0000i 0.779667i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 12.0000 0.517838
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 30.0000i 1.28980i 0.764267 + 0.644900i \(0.223101\pi\)
−0.764267 + 0.644900i \(0.776899\pi\)
\(542\) 0 0
\(543\) −18.0000 −0.772454
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000i 1.19719i 0.801050 + 0.598597i \(0.204275\pi\)
−0.801050 + 0.598597i \(0.795725\pi\)
\(548\) 0 0
\(549\) 12.0000i 0.512148i
\(550\) 0 0
\(551\) −9.00000 −0.383413
\(552\) 0 0
\(553\) −36.0000 −1.53088
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 36.0000i − 1.52537i −0.646771 0.762684i \(-0.723881\pi\)
0.646771 0.762684i \(-0.276119\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.00000 0.125988
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) − 14.0000i − 0.585882i −0.956131 0.292941i \(-0.905366\pi\)
0.956131 0.292941i \(-0.0946339\pi\)
\(572\) 0 0
\(573\) 9.00000i 0.375980i
\(574\) 0 0
\(575\) −45.0000 −1.87663
\(576\) 0 0
\(577\) 7.00000 0.291414 0.145707 0.989328i \(-0.453454\pi\)
0.145707 + 0.989328i \(0.453454\pi\)
\(578\) 0 0
\(579\) − 4.00000i − 0.166234i
\(580\) 0 0
\(581\) 18.0000i 0.746766i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 12.0000i − 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) − 6.00000i − 0.247226i
\(590\) 0 0
\(591\) −18.0000 −0.740421
\(592\) 0 0
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 15.0000i 0.613909i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 0 0
\(603\) 10.0000i 0.407231i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 12.0000 0.487065 0.243532 0.969893i \(-0.421694\pi\)
0.243532 + 0.969893i \(0.421694\pi\)
\(608\) 0 0
\(609\) 27.0000 1.09410
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 18.0000i 0.727013i 0.931592 + 0.363507i \(0.118421\pi\)
−0.931592 + 0.363507i \(0.881579\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) 10.0000i 0.401934i 0.979598 + 0.200967i \(0.0644084\pi\)
−0.979598 + 0.200967i \(0.935592\pi\)
\(620\) 0 0
\(621\) − 45.0000i − 1.80579i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 18.0000i − 0.717707i
\(630\) 0 0
\(631\) 48.0000 1.91085 0.955425 0.295234i \(-0.0953977\pi\)
0.955425 + 0.295234i \(0.0953977\pi\)
\(632\) 0 0
\(633\) −5.00000 −0.198732
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.00000i 0.237729i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) − 32.0000i − 1.26196i −0.775800 0.630978i \(-0.782654\pi\)
0.775800 0.630978i \(-0.217346\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 27.0000 1.06148 0.530740 0.847535i \(-0.321914\pi\)
0.530740 + 0.847535i \(0.321914\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 18.0000i 0.705476i
\(652\) 0 0
\(653\) 18.0000i 0.704394i 0.935926 + 0.352197i \(0.114565\pi\)
−0.935926 + 0.352197i \(0.885435\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 22.0000 0.858302
\(658\) 0 0
\(659\) − 9.00000i − 0.350590i −0.984516 0.175295i \(-0.943912\pi\)
0.984516 0.175295i \(-0.0560880\pi\)
\(660\) 0 0
\(661\) − 45.0000i − 1.75030i −0.483854 0.875149i \(-0.660764\pi\)
0.483854 0.875149i \(-0.339236\pi\)
\(662\) 0 0
\(663\) −9.00000 −0.349531
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 81.0000i 3.13633i
\(668\) 0 0
\(669\) − 6.00000i − 0.231973i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 46.0000 1.77317 0.886585 0.462566i \(-0.153071\pi\)
0.886585 + 0.462566i \(0.153071\pi\)
\(674\) 0 0
\(675\) 25.0000i 0.962250i
\(676\) 0 0
\(677\) − 9.00000i − 0.345898i −0.984931 0.172949i \(-0.944670\pi\)
0.984931 0.172949i \(-0.0553296\pi\)
\(678\) 0 0
\(679\) −24.0000 −0.921035
\(680\) 0 0
\(681\) 27.0000 1.03464
\(682\) 0 0
\(683\) − 24.0000i − 0.918334i −0.888350 0.459167i \(-0.848148\pi\)
0.888350 0.459167i \(-0.151852\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −6.00000 −0.228914
\(688\) 0 0
\(689\) −27.0000 −1.02862
\(690\) 0 0
\(691\) 46.0000i 1.74992i 0.484193 + 0.874961i \(0.339113\pi\)
−0.484193 + 0.874961i \(0.660887\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 18.0000 0.681799
\(698\) 0 0
\(699\) − 6.00000i − 0.226941i
\(700\) 0 0
\(701\) − 36.0000i − 1.35970i −0.733351 0.679851i \(-0.762045\pi\)
0.733351 0.679851i \(-0.237955\pi\)
\(702\) 0 0
\(703\) −6.00000 −0.226294
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 42.0000i 1.57734i 0.614815 + 0.788672i \(0.289231\pi\)
−0.614815 + 0.788672i \(0.710769\pi\)
\(710\) 0 0
\(711\) −24.0000 −0.900070
\(712\) 0 0
\(713\) −54.0000 −2.02232
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 9.00000i 0.336111i
\(718\) 0 0
\(719\) −27.0000 −1.00693 −0.503465 0.864016i \(-0.667942\pi\)
−0.503465 + 0.864016i \(0.667942\pi\)
\(720\) 0 0
\(721\) 18.0000 0.670355
\(722\) 0 0
\(723\) − 10.0000i − 0.371904i
\(724\) 0 0
\(725\) − 45.0000i − 1.67126i
\(726\) 0 0
\(727\) 3.00000 0.111264 0.0556319 0.998451i \(-0.482283\pi\)
0.0556319 + 0.998451i \(0.482283\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 24.0000i 0.887672i
\(732\) 0 0
\(733\) 36.0000i 1.32969i 0.746981 + 0.664845i \(0.231502\pi\)
−0.746981 + 0.664845i \(0.768498\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 16.0000i − 0.588570i −0.955718 0.294285i \(-0.904919\pi\)
0.955718 0.294285i \(-0.0950814\pi\)
\(740\) 0 0
\(741\) 3.00000i 0.110208i
\(742\) 0 0
\(743\) 18.0000 0.660356 0.330178 0.943919i \(-0.392891\pi\)
0.330178 + 0.943919i \(0.392891\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.0000i 0.439057i
\(748\) 0 0
\(749\) − 9.00000i − 0.328853i
\(750\) 0 0
\(751\) −30.0000 −1.09472 −0.547358 0.836899i \(-0.684366\pi\)
−0.547358 + 0.836899i \(0.684366\pi\)
\(752\) 0 0
\(753\) 24.0000 0.874609
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 6.00000i − 0.218074i −0.994038 0.109037i \(-0.965223\pi\)
0.994038 0.109037i \(-0.0347767\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 33.0000 1.19625 0.598125 0.801403i \(-0.295913\pi\)
0.598125 + 0.801403i \(0.295913\pi\)
\(762\) 0 0
\(763\) 27.0000i 0.977466i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.00000 −0.324971
\(768\) 0 0
\(769\) −31.0000 −1.11789 −0.558944 0.829205i \(-0.688793\pi\)
−0.558944 + 0.829205i \(0.688793\pi\)
\(770\) 0 0
\(771\) − 24.0000i − 0.864339i
\(772\) 0 0
\(773\) − 9.00000i − 0.323708i −0.986815 0.161854i \(-0.948253\pi\)
0.986815 0.161854i \(-0.0517473\pi\)
\(774\) 0 0
\(775\) 30.0000 1.07763
\(776\) 0 0
\(777\) 18.0000 0.645746
\(778\) 0 0
\(779\) − 6.00000i − 0.214972i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 45.0000 1.60817
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 23.0000i − 0.819861i −0.912117 0.409931i \(-0.865553\pi\)
0.912117 0.409931i \(-0.134447\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −36.0000 −1.28001
\(792\) 0 0
\(793\) −18.0000 −0.639199
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.0000i 0.956389i 0.878254 + 0.478195i \(0.158709\pi\)
−0.878254 + 0.478195i \(0.841291\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −18.0000 −0.633630
\(808\) 0 0
\(809\) −21.0000 −0.738321 −0.369160 0.929366i \(-0.620355\pi\)
−0.369160 + 0.929366i \(0.620355\pi\)
\(810\) 0 0
\(811\) − 43.0000i − 1.50993i −0.655763 0.754967i \(-0.727653\pi\)
0.655763 0.754967i \(-0.272347\pi\)
\(812\) 0 0
\(813\) 9.00000i 0.315644i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 8.00000 0.279885
\(818\) 0 0
\(819\) 18.0000i 0.628971i
\(820\) 0 0
\(821\) − 18.0000i − 0.628204i −0.949389 0.314102i \(-0.898297\pi\)
0.949389 0.314102i \(-0.101703\pi\)
\(822\) 0 0
\(823\) 9.00000 0.313720 0.156860 0.987621i \(-0.449863\pi\)
0.156860 + 0.987621i \(0.449863\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 39.0000i 1.35616i 0.734987 + 0.678081i \(0.237188\pi\)
−0.734987 + 0.678081i \(0.762812\pi\)
\(828\) 0 0
\(829\) 21.0000i 0.729360i 0.931133 + 0.364680i \(0.118822\pi\)
−0.931133 + 0.364680i \(0.881178\pi\)
\(830\) 0 0
\(831\) 18.0000 0.624413
\(832\) 0 0
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 30.0000i 1.03695i
\(838\) 0 0
\(839\) 36.0000 1.24286 0.621429 0.783470i \(-0.286552\pi\)
0.621429 + 0.783470i \(0.286552\pi\)
\(840\) 0 0
\(841\) −52.0000 −1.79310
\(842\) 0 0
\(843\) − 24.0000i − 0.826604i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 33.0000 1.13389
\(848\) 0 0
\(849\) 14.0000 0.480479
\(850\) 0 0
\(851\) 54.0000i 1.85110i
\(852\) 0 0
\(853\) 6.00000i 0.205436i 0.994711 + 0.102718i \(0.0327539\pi\)
−0.994711 + 0.102718i \(0.967246\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.0000 −0.409912 −0.204956 0.978771i \(-0.565705\pi\)
−0.204956 + 0.978771i \(0.565705\pi\)
\(858\) 0 0
\(859\) − 22.0000i − 0.750630i −0.926897 0.375315i \(-0.877534\pi\)
0.926897 0.375315i \(-0.122466\pi\)
\(860\) 0 0
\(861\) 18.0000i 0.613438i
\(862\) 0 0
\(863\) 54.0000 1.83818 0.919091 0.394046i \(-0.128925\pi\)
0.919091 + 0.394046i \(0.128925\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 8.00000i − 0.271694i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −15.0000 −0.508256
\(872\) 0 0
\(873\) −16.0000 −0.541518
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 21.0000i 0.709120i 0.935033 + 0.354560i \(0.115369\pi\)
−0.935033 + 0.354560i \(0.884631\pi\)
\(878\) 0 0
\(879\) 9.00000 0.303562
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 34.0000i 1.14419i 0.820187 + 0.572096i \(0.193869\pi\)
−0.820187 + 0.572096i \(0.806131\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −18.0000 −0.604381 −0.302190 0.953248i \(-0.597718\pi\)
−0.302190 + 0.953248i \(0.597718\pi\)
\(888\) 0 0
\(889\) −54.0000 −1.81110
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 27.0000 0.901504
\(898\) 0 0
\(899\) − 54.0000i − 1.80100i
\(900\) 0 0
\(901\) 27.0000i 0.899500i
\(902\) 0 0
\(903\) −24.0000 −0.798670
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 17.0000i 0.564476i 0.959344 + 0.282238i \(0.0910767\pi\)
−0.959344 + 0.282238i \(0.908923\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 36.0000i − 1.18882i
\(918\) 0 0
\(919\) −3.00000 −0.0989609 −0.0494804 0.998775i \(-0.515757\pi\)
−0.0494804 + 0.998775i \(0.515757\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 30.0000i − 0.986394i
\(926\) 0 0
\(927\) 12.0000 0.394132
\(928\) 0 0
\(929\) 21.0000 0.688988 0.344494 0.938789i \(-0.388051\pi\)
0.344494 + 0.938789i \(0.388051\pi\)
\(930\) 0 0
\(931\) − 2.00000i − 0.0655474i
\(932\) 0 0
\(933\) − 9.00000i − 0.294647i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 7.00000 0.228680 0.114340 0.993442i \(-0.463525\pi\)
0.114340 + 0.993442i \(0.463525\pi\)
\(938\) 0 0
\(939\) − 17.0000i − 0.554774i
\(940\) 0 0
\(941\) 27.0000i 0.880175i 0.897955 + 0.440087i \(0.145053\pi\)
−0.897955 + 0.440087i \(0.854947\pi\)
\(942\) 0 0
\(943\) −54.0000 −1.75848
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 24.0000i − 0.779895i −0.920837 0.389948i \(-0.872493\pi\)
0.920837 0.389948i \(-0.127507\pi\)
\(948\) 0 0
\(949\) 33.0000i 1.07123i
\(950\) 0 0
\(951\) −9.00000 −0.291845
\(952\) 0 0
\(953\) −54.0000 −1.74923 −0.874616 0.484817i \(-0.838886\pi\)
−0.874616 + 0.484817i \(0.838886\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 27.0000 0.871875
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) − 6.00000i − 0.193347i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −24.0000 −0.771788 −0.385894 0.922543i \(-0.626107\pi\)
−0.385894 + 0.922543i \(0.626107\pi\)
\(968\) 0 0
\(969\) 3.00000 0.0963739
\(970\) 0 0
\(971\) 24.0000i 0.770197i 0.922876 + 0.385098i \(0.125832\pi\)
−0.922876 + 0.385098i \(0.874168\pi\)
\(972\) 0 0
\(973\) − 42.0000i − 1.34646i
\(974\) 0 0
\(975\) −15.0000 −0.480384
\(976\) 0 0
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 18.0000i 0.574696i
\(982\) 0 0
\(983\) 18.0000 0.574111 0.287055 0.957914i \(-0.407324\pi\)
0.287055 + 0.957914i \(0.407324\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 72.0000i − 2.28947i
\(990\) 0 0
\(991\) 12.0000 0.381193 0.190596 0.981669i \(-0.438958\pi\)
0.190596 + 0.981669i \(0.438958\pi\)
\(992\) 0 0
\(993\) −1.00000 −0.0317340
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 42.0000i − 1.33015i −0.746775 0.665077i \(-0.768399\pi\)
0.746775 0.665077i \(-0.231601\pi\)
\(998\) 0 0
\(999\) 30.0000 0.949158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.c.d.609.2 yes 2
4.3 odd 2 1216.2.c.a.609.1 2
8.3 odd 2 1216.2.c.a.609.2 yes 2
8.5 even 2 inner 1216.2.c.d.609.1 yes 2
16.3 odd 4 4864.2.a.m.1.1 1
16.5 even 4 4864.2.a.l.1.1 1
16.11 odd 4 4864.2.a.e.1.1 1
16.13 even 4 4864.2.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1216.2.c.a.609.1 2 4.3 odd 2
1216.2.c.a.609.2 yes 2 8.3 odd 2
1216.2.c.d.609.1 yes 2 8.5 even 2 inner
1216.2.c.d.609.2 yes 2 1.1 even 1 trivial
4864.2.a.d.1.1 1 16.13 even 4
4864.2.a.e.1.1 1 16.11 odd 4
4864.2.a.l.1.1 1 16.5 even 4
4864.2.a.m.1.1 1 16.3 odd 4