# Properties

 Label 1216.2.b.b Level $1216$ Weight $2$ Character orbit 1216.b Analytic conductor $9.710$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1216,2,Mod(607,1216)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1216, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([1, 1, 1]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1216.607");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1216 = 2^{6} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1216.b (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$9.70980888579$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{12})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} - x^{2} + 1$$ x^4 - x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 2 \beta_1 q^{3} - \beta_{2} q^{5} - \beta_1 q^{7} - q^{9}+O(q^{10})$$ q + 2*b1 * q^3 - b2 * q^5 - b1 * q^7 - q^9 $$q + 2 \beta_1 q^{3} - \beta_{2} q^{5} - \beta_1 q^{7} - q^{9} - 3 \beta_{3} q^{11} + 4 q^{13} + 2 \beta_{3} q^{15} + 3 q^{17} + ( - \beta_{3} - 4 \beta_1) q^{19} + 2 q^{21} + 2 q^{25} + 4 \beta_1 q^{27} + 6 q^{29} + 6 \beta_{3} q^{31} - 6 \beta_{2} q^{33} - \beta_{3} q^{35} - 2 q^{37} + 8 \beta_1 q^{39} - 2 \beta_{2} q^{41} + 3 \beta_{3} q^{43} + \beta_{2} q^{45} - 9 \beta_1 q^{47} + 6 q^{49} + 6 \beta_1 q^{51} - 6 q^{53} + 9 \beta_1 q^{55} + ( - 2 \beta_{2} + 8) q^{57} - \beta_{2} q^{61} + \beta_1 q^{63} - 4 \beta_{2} q^{65} + 2 \beta_1 q^{67} + 4 \beta_{3} q^{71} - 11 q^{73} + 4 \beta_1 q^{75} + 3 \beta_{2} q^{77} + 2 \beta_{3} q^{79} - 11 q^{81} + 2 \beta_{3} q^{83} - 3 \beta_{2} q^{85} + 12 \beta_1 q^{87} + 2 \beta_{2} q^{89} - 4 \beta_1 q^{91} + 12 \beta_{2} q^{93} + ( - 4 \beta_{3} + 3 \beta_1) q^{95} - 8 \beta_{2} q^{97} + 3 \beta_{3} q^{99}+O(q^{100})$$ q + 2*b1 * q^3 - b2 * q^5 - b1 * q^7 - q^9 - 3*b3 * q^11 + 4 * q^13 + 2*b3 * q^15 + 3 * q^17 + (-b3 - 4*b1) * q^19 + 2 * q^21 + 2 * q^25 + 4*b1 * q^27 + 6 * q^29 + 6*b3 * q^31 - 6*b2 * q^33 - b3 * q^35 - 2 * q^37 + 8*b1 * q^39 - 2*b2 * q^41 + 3*b3 * q^43 + b2 * q^45 - 9*b1 * q^47 + 6 * q^49 + 6*b1 * q^51 - 6 * q^53 + 9*b1 * q^55 + (-2*b2 + 8) * q^57 - b2 * q^61 + b1 * q^63 - 4*b2 * q^65 + 2*b1 * q^67 + 4*b3 * q^71 - 11 * q^73 + 4*b1 * q^75 + 3*b2 * q^77 + 2*b3 * q^79 - 11 * q^81 + 2*b3 * q^83 - 3*b2 * q^85 + 12*b1 * q^87 + 2*b2 * q^89 - 4*b1 * q^91 + 12*b2 * q^93 + (-4*b3 + 3*b1) * q^95 - 8*b2 * q^97 + 3*b3 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 4 q^{9}+O(q^{10})$$ 4 * q - 4 * q^9 $$4 q - 4 q^{9} + 16 q^{13} + 12 q^{17} + 8 q^{21} + 8 q^{25} + 24 q^{29} - 8 q^{37} + 24 q^{49} - 24 q^{53} + 32 q^{57} - 44 q^{73} - 44 q^{81}+O(q^{100})$$ 4 * q - 4 * q^9 + 16 * q^13 + 12 * q^17 + 8 * q^21 + 8 * q^25 + 24 * q^29 - 8 * q^37 + 24 * q^49 - 24 * q^53 + 32 * q^57 - 44 * q^73 - 44 * q^81

Basis of coefficient ring

 $$\beta_{1}$$ $$=$$ $$\zeta_{12}^{3}$$ v^3 $$\beta_{2}$$ $$=$$ $$2\zeta_{12}^{2} - 1$$ 2*v^2 - 1 $$\beta_{3}$$ $$=$$ $$-\zeta_{12}^{3} + 2\zeta_{12}$$ -v^3 + 2*v
 $$\zeta_{12}$$ $$=$$ $$( \beta_{3} + \beta_1 ) / 2$$ (b3 + b1) / 2 $$\zeta_{12}^{2}$$ $$=$$ $$( \beta_{2} + 1 ) / 2$$ (b2 + 1) / 2 $$\zeta_{12}^{3}$$ $$=$$ $$\beta_1$$ b1

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$705$$ $$837$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
607.1
 −0.866025 − 0.500000i 0.866025 − 0.500000i 0.866025 + 0.500000i −0.866025 + 0.500000i
0 2.00000i 0 1.73205i 0 1.00000i 0 −1.00000 0
607.2 0 2.00000i 0 1.73205i 0 1.00000i 0 −1.00000 0
607.3 0 2.00000i 0 1.73205i 0 1.00000i 0 −1.00000 0
607.4 0 2.00000i 0 1.73205i 0 1.00000i 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
152.b even 2 1 inner
152.g odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.2.b.b yes 4
4.b odd 2 1 inner 1216.2.b.b yes 4
8.b even 2 1 1216.2.b.a 4
8.d odd 2 1 1216.2.b.a 4
19.b odd 2 1 1216.2.b.a 4
76.d even 2 1 1216.2.b.a 4
152.b even 2 1 inner 1216.2.b.b yes 4
152.g odd 2 1 inner 1216.2.b.b yes 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1216.2.b.a 4 8.b even 2 1
1216.2.b.a 4 8.d odd 2 1
1216.2.b.a 4 19.b odd 2 1
1216.2.b.a 4 76.d even 2 1
1216.2.b.b yes 4 1.a even 1 1 trivial
1216.2.b.b yes 4 4.b odd 2 1 inner
1216.2.b.b yes 4 152.b even 2 1 inner
1216.2.b.b yes 4 152.g odd 2 1 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1216, [\chi])$$:

 $$T_{3}^{2} + 4$$ T3^2 + 4 $$T_{5}^{2} + 3$$ T5^2 + 3 $$T_{13} - 4$$ T13 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$(T^{2} + 4)^{2}$$
$5$ $$(T^{2} + 3)^{2}$$
$7$ $$(T^{2} + 1)^{2}$$
$11$ $$(T^{2} - 27)^{2}$$
$13$ $$(T - 4)^{4}$$
$17$ $$(T - 3)^{4}$$
$19$ $$T^{4} + 26T^{2} + 361$$
$23$ $$T^{4}$$
$29$ $$(T - 6)^{4}$$
$31$ $$(T^{2} - 108)^{2}$$
$37$ $$(T + 2)^{4}$$
$41$ $$(T^{2} + 12)^{2}$$
$43$ $$(T^{2} - 27)^{2}$$
$47$ $$(T^{2} + 81)^{2}$$
$53$ $$(T + 6)^{4}$$
$59$ $$T^{4}$$
$61$ $$(T^{2} + 3)^{2}$$
$67$ $$(T^{2} + 4)^{2}$$
$71$ $$(T^{2} - 48)^{2}$$
$73$ $$(T + 11)^{4}$$
$79$ $$(T^{2} - 12)^{2}$$
$83$ $$(T^{2} - 12)^{2}$$
$89$ $$(T^{2} + 12)^{2}$$
$97$ $$(T^{2} + 192)^{2}$$