Properties

Label 1216.2.a.r
Level $1216$
Weight $2$
Character orbit 1216.a
Self dual yes
Analytic conductor $9.710$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 608)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 3q^{3} + q^{7} + 6q^{9} + O(q^{10}) \) \( q + 3q^{3} + q^{7} + 6q^{9} + 2q^{11} + q^{13} + 3q^{17} - q^{19} + 3q^{21} - 3q^{23} - 5q^{25} + 9q^{27} - 3q^{29} - 8q^{31} + 6q^{33} + 10q^{37} + 3q^{39} - 12q^{41} + 8q^{43} + 8q^{47} - 6q^{49} + 9q^{51} + 9q^{53} - 3q^{57} - 5q^{59} - 10q^{61} + 6q^{63} + 7q^{67} - 9q^{69} + 10q^{71} + q^{73} - 15q^{75} + 2q^{77} + 14q^{79} + 9q^{81} + 6q^{83} - 9q^{87} - 4q^{89} + q^{91} - 24q^{93} - 6q^{97} + 12q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 0 0 1.00000 0 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.2.a.r 1
4.b odd 2 1 1216.2.a.a 1
8.b even 2 1 608.2.a.a 1
8.d odd 2 1 608.2.a.f yes 1
24.f even 2 1 5472.2.a.i 1
24.h odd 2 1 5472.2.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
608.2.a.a 1 8.b even 2 1
608.2.a.f yes 1 8.d odd 2 1
1216.2.a.a 1 4.b odd 2 1
1216.2.a.r 1 1.a even 1 1 trivial
5472.2.a.i 1 24.f even 2 1
5472.2.a.l 1 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1216))\):

\( T_{3} - 3 \)
\( T_{5} \)
\( T_{7} - 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( -3 + T \)
$5$ \( T \)
$7$ \( -1 + T \)
$11$ \( -2 + T \)
$13$ \( -1 + T \)
$17$ \( -3 + T \)
$19$ \( 1 + T \)
$23$ \( 3 + T \)
$29$ \( 3 + T \)
$31$ \( 8 + T \)
$37$ \( -10 + T \)
$41$ \( 12 + T \)
$43$ \( -8 + T \)
$47$ \( -8 + T \)
$53$ \( -9 + T \)
$59$ \( 5 + T \)
$61$ \( 10 + T \)
$67$ \( -7 + T \)
$71$ \( -10 + T \)
$73$ \( -1 + T \)
$79$ \( -14 + T \)
$83$ \( -6 + T \)
$89$ \( 4 + T \)
$97$ \( 6 + T \)
show more
show less