# Properties

 Label 1216.2.a.h Level $1216$ Weight $2$ Character orbit 1216.a Self dual yes Analytic conductor $9.710$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1216,2,Mod(1,1216)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1216, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1216.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1216 = 2^{6} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1216.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$9.70980888579$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 608) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 3 q^{5} - 5 q^{7} - 3 q^{9}+O(q^{10})$$ q - 3 * q^5 - 5 * q^7 - 3 * q^9 $$q - 3 q^{5} - 5 q^{7} - 3 q^{9} + 5 q^{11} + 4 q^{13} - 3 q^{17} - q^{19} + 4 q^{25} + 10 q^{31} + 15 q^{35} - 8 q^{37} + 5 q^{43} + 9 q^{45} + 5 q^{47} + 18 q^{49} + 6 q^{53} - 15 q^{55} + 10 q^{59} + 5 q^{61} + 15 q^{63} - 12 q^{65} + 10 q^{67} + 10 q^{71} - 11 q^{73} - 25 q^{77} - 10 q^{79} + 9 q^{81} + 9 q^{85} - 10 q^{89} - 20 q^{91} + 3 q^{95} - 12 q^{97} - 15 q^{99}+O(q^{100})$$ q - 3 * q^5 - 5 * q^7 - 3 * q^9 + 5 * q^11 + 4 * q^13 - 3 * q^17 - q^19 + 4 * q^25 + 10 * q^31 + 15 * q^35 - 8 * q^37 + 5 * q^43 + 9 * q^45 + 5 * q^47 + 18 * q^49 + 6 * q^53 - 15 * q^55 + 10 * q^59 + 5 * q^61 + 15 * q^63 - 12 * q^65 + 10 * q^67 + 10 * q^71 - 11 * q^73 - 25 * q^77 - 10 * q^79 + 9 * q^81 + 9 * q^85 - 10 * q^89 - 20 * q^91 + 3 * q^95 - 12 * q^97 - 15 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −3.00000 0 −5.00000 0 −3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.2.a.h 1
4.b odd 2 1 1216.2.a.i 1
8.b even 2 1 608.2.a.d 1
8.d odd 2 1 608.2.a.e yes 1
24.f even 2 1 5472.2.a.d 1
24.h odd 2 1 5472.2.a.a 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
608.2.a.d 1 8.b even 2 1
608.2.a.e yes 1 8.d odd 2 1
1216.2.a.h 1 1.a even 1 1 trivial
1216.2.a.i 1 4.b odd 2 1
5472.2.a.a 1 24.h odd 2 1
5472.2.a.d 1 24.f even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1216))$$:

 $$T_{3}$$ T3 $$T_{5} + 3$$ T5 + 3 $$T_{7} + 5$$ T7 + 5

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T + 3$$
$7$ $$T + 5$$
$11$ $$T - 5$$
$13$ $$T - 4$$
$17$ $$T + 3$$
$19$ $$T + 1$$
$23$ $$T$$
$29$ $$T$$
$31$ $$T - 10$$
$37$ $$T + 8$$
$41$ $$T$$
$43$ $$T - 5$$
$47$ $$T - 5$$
$53$ $$T - 6$$
$59$ $$T - 10$$
$61$ $$T - 5$$
$67$ $$T - 10$$
$71$ $$T - 10$$
$73$ $$T + 11$$
$79$ $$T + 10$$
$83$ $$T$$
$89$ $$T + 10$$
$97$ $$T + 12$$