# Properties

 Label 1216.2.a.g Level $1216$ Weight $2$ Character orbit 1216.a Self dual yes Analytic conductor $9.710$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Learn more

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1216,2,Mod(1,1216)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1216, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1216.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1216 = 2^{6} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1216.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$9.70980888579$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 38) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{3} + 4 q^{5} - 3 q^{7} - 2 q^{9}+O(q^{10})$$ q - q^3 + 4 * q^5 - 3 * q^7 - 2 * q^9 $$q - q^{3} + 4 q^{5} - 3 q^{7} - 2 q^{9} + 2 q^{11} + q^{13} - 4 q^{15} + 3 q^{17} - q^{19} + 3 q^{21} + q^{23} + 11 q^{25} + 5 q^{27} + 5 q^{29} + 8 q^{31} - 2 q^{33} - 12 q^{35} + 2 q^{37} - q^{39} - 8 q^{41} + 4 q^{43} - 8 q^{45} - 8 q^{47} + 2 q^{49} - 3 q^{51} + q^{53} + 8 q^{55} + q^{57} + 15 q^{59} - 2 q^{61} + 6 q^{63} + 4 q^{65} + 3 q^{67} - q^{69} - 2 q^{71} + 9 q^{73} - 11 q^{75} - 6 q^{77} + 10 q^{79} + q^{81} - 6 q^{83} + 12 q^{85} - 5 q^{87} - 3 q^{91} - 8 q^{93} - 4 q^{95} - 2 q^{97} - 4 q^{99}+O(q^{100})$$ q - q^3 + 4 * q^5 - 3 * q^7 - 2 * q^9 + 2 * q^11 + q^13 - 4 * q^15 + 3 * q^17 - q^19 + 3 * q^21 + q^23 + 11 * q^25 + 5 * q^27 + 5 * q^29 + 8 * q^31 - 2 * q^33 - 12 * q^35 + 2 * q^37 - q^39 - 8 * q^41 + 4 * q^43 - 8 * q^45 - 8 * q^47 + 2 * q^49 - 3 * q^51 + q^53 + 8 * q^55 + q^57 + 15 * q^59 - 2 * q^61 + 6 * q^63 + 4 * q^65 + 3 * q^67 - q^69 - 2 * q^71 + 9 * q^73 - 11 * q^75 - 6 * q^77 + 10 * q^79 + q^81 - 6 * q^83 + 12 * q^85 - 5 * q^87 - 3 * q^91 - 8 * q^93 - 4 * q^95 - 2 * q^97 - 4 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −1.00000 0 4.00000 0 −3.00000 0 −2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.2.a.g 1
4.b odd 2 1 1216.2.a.n 1
8.b even 2 1 304.2.a.d 1
8.d odd 2 1 38.2.a.b 1
24.f even 2 1 342.2.a.d 1
24.h odd 2 1 2736.2.a.w 1
40.e odd 2 1 950.2.a.b 1
40.f even 2 1 7600.2.a.h 1
40.k even 4 2 950.2.b.c 2
56.e even 2 1 1862.2.a.f 1
88.g even 2 1 4598.2.a.a 1
104.h odd 2 1 6422.2.a.b 1
120.m even 2 1 8550.2.a.u 1
152.b even 2 1 722.2.a.b 1
152.g odd 2 1 5776.2.a.d 1
152.k odd 6 2 722.2.c.d 2
152.o even 6 2 722.2.c.f 2
152.u odd 18 6 722.2.e.c 6
152.v even 18 6 722.2.e.d 6
456.l odd 2 1 6498.2.a.y 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.2.a.b 1 8.d odd 2 1
304.2.a.d 1 8.b even 2 1
342.2.a.d 1 24.f even 2 1
722.2.a.b 1 152.b even 2 1
722.2.c.d 2 152.k odd 6 2
722.2.c.f 2 152.o even 6 2
722.2.e.c 6 152.u odd 18 6
722.2.e.d 6 152.v even 18 6
950.2.a.b 1 40.e odd 2 1
950.2.b.c 2 40.k even 4 2
1216.2.a.g 1 1.a even 1 1 trivial
1216.2.a.n 1 4.b odd 2 1
1862.2.a.f 1 56.e even 2 1
2736.2.a.w 1 24.h odd 2 1
4598.2.a.a 1 88.g even 2 1
5776.2.a.d 1 152.g odd 2 1
6422.2.a.b 1 104.h odd 2 1
6498.2.a.y 1 456.l odd 2 1
7600.2.a.h 1 40.f even 2 1
8550.2.a.u 1 120.m even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1216))$$:

 $$T_{3} + 1$$ T3 + 1 $$T_{5} - 4$$ T5 - 4 $$T_{7} + 3$$ T7 + 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 1$$
$5$ $$T - 4$$
$7$ $$T + 3$$
$11$ $$T - 2$$
$13$ $$T - 1$$
$17$ $$T - 3$$
$19$ $$T + 1$$
$23$ $$T - 1$$
$29$ $$T - 5$$
$31$ $$T - 8$$
$37$ $$T - 2$$
$41$ $$T + 8$$
$43$ $$T - 4$$
$47$ $$T + 8$$
$53$ $$T - 1$$
$59$ $$T - 15$$
$61$ $$T + 2$$
$67$ $$T - 3$$
$71$ $$T + 2$$
$73$ $$T - 9$$
$79$ $$T - 10$$
$83$ $$T + 6$$
$89$ $$T$$
$97$ $$T + 2$$
show more
show less