Properties

Label 1216.2.a.d.1.1
Level $1216$
Weight $2$
Character 1216.1
Self dual yes
Analytic conductor $9.710$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1216.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.00000 q^{3} +1.00000 q^{5} +3.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-2.00000 q^{3} +1.00000 q^{5} +3.00000 q^{7} +1.00000 q^{9} -3.00000 q^{11} +4.00000 q^{13} -2.00000 q^{15} +5.00000 q^{17} -1.00000 q^{19} -6.00000 q^{21} -4.00000 q^{25} +4.00000 q^{27} -2.00000 q^{29} -8.00000 q^{31} +6.00000 q^{33} +3.00000 q^{35} +10.0000 q^{37} -8.00000 q^{39} +6.00000 q^{41} -7.00000 q^{43} +1.00000 q^{45} +9.00000 q^{47} +2.00000 q^{49} -10.0000 q^{51} +8.00000 q^{53} -3.00000 q^{55} +2.00000 q^{57} +14.0000 q^{59} +5.00000 q^{61} +3.00000 q^{63} +4.00000 q^{65} +6.00000 q^{71} -15.0000 q^{73} +8.00000 q^{75} -9.00000 q^{77} +4.00000 q^{79} -11.0000 q^{81} +4.00000 q^{83} +5.00000 q^{85} +4.00000 q^{87} +12.0000 q^{91} +16.0000 q^{93} -1.00000 q^{95} +16.0000 q^{97} -3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) −2.00000 −0.516398
\(16\) 0 0
\(17\) 5.00000 1.21268 0.606339 0.795206i \(-0.292637\pi\)
0.606339 + 0.795206i \(0.292637\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −6.00000 −1.30931
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 6.00000 1.04447
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) −8.00000 −1.28103
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 9.00000 1.31278 0.656392 0.754420i \(-0.272082\pi\)
0.656392 + 0.754420i \(0.272082\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −10.0000 −1.40028
\(52\) 0 0
\(53\) 8.00000 1.09888 0.549442 0.835532i \(-0.314840\pi\)
0.549442 + 0.835532i \(0.314840\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) 14.0000 1.82264 0.911322 0.411693i \(-0.135063\pi\)
0.911322 + 0.411693i \(0.135063\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 0 0
\(63\) 3.00000 0.377964
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) −15.0000 −1.75562 −0.877809 0.479012i \(-0.840995\pi\)
−0.877809 + 0.479012i \(0.840995\pi\)
\(74\) 0 0
\(75\) 8.00000 0.923760
\(76\) 0 0
\(77\) −9.00000 −1.02565
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 5.00000 0.542326
\(86\) 0 0
\(87\) 4.00000 0.428845
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) 16.0000 1.65912
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) 18.0000 1.79107 0.895533 0.444994i \(-0.146794\pi\)
0.895533 + 0.444994i \(0.146794\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) −6.00000 −0.585540
\(106\) 0 0
\(107\) 10.0000 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 0 0
\(111\) −20.0000 −1.89832
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.00000 0.369800
\(118\) 0 0
\(119\) 15.0000 1.37505
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) −12.0000 −1.08200
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 6.00000 0.532414 0.266207 0.963916i \(-0.414230\pi\)
0.266207 + 0.963916i \(0.414230\pi\)
\(128\) 0 0
\(129\) 14.0000 1.23263
\(130\) 0 0
\(131\) −9.00000 −0.786334 −0.393167 0.919467i \(-0.628621\pi\)
−0.393167 + 0.919467i \(0.628621\pi\)
\(132\) 0 0
\(133\) −3.00000 −0.260133
\(134\) 0 0
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) 21.0000 1.79415 0.897076 0.441877i \(-0.145687\pi\)
0.897076 + 0.441877i \(0.145687\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 0 0
\(141\) −18.0000 −1.51587
\(142\) 0 0
\(143\) −12.0000 −1.00349
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 0 0
\(147\) −4.00000 −0.329914
\(148\) 0 0
\(149\) −17.0000 −1.39269 −0.696347 0.717705i \(-0.745193\pi\)
−0.696347 + 0.717705i \(0.745193\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) 5.00000 0.404226
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) −16.0000 −1.26888
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 6.00000 0.467099
\(166\) 0 0
\(167\) 2.00000 0.154765 0.0773823 0.997001i \(-0.475344\pi\)
0.0773823 + 0.997001i \(0.475344\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 0 0
\(175\) −12.0000 −0.907115
\(176\) 0 0
\(177\) −28.0000 −2.10461
\(178\) 0 0
\(179\) −18.0000 −1.34538 −0.672692 0.739923i \(-0.734862\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) −10.0000 −0.739221
\(184\) 0 0
\(185\) 10.0000 0.735215
\(186\) 0 0
\(187\) −15.0000 −1.09691
\(188\) 0 0
\(189\) 12.0000 0.872872
\(190\) 0 0
\(191\) 15.0000 1.08536 0.542681 0.839939i \(-0.317409\pi\)
0.542681 + 0.839939i \(0.317409\pi\)
\(192\) 0 0
\(193\) −24.0000 −1.72756 −0.863779 0.503871i \(-0.831909\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 0 0
\(195\) −8.00000 −0.572892
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 15.0000 1.06332 0.531661 0.846957i \(-0.321568\pi\)
0.531661 + 0.846957i \(0.321568\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) −6.00000 −0.413057 −0.206529 0.978441i \(-0.566217\pi\)
−0.206529 + 0.978441i \(0.566217\pi\)
\(212\) 0 0
\(213\) −12.0000 −0.822226
\(214\) 0 0
\(215\) −7.00000 −0.477396
\(216\) 0 0
\(217\) −24.0000 −1.62923
\(218\) 0 0
\(219\) 30.0000 2.02721
\(220\) 0 0
\(221\) 20.0000 1.34535
\(222\) 0 0
\(223\) −22.0000 −1.47323 −0.736614 0.676313i \(-0.763577\pi\)
−0.736614 + 0.676313i \(0.763577\pi\)
\(224\) 0 0
\(225\) −4.00000 −0.266667
\(226\) 0 0
\(227\) −20.0000 −1.32745 −0.663723 0.747978i \(-0.731025\pi\)
−0.663723 + 0.747978i \(0.731025\pi\)
\(228\) 0 0
\(229\) −1.00000 −0.0660819 −0.0330409 0.999454i \(-0.510519\pi\)
−0.0330409 + 0.999454i \(0.510519\pi\)
\(230\) 0 0
\(231\) 18.0000 1.18431
\(232\) 0 0
\(233\) −13.0000 −0.851658 −0.425829 0.904804i \(-0.640018\pi\)
−0.425829 + 0.904804i \(0.640018\pi\)
\(234\) 0 0
\(235\) 9.00000 0.587095
\(236\) 0 0
\(237\) −8.00000 −0.519656
\(238\) 0 0
\(239\) 3.00000 0.194054 0.0970269 0.995282i \(-0.469067\pi\)
0.0970269 + 0.995282i \(0.469067\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 0 0
\(243\) 10.0000 0.641500
\(244\) 0 0
\(245\) 2.00000 0.127775
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) 0 0
\(249\) −8.00000 −0.506979
\(250\) 0 0
\(251\) −13.0000 −0.820553 −0.410276 0.911961i \(-0.634568\pi\)
−0.410276 + 0.911961i \(0.634568\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −10.0000 −0.626224
\(256\) 0 0
\(257\) −24.0000 −1.49708 −0.748539 0.663090i \(-0.769245\pi\)
−0.748539 + 0.663090i \(0.769245\pi\)
\(258\) 0 0
\(259\) 30.0000 1.86411
\(260\) 0 0
\(261\) −2.00000 −0.123797
\(262\) 0 0
\(263\) 5.00000 0.308313 0.154157 0.988046i \(-0.450734\pi\)
0.154157 + 0.988046i \(0.450734\pi\)
\(264\) 0 0
\(265\) 8.00000 0.491436
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.00000 −0.243884 −0.121942 0.992537i \(-0.538912\pi\)
−0.121942 + 0.992537i \(0.538912\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) −24.0000 −1.45255
\(274\) 0 0
\(275\) 12.0000 0.723627
\(276\) 0 0
\(277\) −9.00000 −0.540758 −0.270379 0.962754i \(-0.587149\pi\)
−0.270379 + 0.962754i \(0.587149\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 13.0000 0.772770 0.386385 0.922338i \(-0.373724\pi\)
0.386385 + 0.922338i \(0.373724\pi\)
\(284\) 0 0
\(285\) 2.00000 0.118470
\(286\) 0 0
\(287\) 18.0000 1.06251
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) −32.0000 −1.87587
\(292\) 0 0
\(293\) 4.00000 0.233682 0.116841 0.993151i \(-0.462723\pi\)
0.116841 + 0.993151i \(0.462723\pi\)
\(294\) 0 0
\(295\) 14.0000 0.815112
\(296\) 0 0
\(297\) −12.0000 −0.696311
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −21.0000 −1.21042
\(302\) 0 0
\(303\) −36.0000 −2.06815
\(304\) 0 0
\(305\) 5.00000 0.286299
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) −28.0000 −1.59286
\(310\) 0 0
\(311\) −31.0000 −1.75785 −0.878924 0.476961i \(-0.841738\pi\)
−0.878924 + 0.476961i \(0.841738\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) 3.00000 0.169031
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) −20.0000 −1.11629
\(322\) 0 0
\(323\) −5.00000 −0.278207
\(324\) 0 0
\(325\) −16.0000 −0.887520
\(326\) 0 0
\(327\) 24.0000 1.32720
\(328\) 0 0
\(329\) 27.0000 1.48856
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 0 0
\(333\) 10.0000 0.547997
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) −4.00000 −0.217250
\(340\) 0 0
\(341\) 24.0000 1.29967
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.0000 1.44944 0.724718 0.689046i \(-0.241970\pi\)
0.724718 + 0.689046i \(0.241970\pi\)
\(348\) 0 0
\(349\) 19.0000 1.01705 0.508523 0.861048i \(-0.330192\pi\)
0.508523 + 0.861048i \(0.330192\pi\)
\(350\) 0 0
\(351\) 16.0000 0.854017
\(352\) 0 0
\(353\) 2.00000 0.106449 0.0532246 0.998583i \(-0.483050\pi\)
0.0532246 + 0.998583i \(0.483050\pi\)
\(354\) 0 0
\(355\) 6.00000 0.318447
\(356\) 0 0
\(357\) −30.0000 −1.58777
\(358\) 0 0
\(359\) 11.0000 0.580558 0.290279 0.956942i \(-0.406252\pi\)
0.290279 + 0.956942i \(0.406252\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 4.00000 0.209946
\(364\) 0 0
\(365\) −15.0000 −0.785136
\(366\) 0 0
\(367\) −16.0000 −0.835193 −0.417597 0.908633i \(-0.637127\pi\)
−0.417597 + 0.908633i \(0.637127\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 24.0000 1.24602
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 0 0
\(375\) 18.0000 0.929516
\(376\) 0 0
\(377\) −8.00000 −0.412021
\(378\) 0 0
\(379\) 18.0000 0.924598 0.462299 0.886724i \(-0.347025\pi\)
0.462299 + 0.886724i \(0.347025\pi\)
\(380\) 0 0
\(381\) −12.0000 −0.614779
\(382\) 0 0
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) −9.00000 −0.458682
\(386\) 0 0
\(387\) −7.00000 −0.355830
\(388\) 0 0
\(389\) 29.0000 1.47036 0.735179 0.677873i \(-0.237098\pi\)
0.735179 + 0.677873i \(0.237098\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 18.0000 0.907980
\(394\) 0 0
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) −13.0000 −0.652451 −0.326226 0.945292i \(-0.605777\pi\)
−0.326226 + 0.945292i \(0.605777\pi\)
\(398\) 0 0
\(399\) 6.00000 0.300376
\(400\) 0 0
\(401\) 24.0000 1.19850 0.599251 0.800561i \(-0.295465\pi\)
0.599251 + 0.800561i \(0.295465\pi\)
\(402\) 0 0
\(403\) −32.0000 −1.59403
\(404\) 0 0
\(405\) −11.0000 −0.546594
\(406\) 0 0
\(407\) −30.0000 −1.48704
\(408\) 0 0
\(409\) −8.00000 −0.395575 −0.197787 0.980245i \(-0.563376\pi\)
−0.197787 + 0.980245i \(0.563376\pi\)
\(410\) 0 0
\(411\) −42.0000 −2.07171
\(412\) 0 0
\(413\) 42.0000 2.06668
\(414\) 0 0
\(415\) 4.00000 0.196352
\(416\) 0 0
\(417\) −10.0000 −0.489702
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) −20.0000 −0.974740 −0.487370 0.873195i \(-0.662044\pi\)
−0.487370 + 0.873195i \(0.662044\pi\)
\(422\) 0 0
\(423\) 9.00000 0.437595
\(424\) 0 0
\(425\) −20.0000 −0.970143
\(426\) 0 0
\(427\) 15.0000 0.725901
\(428\) 0 0
\(429\) 24.0000 1.15873
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 4.00000 0.191785
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 26.0000 1.24091 0.620456 0.784241i \(-0.286947\pi\)
0.620456 + 0.784241i \(0.286947\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) 19.0000 0.902717 0.451359 0.892343i \(-0.350940\pi\)
0.451359 + 0.892343i \(0.350940\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 34.0000 1.60814
\(448\) 0 0
\(449\) 24.0000 1.13263 0.566315 0.824189i \(-0.308369\pi\)
0.566315 + 0.824189i \(0.308369\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 0 0
\(453\) 4.00000 0.187936
\(454\) 0 0
\(455\) 12.0000 0.562569
\(456\) 0 0
\(457\) −29.0000 −1.35656 −0.678281 0.734802i \(-0.737275\pi\)
−0.678281 + 0.734802i \(0.737275\pi\)
\(458\) 0 0
\(459\) 20.0000 0.933520
\(460\) 0 0
\(461\) −21.0000 −0.978068 −0.489034 0.872265i \(-0.662651\pi\)
−0.489034 + 0.872265i \(0.662651\pi\)
\(462\) 0 0
\(463\) 37.0000 1.71954 0.859768 0.510685i \(-0.170608\pi\)
0.859768 + 0.510685i \(0.170608\pi\)
\(464\) 0 0
\(465\) 16.0000 0.741982
\(466\) 0 0
\(467\) −13.0000 −0.601568 −0.300784 0.953692i \(-0.597248\pi\)
−0.300784 + 0.953692i \(0.597248\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 28.0000 1.29017
\(472\) 0 0
\(473\) 21.0000 0.965581
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 8.00000 0.366295
\(478\) 0 0
\(479\) 28.0000 1.27935 0.639676 0.768644i \(-0.279068\pi\)
0.639676 + 0.768644i \(0.279068\pi\)
\(480\) 0 0
\(481\) 40.0000 1.82384
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.0000 0.726523
\(486\) 0 0
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 0 0
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) −10.0000 −0.450377
\(494\) 0 0
\(495\) −3.00000 −0.134840
\(496\) 0 0
\(497\) 18.0000 0.807410
\(498\) 0 0
\(499\) −29.0000 −1.29822 −0.649109 0.760695i \(-0.724858\pi\)
−0.649109 + 0.760695i \(0.724858\pi\)
\(500\) 0 0
\(501\) −4.00000 −0.178707
\(502\) 0 0
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) −6.00000 −0.266469
\(508\) 0 0
\(509\) 8.00000 0.354594 0.177297 0.984157i \(-0.443265\pi\)
0.177297 + 0.984157i \(0.443265\pi\)
\(510\) 0 0
\(511\) −45.0000 −1.99068
\(512\) 0 0
\(513\) −4.00000 −0.176604
\(514\) 0 0
\(515\) 14.0000 0.616914
\(516\) 0 0
\(517\) −27.0000 −1.18746
\(518\) 0 0
\(519\) −4.00000 −0.175581
\(520\) 0 0
\(521\) 4.00000 0.175243 0.0876216 0.996154i \(-0.472073\pi\)
0.0876216 + 0.996154i \(0.472073\pi\)
\(522\) 0 0
\(523\) 26.0000 1.13690 0.568450 0.822718i \(-0.307543\pi\)
0.568450 + 0.822718i \(0.307543\pi\)
\(524\) 0 0
\(525\) 24.0000 1.04745
\(526\) 0 0
\(527\) −40.0000 −1.74243
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 14.0000 0.607548
\(532\) 0 0
\(533\) 24.0000 1.03956
\(534\) 0 0
\(535\) 10.0000 0.432338
\(536\) 0 0
\(537\) 36.0000 1.55351
\(538\) 0 0
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) −19.0000 −0.816874 −0.408437 0.912787i \(-0.633926\pi\)
−0.408437 + 0.912787i \(0.633926\pi\)
\(542\) 0 0
\(543\) 4.00000 0.171656
\(544\) 0 0
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 0 0
\(549\) 5.00000 0.213395
\(550\) 0 0
\(551\) 2.00000 0.0852029
\(552\) 0 0
\(553\) 12.0000 0.510292
\(554\) 0 0
\(555\) −20.0000 −0.848953
\(556\) 0 0
\(557\) 7.00000 0.296600 0.148300 0.988942i \(-0.452620\pi\)
0.148300 + 0.988942i \(0.452620\pi\)
\(558\) 0 0
\(559\) −28.0000 −1.18427
\(560\) 0 0
\(561\) 30.0000 1.26660
\(562\) 0 0
\(563\) 14.0000 0.590030 0.295015 0.955493i \(-0.404675\pi\)
0.295015 + 0.955493i \(0.404675\pi\)
\(564\) 0 0
\(565\) 2.00000 0.0841406
\(566\) 0 0
\(567\) −33.0000 −1.38587
\(568\) 0 0
\(569\) 8.00000 0.335377 0.167689 0.985840i \(-0.446370\pi\)
0.167689 + 0.985840i \(0.446370\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) 0 0
\(573\) −30.0000 −1.25327
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −37.0000 −1.54033 −0.770165 0.637845i \(-0.779826\pi\)
−0.770165 + 0.637845i \(0.779826\pi\)
\(578\) 0 0
\(579\) 48.0000 1.99481
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) −24.0000 −0.993978
\(584\) 0 0
\(585\) 4.00000 0.165380
\(586\) 0 0
\(587\) −29.0000 −1.19696 −0.598479 0.801138i \(-0.704228\pi\)
−0.598479 + 0.801138i \(0.704228\pi\)
\(588\) 0 0
\(589\) 8.00000 0.329634
\(590\) 0 0
\(591\) 36.0000 1.48084
\(592\) 0 0
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) 15.0000 0.614940
\(596\) 0 0
\(597\) −30.0000 −1.22782
\(598\) 0 0
\(599\) −8.00000 −0.326871 −0.163436 0.986554i \(-0.552258\pi\)
−0.163436 + 0.986554i \(0.552258\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.00000 −0.0813116
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 12.0000 0.486265
\(610\) 0 0
\(611\) 36.0000 1.45640
\(612\) 0 0
\(613\) 31.0000 1.25208 0.626039 0.779792i \(-0.284675\pi\)
0.626039 + 0.779792i \(0.284675\pi\)
\(614\) 0 0
\(615\) −12.0000 −0.483887
\(616\) 0 0
\(617\) 33.0000 1.32853 0.664265 0.747497i \(-0.268745\pi\)
0.664265 + 0.747497i \(0.268745\pi\)
\(618\) 0 0
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) −6.00000 −0.239617
\(628\) 0 0
\(629\) 50.0000 1.99363
\(630\) 0 0
\(631\) −25.0000 −0.995234 −0.497617 0.867397i \(-0.665792\pi\)
−0.497617 + 0.867397i \(0.665792\pi\)
\(632\) 0 0
\(633\) 12.0000 0.476957
\(634\) 0 0
\(635\) 6.00000 0.238103
\(636\) 0 0
\(637\) 8.00000 0.316972
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) −24.0000 −0.947943 −0.473972 0.880540i \(-0.657180\pi\)
−0.473972 + 0.880540i \(0.657180\pi\)
\(642\) 0 0
\(643\) −43.0000 −1.69575 −0.847877 0.530193i \(-0.822120\pi\)
−0.847877 + 0.530193i \(0.822120\pi\)
\(644\) 0 0
\(645\) 14.0000 0.551249
\(646\) 0 0
\(647\) −49.0000 −1.92639 −0.963194 0.268806i \(-0.913371\pi\)
−0.963194 + 0.268806i \(0.913371\pi\)
\(648\) 0 0
\(649\) −42.0000 −1.64864
\(650\) 0 0
\(651\) 48.0000 1.88127
\(652\) 0 0
\(653\) −21.0000 −0.821794 −0.410897 0.911682i \(-0.634784\pi\)
−0.410897 + 0.911682i \(0.634784\pi\)
\(654\) 0 0
\(655\) −9.00000 −0.351659
\(656\) 0 0
\(657\) −15.0000 −0.585206
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) 16.0000 0.622328 0.311164 0.950356i \(-0.399281\pi\)
0.311164 + 0.950356i \(0.399281\pi\)
\(662\) 0 0
\(663\) −40.0000 −1.55347
\(664\) 0 0
\(665\) −3.00000 −0.116335
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 44.0000 1.70114
\(670\) 0 0
\(671\) −15.0000 −0.579069
\(672\) 0 0
\(673\) 6.00000 0.231283 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(674\) 0 0
\(675\) −16.0000 −0.615840
\(676\) 0 0
\(677\) 38.0000 1.46046 0.730229 0.683202i \(-0.239413\pi\)
0.730229 + 0.683202i \(0.239413\pi\)
\(678\) 0 0
\(679\) 48.0000 1.84207
\(680\) 0 0
\(681\) 40.0000 1.53280
\(682\) 0 0
\(683\) −28.0000 −1.07139 −0.535695 0.844411i \(-0.679950\pi\)
−0.535695 + 0.844411i \(0.679950\pi\)
\(684\) 0 0
\(685\) 21.0000 0.802369
\(686\) 0 0
\(687\) 2.00000 0.0763048
\(688\) 0 0
\(689\) 32.0000 1.21910
\(690\) 0 0
\(691\) 15.0000 0.570627 0.285313 0.958434i \(-0.407902\pi\)
0.285313 + 0.958434i \(0.407902\pi\)
\(692\) 0 0
\(693\) −9.00000 −0.341882
\(694\) 0 0
\(695\) 5.00000 0.189661
\(696\) 0 0
\(697\) 30.0000 1.13633
\(698\) 0 0
\(699\) 26.0000 0.983410
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) −10.0000 −0.377157
\(704\) 0 0
\(705\) −18.0000 −0.677919
\(706\) 0 0
\(707\) 54.0000 2.03088
\(708\) 0 0
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) 0 0
\(717\) −6.00000 −0.224074
\(718\) 0 0
\(719\) −29.0000 −1.08152 −0.540759 0.841178i \(-0.681863\pi\)
−0.540759 + 0.841178i \(0.681863\pi\)
\(720\) 0 0
\(721\) 42.0000 1.56416
\(722\) 0 0
\(723\) −36.0000 −1.33885
\(724\) 0 0
\(725\) 8.00000 0.297113
\(726\) 0 0
\(727\) −7.00000 −0.259616 −0.129808 0.991539i \(-0.541436\pi\)
−0.129808 + 0.991539i \(0.541436\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −35.0000 −1.29452
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) −4.00000 −0.147542
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −35.0000 −1.28750 −0.643748 0.765238i \(-0.722621\pi\)
−0.643748 + 0.765238i \(0.722621\pi\)
\(740\) 0 0
\(741\) 8.00000 0.293887
\(742\) 0 0
\(743\) 36.0000 1.32071 0.660356 0.750953i \(-0.270405\pi\)
0.660356 + 0.750953i \(0.270405\pi\)
\(744\) 0 0
\(745\) −17.0000 −0.622832
\(746\) 0 0
\(747\) 4.00000 0.146352
\(748\) 0 0
\(749\) 30.0000 1.09618
\(750\) 0 0
\(751\) 40.0000 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(752\) 0 0
\(753\) 26.0000 0.947493
\(754\) 0 0
\(755\) −2.00000 −0.0727875
\(756\) 0 0
\(757\) 37.0000 1.34479 0.672394 0.740193i \(-0.265266\pi\)
0.672394 + 0.740193i \(0.265266\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.00000 −0.253750 −0.126875 0.991919i \(-0.540495\pi\)
−0.126875 + 0.991919i \(0.540495\pi\)
\(762\) 0 0
\(763\) −36.0000 −1.30329
\(764\) 0 0
\(765\) 5.00000 0.180775
\(766\) 0 0
\(767\) 56.0000 2.02204
\(768\) 0 0
\(769\) −1.00000 −0.0360609 −0.0180305 0.999837i \(-0.505740\pi\)
−0.0180305 + 0.999837i \(0.505740\pi\)
\(770\) 0 0
\(771\) 48.0000 1.72868
\(772\) 0 0
\(773\) −34.0000 −1.22290 −0.611448 0.791285i \(-0.709412\pi\)
−0.611448 + 0.791285i \(0.709412\pi\)
\(774\) 0 0
\(775\) 32.0000 1.14947
\(776\) 0 0
\(777\) −60.0000 −2.15249
\(778\) 0 0
\(779\) −6.00000 −0.214972
\(780\) 0 0
\(781\) −18.0000 −0.644091
\(782\) 0 0
\(783\) −8.00000 −0.285897
\(784\) 0 0
\(785\) −14.0000 −0.499681
\(786\) 0 0
\(787\) −28.0000 −0.998092 −0.499046 0.866575i \(-0.666316\pi\)
−0.499046 + 0.866575i \(0.666316\pi\)
\(788\) 0 0
\(789\) −10.0000 −0.356009
\(790\) 0 0
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) 20.0000 0.710221
\(794\) 0 0
\(795\) −16.0000 −0.567462
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 45.0000 1.59199
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 45.0000 1.58802
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 8.00000 0.281613
\(808\) 0 0
\(809\) 15.0000 0.527372 0.263686 0.964609i \(-0.415062\pi\)
0.263686 + 0.964609i \(0.415062\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) −16.0000 −0.561144
\(814\) 0 0
\(815\) 4.00000 0.140114
\(816\) 0 0
\(817\) 7.00000 0.244899
\(818\) 0 0
\(819\) 12.0000 0.419314
\(820\) 0 0
\(821\) 11.0000 0.383903 0.191951 0.981404i \(-0.438518\pi\)
0.191951 + 0.981404i \(0.438518\pi\)
\(822\) 0 0
\(823\) −37.0000 −1.28974 −0.644869 0.764293i \(-0.723088\pi\)
−0.644869 + 0.764293i \(0.723088\pi\)
\(824\) 0 0
\(825\) −24.0000 −0.835573
\(826\) 0 0
\(827\) 8.00000 0.278187 0.139094 0.990279i \(-0.455581\pi\)
0.139094 + 0.990279i \(0.455581\pi\)
\(828\) 0 0
\(829\) −24.0000 −0.833554 −0.416777 0.909009i \(-0.636840\pi\)
−0.416777 + 0.909009i \(0.636840\pi\)
\(830\) 0 0
\(831\) 18.0000 0.624413
\(832\) 0 0
\(833\) 10.0000 0.346479
\(834\) 0 0
\(835\) 2.00000 0.0692129
\(836\) 0 0
\(837\) −32.0000 −1.10608
\(838\) 0 0
\(839\) −30.0000 −1.03572 −0.517858 0.855467i \(-0.673270\pi\)
−0.517858 + 0.855467i \(0.673270\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 20.0000 0.688837
\(844\) 0 0
\(845\) 3.00000 0.103203
\(846\) 0 0
\(847\) −6.00000 −0.206162
\(848\) 0 0
\(849\) −26.0000 −0.892318
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 30.0000 1.02718 0.513590 0.858036i \(-0.328315\pi\)
0.513590 + 0.858036i \(0.328315\pi\)
\(854\) 0 0
\(855\) −1.00000 −0.0341993
\(856\) 0 0
\(857\) −38.0000 −1.29806 −0.649028 0.760765i \(-0.724824\pi\)
−0.649028 + 0.760765i \(0.724824\pi\)
\(858\) 0 0
\(859\) 17.0000 0.580033 0.290016 0.957022i \(-0.406339\pi\)
0.290016 + 0.957022i \(0.406339\pi\)
\(860\) 0 0
\(861\) −36.0000 −1.22688
\(862\) 0 0
\(863\) 30.0000 1.02121 0.510606 0.859815i \(-0.329421\pi\)
0.510606 + 0.859815i \(0.329421\pi\)
\(864\) 0 0
\(865\) 2.00000 0.0680020
\(866\) 0 0
\(867\) −16.0000 −0.543388
\(868\) 0 0
\(869\) −12.0000 −0.407072
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 16.0000 0.541518
\(874\) 0 0
\(875\) −27.0000 −0.912767
\(876\) 0 0
\(877\) −34.0000 −1.14810 −0.574049 0.818821i \(-0.694628\pi\)
−0.574049 + 0.818821i \(0.694628\pi\)
\(878\) 0 0
\(879\) −8.00000 −0.269833
\(880\) 0 0
\(881\) 37.0000 1.24656 0.623281 0.781998i \(-0.285799\pi\)
0.623281 + 0.781998i \(0.285799\pi\)
\(882\) 0 0
\(883\) 41.0000 1.37976 0.689880 0.723924i \(-0.257663\pi\)
0.689880 + 0.723924i \(0.257663\pi\)
\(884\) 0 0
\(885\) −28.0000 −0.941210
\(886\) 0 0
\(887\) −38.0000 −1.27592 −0.637958 0.770072i \(-0.720220\pi\)
−0.637958 + 0.770072i \(0.720220\pi\)
\(888\) 0 0
\(889\) 18.0000 0.603701
\(890\) 0 0
\(891\) 33.0000 1.10554
\(892\) 0 0
\(893\) −9.00000 −0.301174
\(894\) 0 0
\(895\) −18.0000 −0.601674
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.0000 0.533630
\(900\) 0 0
\(901\) 40.0000 1.33259
\(902\) 0 0
\(903\) 42.0000 1.39767
\(904\) 0 0
\(905\) −2.00000 −0.0664822
\(906\) 0 0
\(907\) 4.00000 0.132818 0.0664089 0.997792i \(-0.478846\pi\)
0.0664089 + 0.997792i \(0.478846\pi\)
\(908\) 0 0
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) 2.00000 0.0662630 0.0331315 0.999451i \(-0.489452\pi\)
0.0331315 + 0.999451i \(0.489452\pi\)
\(912\) 0 0
\(913\) −12.0000 −0.397142
\(914\) 0 0
\(915\) −10.0000 −0.330590
\(916\) 0 0
\(917\) −27.0000 −0.891619
\(918\) 0 0
\(919\) −4.00000 −0.131948 −0.0659739 0.997821i \(-0.521015\pi\)
−0.0659739 + 0.997821i \(0.521015\pi\)
\(920\) 0 0
\(921\) −32.0000 −1.05444
\(922\) 0 0
\(923\) 24.0000 0.789970
\(924\) 0 0
\(925\) −40.0000 −1.31519
\(926\) 0 0
\(927\) 14.0000 0.459820
\(928\) 0 0
\(929\) 54.0000 1.77168 0.885841 0.463988i \(-0.153582\pi\)
0.885841 + 0.463988i \(0.153582\pi\)
\(930\) 0 0
\(931\) −2.00000 −0.0655474
\(932\) 0 0
\(933\) 62.0000 2.02979
\(934\) 0 0
\(935\) −15.0000 −0.490552
\(936\) 0 0
\(937\) −7.00000 −0.228680 −0.114340 0.993442i \(-0.536475\pi\)
−0.114340 + 0.993442i \(0.536475\pi\)
\(938\) 0 0
\(939\) −28.0000 −0.913745
\(940\) 0 0
\(941\) −14.0000 −0.456387 −0.228193 0.973616i \(-0.573282\pi\)
−0.228193 + 0.973616i \(0.573282\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 12.0000 0.390360
\(946\) 0 0
\(947\) 20.0000 0.649913 0.324956 0.945729i \(-0.394650\pi\)
0.324956 + 0.945729i \(0.394650\pi\)
\(948\) 0 0
\(949\) −60.0000 −1.94768
\(950\) 0 0
\(951\) −36.0000 −1.16738
\(952\) 0 0
\(953\) 4.00000 0.129573 0.0647864 0.997899i \(-0.479363\pi\)
0.0647864 + 0.997899i \(0.479363\pi\)
\(954\) 0 0
\(955\) 15.0000 0.485389
\(956\) 0 0
\(957\) −12.0000 −0.387905
\(958\) 0 0
\(959\) 63.0000 2.03438
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 10.0000 0.322245
\(964\) 0 0
\(965\) −24.0000 −0.772587
\(966\) 0 0
\(967\) 48.0000 1.54358 0.771788 0.635880i \(-0.219363\pi\)
0.771788 + 0.635880i \(0.219363\pi\)
\(968\) 0 0
\(969\) 10.0000 0.321246
\(970\) 0 0
\(971\) 20.0000 0.641831 0.320915 0.947108i \(-0.396010\pi\)
0.320915 + 0.947108i \(0.396010\pi\)
\(972\) 0 0
\(973\) 15.0000 0.480878
\(974\) 0 0
\(975\) 32.0000 1.02482
\(976\) 0 0
\(977\) 52.0000 1.66363 0.831814 0.555055i \(-0.187303\pi\)
0.831814 + 0.555055i \(0.187303\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −12.0000 −0.383131
\(982\) 0 0
\(983\) −20.0000 −0.637901 −0.318950 0.947771i \(-0.603330\pi\)
−0.318950 + 0.947771i \(0.603330\pi\)
\(984\) 0 0
\(985\) −18.0000 −0.573528
\(986\) 0 0
\(987\) −54.0000 −1.71884
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 10.0000 0.317660 0.158830 0.987306i \(-0.449228\pi\)
0.158830 + 0.987306i \(0.449228\pi\)
\(992\) 0 0
\(993\) 16.0000 0.507745
\(994\) 0 0
\(995\) 15.0000 0.475532
\(996\) 0 0
\(997\) −13.0000 −0.411714 −0.205857 0.978582i \(-0.565998\pi\)
−0.205857 + 0.978582i \(0.565998\pi\)
\(998\) 0 0
\(999\) 40.0000 1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.a.d.1.1 1
4.3 odd 2 1216.2.a.p.1.1 1
8.3 odd 2 152.2.a.a.1.1 1
8.5 even 2 304.2.a.e.1.1 1
24.5 odd 2 2736.2.a.p.1.1 1
24.11 even 2 1368.2.a.h.1.1 1
40.3 even 4 3800.2.d.d.3649.1 2
40.19 odd 2 3800.2.a.i.1.1 1
40.27 even 4 3800.2.d.d.3649.2 2
40.29 even 2 7600.2.a.b.1.1 1
56.27 even 2 7448.2.a.s.1.1 1
152.37 odd 2 5776.2.a.b.1.1 1
152.75 even 2 2888.2.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.a.a.1.1 1 8.3 odd 2
304.2.a.e.1.1 1 8.5 even 2
1216.2.a.d.1.1 1 1.1 even 1 trivial
1216.2.a.p.1.1 1 4.3 odd 2
1368.2.a.h.1.1 1 24.11 even 2
2736.2.a.p.1.1 1 24.5 odd 2
2888.2.a.f.1.1 1 152.75 even 2
3800.2.a.i.1.1 1 40.19 odd 2
3800.2.d.d.3649.1 2 40.3 even 4
3800.2.d.d.3649.2 2 40.27 even 4
5776.2.a.b.1.1 1 152.37 odd 2
7448.2.a.s.1.1 1 56.27 even 2
7600.2.a.b.1.1 1 40.29 even 2