Properties

Label 1216.2.a.c
Level $1216$
Weight $2$
Character orbit 1216.a
Self dual yes
Analytic conductor $9.710$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(9.70980888579\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 76)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 2q^{3} + q^{5} - 3q^{7} + q^{9} + O(q^{10}) \) \( q - 2q^{3} + q^{5} - 3q^{7} + q^{9} - 5q^{11} + 4q^{13} - 2q^{15} - 3q^{17} + q^{19} + 6q^{21} + 8q^{23} - 4q^{25} + 4q^{27} + 2q^{29} + 4q^{31} + 10q^{33} - 3q^{35} - 10q^{37} - 8q^{39} + 10q^{41} - q^{43} + q^{45} - q^{47} + 2q^{49} + 6q^{51} + 4q^{53} - 5q^{55} - 2q^{57} - 6q^{59} + 13q^{61} - 3q^{63} + 4q^{65} + 12q^{67} - 16q^{69} + 2q^{71} + 9q^{73} + 8q^{75} + 15q^{77} + 8q^{79} - 11q^{81} + 12q^{83} - 3q^{85} - 4q^{87} + 12q^{89} - 12q^{91} - 8q^{93} + q^{95} - 8q^{97} - 5q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −2.00000 0 1.00000 0 −3.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.2.a.c 1
4.b odd 2 1 1216.2.a.q 1
8.b even 2 1 76.2.a.a 1
8.d odd 2 1 304.2.a.a 1
24.f even 2 1 2736.2.a.q 1
24.h odd 2 1 684.2.a.b 1
40.e odd 2 1 7600.2.a.p 1
40.f even 2 1 1900.2.a.b 1
40.i odd 4 2 1900.2.c.b 2
56.h odd 2 1 3724.2.a.a 1
88.b odd 2 1 9196.2.a.f 1
152.b even 2 1 5776.2.a.p 1
152.g odd 2 1 1444.2.a.a 1
152.l odd 6 2 1444.2.e.c 2
152.p even 6 2 1444.2.e.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.2.a.a 1 8.b even 2 1
304.2.a.a 1 8.d odd 2 1
684.2.a.b 1 24.h odd 2 1
1216.2.a.c 1 1.a even 1 1 trivial
1216.2.a.q 1 4.b odd 2 1
1444.2.a.a 1 152.g odd 2 1
1444.2.e.a 2 152.p even 6 2
1444.2.e.c 2 152.l odd 6 2
1900.2.a.b 1 40.f even 2 1
1900.2.c.b 2 40.i odd 4 2
2736.2.a.q 1 24.f even 2 1
3724.2.a.a 1 56.h odd 2 1
5776.2.a.p 1 152.b even 2 1
7600.2.a.p 1 40.e odd 2 1
9196.2.a.f 1 88.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1216))\):

\( T_{3} + 2 \)
\( T_{5} - 1 \)
\( T_{7} + 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( 2 + T \)
$5$ \( -1 + T \)
$7$ \( 3 + T \)
$11$ \( 5 + T \)
$13$ \( -4 + T \)
$17$ \( 3 + T \)
$19$ \( -1 + T \)
$23$ \( -8 + T \)
$29$ \( -2 + T \)
$31$ \( -4 + T \)
$37$ \( 10 + T \)
$41$ \( -10 + T \)
$43$ \( 1 + T \)
$47$ \( 1 + T \)
$53$ \( -4 + T \)
$59$ \( 6 + T \)
$61$ \( -13 + T \)
$67$ \( -12 + T \)
$71$ \( -2 + T \)
$73$ \( -9 + T \)
$79$ \( -8 + T \)
$83$ \( -12 + T \)
$89$ \( -12 + T \)
$97$ \( 8 + T \)
show more
show less