Properties

Label 1216.1.e.a
Level $1216$
Weight $1$
Character orbit 1216.e
Self dual yes
Analytic conductor $0.607$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -19
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,1,Mod(1025,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.1025");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1216.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.606863055362\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 76)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.76.1
Artin image: $D_6$
Artin field: Galois closure of 6.2.739328.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{5} - q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{5} - q^{7} + q^{9} + q^{11} - q^{17} - q^{19} + 2 q^{23} - q^{35} + q^{43} + q^{45} - q^{47} + q^{55} + q^{61} - q^{63} - q^{73} - q^{77} + q^{81} - 2 q^{83} - q^{85} - q^{95} + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(0\) \(1\) \(0\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1025.1
0
0 0 0 1.00000 0 −1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.1.e.a 1
4.b odd 2 1 1216.1.e.b 1
8.b even 2 1 76.1.c.a 1
8.d odd 2 1 304.1.e.a 1
19.b odd 2 1 CM 1216.1.e.a 1
24.f even 2 1 2736.1.o.b 1
24.h odd 2 1 684.1.h.a 1
40.f even 2 1 1900.1.e.a 1
40.i odd 4 2 1900.1.g.a 2
56.h odd 2 1 3724.1.e.c 1
56.j odd 6 2 3724.1.bc.b 2
56.p even 6 2 3724.1.bc.c 2
76.d even 2 1 1216.1.e.b 1
152.b even 2 1 304.1.e.a 1
152.g odd 2 1 76.1.c.a 1
152.l odd 6 2 1444.1.h.a 2
152.p even 6 2 1444.1.h.a 2
152.s odd 18 6 1444.1.j.a 6
152.t even 18 6 1444.1.j.a 6
456.l odd 2 1 2736.1.o.b 1
456.p even 2 1 684.1.h.a 1
760.b odd 2 1 1900.1.e.a 1
760.t even 4 2 1900.1.g.a 2
1064.f even 2 1 3724.1.e.c 1
1064.br odd 6 2 3724.1.bc.c 2
1064.cf even 6 2 3724.1.bc.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.1.c.a 1 8.b even 2 1
76.1.c.a 1 152.g odd 2 1
304.1.e.a 1 8.d odd 2 1
304.1.e.a 1 152.b even 2 1
684.1.h.a 1 24.h odd 2 1
684.1.h.a 1 456.p even 2 1
1216.1.e.a 1 1.a even 1 1 trivial
1216.1.e.a 1 19.b odd 2 1 CM
1216.1.e.b 1 4.b odd 2 1
1216.1.e.b 1 76.d even 2 1
1444.1.h.a 2 152.l odd 6 2
1444.1.h.a 2 152.p even 6 2
1444.1.j.a 6 152.s odd 18 6
1444.1.j.a 6 152.t even 18 6
1900.1.e.a 1 40.f even 2 1
1900.1.e.a 1 760.b odd 2 1
1900.1.g.a 2 40.i odd 4 2
1900.1.g.a 2 760.t even 4 2
2736.1.o.b 1 24.f even 2 1
2736.1.o.b 1 456.l odd 2 1
3724.1.e.c 1 56.h odd 2 1
3724.1.e.c 1 1064.f even 2 1
3724.1.bc.b 2 56.j odd 6 2
3724.1.bc.b 2 1064.cf even 6 2
3724.1.bc.c 2 56.p even 6 2
3724.1.bc.c 2 1064.br odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} + 1 \) acting on \(S_{1}^{\mathrm{new}}(1216, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T + 1 \) Copy content Toggle raw display
$19$ \( T + 1 \) Copy content Toggle raw display
$23$ \( T - 2 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T - 1 \) Copy content Toggle raw display
$47$ \( T + 1 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 1 \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 1 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T + 2 \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less