Newspace parameters
Level: | \( N \) | \(=\) | \( 1215 = 3^{5} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1215.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(0.606363990349\) |
Analytic rank: | \(0\) |
Dimension: | \(3\) |
Coefficient field: | \(\Q(\zeta_{18})^+\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{3} - 3x - 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(D_{9}\) |
Projective field: | Galois closure of 9.1.242137805625.3 |
Artin image: | $D_9$ |
Artin field: | Galois closure of 9.1.242137805625.3 |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} - 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} + 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1215\mathbb{Z}\right)^\times\).
\(n\) | \(487\) | \(731\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1214.1 |
|
−1.87939 | 0 | 2.53209 | 1.00000 | 0 | 0 | −2.87939 | 0 | −1.87939 | |||||||||||||||||||||||||||
1214.2 | 0.347296 | 0 | −0.879385 | 1.00000 | 0 | 0 | −0.652704 | 0 | 0.347296 | ||||||||||||||||||||||||||||
1214.3 | 1.53209 | 0 | 1.34730 | 1.00000 | 0 | 0 | 0.532089 | 0 | 1.53209 | ||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
15.d | odd | 2 | 1 | CM by \(\Q(\sqrt{-15}) \) |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1215.1.d.b | yes | 3 |
3.b | odd | 2 | 1 | 1215.1.d.a | ✓ | 3 | |
5.b | even | 2 | 1 | 1215.1.d.a | ✓ | 3 | |
9.c | even | 3 | 2 | 1215.1.h.a | 6 | ||
9.d | odd | 6 | 2 | 1215.1.h.b | 6 | ||
15.d | odd | 2 | 1 | CM | 1215.1.d.b | yes | 3 |
27.e | even | 9 | 2 | 3645.1.n.b | 6 | ||
27.e | even | 9 | 2 | 3645.1.n.c | 6 | ||
27.e | even | 9 | 2 | 3645.1.n.h | 6 | ||
27.f | odd | 18 | 2 | 3645.1.n.a | 6 | ||
27.f | odd | 18 | 2 | 3645.1.n.f | 6 | ||
27.f | odd | 18 | 2 | 3645.1.n.g | 6 | ||
45.h | odd | 6 | 2 | 1215.1.h.a | 6 | ||
45.j | even | 6 | 2 | 1215.1.h.b | 6 | ||
135.n | odd | 18 | 2 | 3645.1.n.b | 6 | ||
135.n | odd | 18 | 2 | 3645.1.n.c | 6 | ||
135.n | odd | 18 | 2 | 3645.1.n.h | 6 | ||
135.p | even | 18 | 2 | 3645.1.n.a | 6 | ||
135.p | even | 18 | 2 | 3645.1.n.f | 6 | ||
135.p | even | 18 | 2 | 3645.1.n.g | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1215.1.d.a | ✓ | 3 | 3.b | odd | 2 | 1 | |
1215.1.d.a | ✓ | 3 | 5.b | even | 2 | 1 | |
1215.1.d.b | yes | 3 | 1.a | even | 1 | 1 | trivial |
1215.1.d.b | yes | 3 | 15.d | odd | 2 | 1 | CM |
1215.1.h.a | 6 | 9.c | even | 3 | 2 | ||
1215.1.h.a | 6 | 45.h | odd | 6 | 2 | ||
1215.1.h.b | 6 | 9.d | odd | 6 | 2 | ||
1215.1.h.b | 6 | 45.j | even | 6 | 2 | ||
3645.1.n.a | 6 | 27.f | odd | 18 | 2 | ||
3645.1.n.a | 6 | 135.p | even | 18 | 2 | ||
3645.1.n.b | 6 | 27.e | even | 9 | 2 | ||
3645.1.n.b | 6 | 135.n | odd | 18 | 2 | ||
3645.1.n.c | 6 | 27.e | even | 9 | 2 | ||
3645.1.n.c | 6 | 135.n | odd | 18 | 2 | ||
3645.1.n.f | 6 | 27.f | odd | 18 | 2 | ||
3645.1.n.f | 6 | 135.p | even | 18 | 2 | ||
3645.1.n.g | 6 | 27.f | odd | 18 | 2 | ||
3645.1.n.g | 6 | 135.p | even | 18 | 2 | ||
3645.1.n.h | 6 | 27.e | even | 9 | 2 | ||
3645.1.n.h | 6 | 135.n | odd | 18 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{3} - 3T_{2} + 1 \)
acting on \(S_{1}^{\mathrm{new}}(1215, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{3} - 3T + 1 \)
$3$
\( T^{3} \)
$5$
\( (T - 1)^{3} \)
$7$
\( T^{3} \)
$11$
\( T^{3} \)
$13$
\( T^{3} \)
$17$
\( T^{3} - 3T + 1 \)
$19$
\( T^{3} - 3T + 1 \)
$23$
\( T^{3} - 3T + 1 \)
$29$
\( T^{3} \)
$31$
\( T^{3} - 3T + 1 \)
$37$
\( T^{3} \)
$41$
\( T^{3} \)
$43$
\( T^{3} \)
$47$
\( (T + 1)^{3} \)
$53$
\( T^{3} - 3T + 1 \)
$59$
\( T^{3} \)
$61$
\( T^{3} - 3T + 1 \)
$67$
\( T^{3} \)
$71$
\( T^{3} \)
$73$
\( T^{3} \)
$79$
\( T^{3} - 3T + 1 \)
$83$
\( T^{3} - 3T + 1 \)
$89$
\( T^{3} \)
$97$
\( T^{3} \)
show more
show less