Defining parameters
Level: | \( N \) | \(=\) | \( 1210 = 2 \cdot 5 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1210.k (of order \(11\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 121 \) |
Character field: | \(\Q(\zeta_{11})\) | ||
Sturm bound: | \(396\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1210, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2020 | 440 | 1580 |
Cusp forms | 1940 | 440 | 1500 |
Eisenstein series | 80 | 0 | 80 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1210, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(1210, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1210, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(242, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(605, [\chi])\)\(^{\oplus 2}\)