Properties

Label 1210.2.b.k.969.8
Level $1210$
Weight $2$
Character 1210.969
Analytic conductor $9.662$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1210,2,Mod(969,1210)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1210.969"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1210, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1210 = 2 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1210.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.66189864457\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12904960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 6x^{5} + 59x^{4} - 86x^{3} + 72x^{2} + 132x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 969.8
Root \(-0.549472 - 0.549472i\) of defining polynomial
Character \(\chi\) \(=\) 1210.969
Dual form 1210.2.b.k.969.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.61803i q^{3} -1.00000 q^{4} +(2.16751 + 0.549472i) q^{5} -1.61803 q^{6} -3.77813i q^{7} -1.00000i q^{8} +0.381966 q^{9} +(-0.549472 + 2.16751i) q^{10} -1.61803i q^{12} -3.09894i q^{13} +3.77813 q^{14} +(-0.889064 + 3.50710i) q^{15} +1.00000 q^{16} +3.29722i q^{17} +0.381966i q^{18} -1.29722 q^{19} +(-2.16751 - 0.549472i) q^{20} +6.11314 q^{21} +0.556884i q^{23} +1.61803 q^{24} +(4.39616 + 2.38197i) q^{25} +3.09894 q^{26} +5.47214i q^{27} +3.77813i q^{28} +9.57108 q^{29} +(-3.50710 - 0.889064i) q^{30} +5.34921 q^{31} +1.00000i q^{32} -3.29722 q^{34} +(2.07597 - 8.18911i) q^{35} -0.381966 q^{36} -7.91525i q^{37} -1.29722i q^{38} +5.01420 q^{39} +(0.549472 - 2.16751i) q^{40} +6.28806 q^{41} +6.11314i q^{42} +3.61803i q^{43} +(0.827913 + 0.209880i) q^{45} -0.556884 q^{46} +5.34921i q^{47} +1.61803i q^{48} -7.27425 q^{49} +(-2.38197 + 4.39616i) q^{50} -5.33501 q^{51} +3.09894i q^{52} +11.0142i q^{53} -5.47214 q^{54} -3.77813 q^{56} -2.09894i q^{57} +9.57108i q^{58} -5.29722 q^{59} +(0.889064 - 3.50710i) q^{60} +2.45731 q^{61} +5.34921i q^{62} -1.44312i q^{63} -1.00000 q^{64} +(1.70278 - 6.71698i) q^{65} -9.21247i q^{67} -3.29722i q^{68} -0.901057 q^{69} +(8.18911 + 2.07597i) q^{70} +10.8919 q^{71} -0.381966i q^{72} -3.39616i q^{73} +7.91525 q^{74} +(-3.85410 + 7.11314i) q^{75} +1.29722 q^{76} +5.01420i q^{78} -16.3634 q^{79} +(2.16751 + 0.549472i) q^{80} -7.70820 q^{81} +6.28806i q^{82} +0.184079i q^{83} -6.11314 q^{84} +(-1.81173 + 7.14674i) q^{85} -3.61803 q^{86} +15.4863i q^{87} -6.09017 q^{89} +(-0.209880 + 0.827913i) q^{90} -11.7082 q^{91} -0.556884i q^{92} +8.65520i q^{93} -5.34921 q^{94} +(-2.81173 - 0.712785i) q^{95} -1.61803 q^{96} -12.3580i q^{97} -7.27425i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 2 q^{5} - 4 q^{6} + 12 q^{9} + 2 q^{10} + 4 q^{14} + 6 q^{15} + 8 q^{16} + 12 q^{19} - 2 q^{20} - 8 q^{21} + 4 q^{24} + 12 q^{26} + 28 q^{29} - 6 q^{30} - 32 q^{31} - 4 q^{34} + 16 q^{35}+ \cdots - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1210\mathbb{Z}\right)^\times\).

\(n\) \(727\) \(1091\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.61803i 0.934172i 0.884212 + 0.467086i \(0.154696\pi\)
−0.884212 + 0.467086i \(0.845304\pi\)
\(4\) −1.00000 −0.500000
\(5\) 2.16751 + 0.549472i 0.969338 + 0.245731i
\(6\) −1.61803 −0.660560
\(7\) 3.77813i 1.42800i −0.700147 0.713999i \(-0.746882\pi\)
0.700147 0.713999i \(-0.253118\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.381966 0.127322
\(10\) −0.549472 + 2.16751i −0.173758 + 0.685425i
\(11\) 0 0
\(12\) 1.61803i 0.467086i
\(13\) 3.09894i 0.859492i −0.902950 0.429746i \(-0.858603\pi\)
0.902950 0.429746i \(-0.141397\pi\)
\(14\) 3.77813 1.00975
\(15\) −0.889064 + 3.50710i −0.229555 + 0.905529i
\(16\) 1.00000 0.250000
\(17\) 3.29722i 0.799693i 0.916582 + 0.399846i \(0.130937\pi\)
−0.916582 + 0.399846i \(0.869063\pi\)
\(18\) 0.381966i 0.0900303i
\(19\) −1.29722 −0.297602 −0.148801 0.988867i \(-0.547541\pi\)
−0.148801 + 0.988867i \(0.547541\pi\)
\(20\) −2.16751 0.549472i −0.484669 0.122866i
\(21\) 6.11314 1.33400
\(22\) 0 0
\(23\) 0.556884i 0.116118i 0.998313 + 0.0580591i \(0.0184912\pi\)
−0.998313 + 0.0580591i \(0.981509\pi\)
\(24\) 1.61803 0.330280
\(25\) 4.39616 + 2.38197i 0.879232 + 0.476393i
\(26\) 3.09894 0.607753
\(27\) 5.47214i 1.05311i
\(28\) 3.77813i 0.713999i
\(29\) 9.57108 1.77730 0.888652 0.458581i \(-0.151642\pi\)
0.888652 + 0.458581i \(0.151642\pi\)
\(30\) −3.50710 0.889064i −0.640306 0.162320i
\(31\) 5.34921 0.960746 0.480373 0.877064i \(-0.340501\pi\)
0.480373 + 0.877064i \(0.340501\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −3.29722 −0.565468
\(35\) 2.07597 8.18911i 0.350904 1.38421i
\(36\) −0.381966 −0.0636610
\(37\) 7.91525i 1.30126i −0.759395 0.650630i \(-0.774505\pi\)
0.759395 0.650630i \(-0.225495\pi\)
\(38\) 1.29722i 0.210437i
\(39\) 5.01420 0.802914
\(40\) 0.549472 2.16751i 0.0868791 0.342713i
\(41\) 6.28806 0.982029 0.491015 0.871151i \(-0.336626\pi\)
0.491015 + 0.871151i \(0.336626\pi\)
\(42\) 6.11314i 0.943278i
\(43\) 3.61803i 0.551745i 0.961194 + 0.275873i \(0.0889668\pi\)
−0.961194 + 0.275873i \(0.911033\pi\)
\(44\) 0 0
\(45\) 0.827913 + 0.209880i 0.123418 + 0.0312870i
\(46\) −0.556884 −0.0821080
\(47\) 5.34921i 0.780262i 0.920759 + 0.390131i \(0.127570\pi\)
−0.920759 + 0.390131i \(0.872430\pi\)
\(48\) 1.61803i 0.233543i
\(49\) −7.27425 −1.03918
\(50\) −2.38197 + 4.39616i −0.336861 + 0.621711i
\(51\) −5.33501 −0.747051
\(52\) 3.09894i 0.429746i
\(53\) 11.0142i 1.51292i 0.654042 + 0.756458i \(0.273072\pi\)
−0.654042 + 0.756458i \(0.726928\pi\)
\(54\) −5.47214 −0.744663
\(55\) 0 0
\(56\) −3.77813 −0.504874
\(57\) 2.09894i 0.278012i
\(58\) 9.57108i 1.25674i
\(59\) −5.29722 −0.689639 −0.344820 0.938669i \(-0.612060\pi\)
−0.344820 + 0.938669i \(0.612060\pi\)
\(60\) 0.889064 3.50710i 0.114778 0.452764i
\(61\) 2.45731 0.314627 0.157313 0.987549i \(-0.449717\pi\)
0.157313 + 0.987549i \(0.449717\pi\)
\(62\) 5.34921i 0.679350i
\(63\) 1.44312i 0.181816i
\(64\) −1.00000 −0.125000
\(65\) 1.70278 6.71698i 0.211204 0.833139i
\(66\) 0 0
\(67\) 9.21247i 1.12548i −0.826633 0.562741i \(-0.809747\pi\)
0.826633 0.562741i \(-0.190253\pi\)
\(68\) 3.29722i 0.399846i
\(69\) −0.901057 −0.108474
\(70\) 8.18911 + 2.07597i 0.978786 + 0.248126i
\(71\) 10.8919 1.29263 0.646315 0.763071i \(-0.276309\pi\)
0.646315 + 0.763071i \(0.276309\pi\)
\(72\) 0.381966i 0.0450151i
\(73\) 3.39616i 0.397491i −0.980051 0.198745i \(-0.936313\pi\)
0.980051 0.198745i \(-0.0636867\pi\)
\(74\) 7.91525 0.920129
\(75\) −3.85410 + 7.11314i −0.445033 + 0.821355i
\(76\) 1.29722 0.148801
\(77\) 0 0
\(78\) 5.01420i 0.567746i
\(79\) −16.3634 −1.84103 −0.920513 0.390711i \(-0.872229\pi\)
−0.920513 + 0.390711i \(0.872229\pi\)
\(80\) 2.16751 + 0.549472i 0.242335 + 0.0614328i
\(81\) −7.70820 −0.856467
\(82\) 6.28806i 0.694400i
\(83\) 0.184079i 0.0202053i 0.999949 + 0.0101027i \(0.00321583\pi\)
−0.999949 + 0.0101027i \(0.996784\pi\)
\(84\) −6.11314 −0.666998
\(85\) −1.81173 + 7.14674i −0.196510 + 0.775173i
\(86\) −3.61803 −0.390143
\(87\) 15.4863i 1.66031i
\(88\) 0 0
\(89\) −6.09017 −0.645557 −0.322778 0.946475i \(-0.604617\pi\)
−0.322778 + 0.946475i \(0.604617\pi\)
\(90\) −0.209880 + 0.827913i −0.0221232 + 0.0872697i
\(91\) −11.7082 −1.22735
\(92\) 0.556884i 0.0580591i
\(93\) 8.65520i 0.897502i
\(94\) −5.34921 −0.551729
\(95\) −2.81173 0.712785i −0.288477 0.0731302i
\(96\) −1.61803 −0.165140
\(97\) 12.3580i 1.25476i −0.778712 0.627381i \(-0.784127\pi\)
0.778712 0.627381i \(-0.215873\pi\)
\(98\) 7.27425i 0.734810i
\(99\) 0 0
\(100\) −4.39616 2.38197i −0.439616 0.238197i
\(101\) −9.01420 −0.896946 −0.448473 0.893796i \(-0.648032\pi\)
−0.448473 + 0.893796i \(0.648032\pi\)
\(102\) 5.33501i 0.528245i
\(103\) 11.4340i 1.12662i 0.826245 + 0.563311i \(0.190473\pi\)
−0.826245 + 0.563311i \(0.809527\pi\)
\(104\) −3.09894 −0.303876
\(105\) 13.2503 + 3.35900i 1.29309 + 0.327805i
\(106\) −11.0142 −1.06979
\(107\) 15.3546i 1.48439i −0.670185 0.742194i \(-0.733785\pi\)
0.670185 0.742194i \(-0.266215\pi\)
\(108\) 5.47214i 0.526557i
\(109\) −2.42892 −0.232648 −0.116324 0.993211i \(-0.537111\pi\)
−0.116324 + 0.993211i \(0.537111\pi\)
\(110\) 0 0
\(111\) 12.8071 1.21560
\(112\) 3.77813i 0.357000i
\(113\) 8.38134i 0.788450i 0.919014 + 0.394225i \(0.128987\pi\)
−0.919014 + 0.394225i \(0.871013\pi\)
\(114\) 2.09894 0.196584
\(115\) −0.305992 + 1.20705i −0.0285339 + 0.112558i
\(116\) −9.57108 −0.888652
\(117\) 1.18369i 0.109432i
\(118\) 5.29722i 0.487648i
\(119\) 12.4573 1.14196
\(120\) 3.50710 + 0.889064i 0.320153 + 0.0811601i
\(121\) 0 0
\(122\) 2.45731i 0.222475i
\(123\) 10.1743i 0.917385i
\(124\) −5.34921 −0.480373
\(125\) 8.21988 + 7.57849i 0.735209 + 0.677841i
\(126\) 1.44312 0.128563
\(127\) 6.95343i 0.617017i −0.951222 0.308509i \(-0.900170\pi\)
0.951222 0.308509i \(-0.0998299\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −5.85410 −0.515425
\(130\) 6.71698 + 1.70278i 0.589118 + 0.149344i
\(131\) −5.61741 −0.490795 −0.245398 0.969423i \(-0.578918\pi\)
−0.245398 + 0.969423i \(0.578918\pi\)
\(132\) 0 0
\(133\) 4.90106i 0.424976i
\(134\) 9.21247 0.795836
\(135\) −3.00678 + 11.8609i −0.258783 + 1.02082i
\(136\) 3.29722 0.282734
\(137\) 7.68796i 0.656827i −0.944534 0.328413i \(-0.893486\pi\)
0.944534 0.328413i \(-0.106514\pi\)
\(138\) 0.901057i 0.0767030i
\(139\) −0.961819 −0.0815804 −0.0407902 0.999168i \(-0.512988\pi\)
−0.0407902 + 0.999168i \(0.512988\pi\)
\(140\) −2.07597 + 8.18911i −0.175452 + 0.692106i
\(141\) −8.65520 −0.728899
\(142\) 10.8919i 0.914028i
\(143\) 0 0
\(144\) 0.381966 0.0318305
\(145\) 20.7454 + 5.25904i 1.72281 + 0.436739i
\(146\) 3.39616 0.281068
\(147\) 11.7700i 0.970772i
\(148\) 7.91525i 0.650630i
\(149\) 8.79232 0.720295 0.360148 0.932895i \(-0.382726\pi\)
0.360148 + 0.932895i \(0.382726\pi\)
\(150\) −7.11314 3.85410i −0.580785 0.314686i
\(151\) −8.93783 −0.727351 −0.363675 0.931526i \(-0.618478\pi\)
−0.363675 + 0.931526i \(0.618478\pi\)
\(152\) 1.29722i 0.105218i
\(153\) 1.25943i 0.101819i
\(154\) 0 0
\(155\) 11.5944 + 2.93924i 0.931288 + 0.236085i
\(156\) −5.01420 −0.401457
\(157\) 17.6410i 1.40791i −0.710247 0.703953i \(-0.751417\pi\)
0.710247 0.703953i \(-0.248583\pi\)
\(158\) 16.3634i 1.30180i
\(159\) −17.8213 −1.41332
\(160\) −0.549472 + 2.16751i −0.0434396 + 0.171356i
\(161\) 2.10398 0.165817
\(162\) 7.70820i 0.605614i
\(163\) 0.174289i 0.0136514i −0.999977 0.00682570i \(-0.997827\pi\)
0.999977 0.00682570i \(-0.00217271\pi\)
\(164\) −6.28806 −0.491015
\(165\) 0 0
\(166\) −0.184079 −0.0142873
\(167\) 5.48633i 0.424545i 0.977211 + 0.212273i \(0.0680865\pi\)
−0.977211 + 0.212273i \(0.931914\pi\)
\(168\) 6.11314i 0.471639i
\(169\) 3.39655 0.261273
\(170\) −7.14674 1.81173i −0.548130 0.138953i
\(171\) −0.495493 −0.0378913
\(172\) 3.61803i 0.275873i
\(173\) 23.9960i 1.82438i 0.409763 + 0.912192i \(0.365611\pi\)
−0.409763 + 0.912192i \(0.634389\pi\)
\(174\) −15.4863 −1.17402
\(175\) 8.99937 16.6093i 0.680289 1.25554i
\(176\) 0 0
\(177\) 8.57108i 0.644242i
\(178\) 6.09017i 0.456478i
\(179\) 0.213099 0.0159278 0.00796388 0.999968i \(-0.497465\pi\)
0.00796388 + 0.999968i \(0.497465\pi\)
\(180\) −0.827913 0.209880i −0.0617090 0.0156435i
\(181\) 1.03818 0.0771674 0.0385837 0.999255i \(-0.487715\pi\)
0.0385837 + 0.999255i \(0.487715\pi\)
\(182\) 11.7082i 0.867870i
\(183\) 3.97601i 0.293915i
\(184\) 0.556884 0.0410540
\(185\) 4.34921 17.1564i 0.319760 1.26136i
\(186\) −8.65520 −0.634630
\(187\) 0 0
\(188\) 5.34921i 0.390131i
\(189\) 20.6744 1.50384
\(190\) 0.712785 2.81173i 0.0517108 0.203984i
\(191\) −17.9345 −1.29769 −0.648847 0.760919i \(-0.724748\pi\)
−0.648847 + 0.760919i \(0.724748\pi\)
\(192\) 1.61803i 0.116772i
\(193\) 9.01986i 0.649264i 0.945840 + 0.324632i \(0.105240\pi\)
−0.945840 + 0.324632i \(0.894760\pi\)
\(194\) 12.3580 0.887251
\(195\) 10.8683 + 2.75516i 0.778295 + 0.197301i
\(196\) 7.27425 0.519589
\(197\) 3.68422i 0.262490i −0.991350 0.131245i \(-0.958103\pi\)
0.991350 0.131245i \(-0.0418974\pi\)
\(198\) 0 0
\(199\) 4.23544 0.300242 0.150121 0.988668i \(-0.452034\pi\)
0.150121 + 0.988668i \(0.452034\pi\)
\(200\) 2.38197 4.39616i 0.168430 0.310856i
\(201\) 14.9061 1.05139
\(202\) 9.01420i 0.634237i
\(203\) 36.1608i 2.53799i
\(204\) 5.33501 0.373526
\(205\) 13.6294 + 3.45511i 0.951918 + 0.241315i
\(206\) −11.4340 −0.796641
\(207\) 0.212711i 0.0147844i
\(208\) 3.09894i 0.214873i
\(209\) 0 0
\(210\) −3.35900 + 13.2503i −0.231793 + 0.914355i
\(211\) −13.6704 −0.941110 −0.470555 0.882371i \(-0.655946\pi\)
−0.470555 + 0.882371i \(0.655946\pi\)
\(212\) 11.0142i 0.756458i
\(213\) 17.6235i 1.20754i
\(214\) 15.3546 1.04962
\(215\) −1.98801 + 7.84211i −0.135581 + 0.534827i
\(216\) 5.47214 0.372332
\(217\) 20.2100i 1.37194i
\(218\) 2.42892i 0.164507i
\(219\) 5.49511 0.371325
\(220\) 0 0
\(221\) 10.2179 0.687330
\(222\) 12.8071i 0.859559i
\(223\) 23.9720i 1.60529i −0.596460 0.802643i \(-0.703426\pi\)
0.596460 0.802643i \(-0.296574\pi\)
\(224\) 3.77813 0.252437
\(225\) 1.67918 + 0.909830i 0.111946 + 0.0606553i
\(226\) −8.38134 −0.557518
\(227\) 20.7045i 1.37420i 0.726561 + 0.687102i \(0.241117\pi\)
−0.726561 + 0.687102i \(0.758883\pi\)
\(228\) 2.09894i 0.139006i
\(229\) 16.3407 1.07982 0.539911 0.841722i \(-0.318458\pi\)
0.539911 + 0.841722i \(0.318458\pi\)
\(230\) −1.20705 0.305992i −0.0795904 0.0201765i
\(231\) 0 0
\(232\) 9.57108i 0.628372i
\(233\) 0.480281i 0.0314643i −0.999876 0.0157321i \(-0.994992\pi\)
0.999876 0.0157321i \(-0.00500790\pi\)
\(234\) 1.18369 0.0773803
\(235\) −2.93924 + 11.5944i −0.191735 + 0.756338i
\(236\) 5.29722 0.344820
\(237\) 26.4765i 1.71984i
\(238\) 12.4573i 0.807488i
\(239\) −1.12859 −0.0730025 −0.0365012 0.999334i \(-0.511621\pi\)
−0.0365012 + 0.999334i \(0.511621\pi\)
\(240\) −0.889064 + 3.50710i −0.0573888 + 0.226382i
\(241\) −12.7220 −0.819497 −0.409748 0.912199i \(-0.634384\pi\)
−0.409748 + 0.912199i \(0.634384\pi\)
\(242\) 0 0
\(243\) 3.94427i 0.253025i
\(244\) −2.45731 −0.157313
\(245\) −15.7670 3.99699i −1.00732 0.255359i
\(246\) −10.1743 −0.648689
\(247\) 4.02001i 0.255787i
\(248\) 5.34921i 0.339675i
\(249\) −0.297846 −0.0188753
\(250\) −7.57849 + 8.21988i −0.479306 + 0.519871i
\(251\) −2.83952 −0.179229 −0.0896144 0.995977i \(-0.528563\pi\)
−0.0896144 + 0.995977i \(0.528563\pi\)
\(252\) 1.44312i 0.0909078i
\(253\) 0 0
\(254\) 6.95343 0.436297
\(255\) −11.5637 2.93144i −0.724145 0.183574i
\(256\) 1.00000 0.0625000
\(257\) 30.8410i 1.92381i −0.273390 0.961903i \(-0.588145\pi\)
0.273390 0.961903i \(-0.411855\pi\)
\(258\) 5.85410i 0.364460i
\(259\) −29.9048 −1.85820
\(260\) −1.70278 + 6.71698i −0.105602 + 0.416569i
\(261\) 3.65583 0.226290
\(262\) 5.61741i 0.347044i
\(263\) 27.7069i 1.70848i −0.519876 0.854242i \(-0.674022\pi\)
0.519876 0.854242i \(-0.325978\pi\)
\(264\) 0 0
\(265\) −6.05199 + 23.8733i −0.371771 + 1.46653i
\(266\) −4.90106 −0.300503
\(267\) 9.85410i 0.603061i
\(268\) 9.21247i 0.562741i
\(269\) −12.7592 −0.777941 −0.388970 0.921250i \(-0.627169\pi\)
−0.388970 + 0.921250i \(0.627169\pi\)
\(270\) −11.8609 3.00678i −0.721831 0.182987i
\(271\) 5.70254 0.346405 0.173202 0.984886i \(-0.444589\pi\)
0.173202 + 0.984886i \(0.444589\pi\)
\(272\) 3.29722i 0.199923i
\(273\) 18.9443i 1.14656i
\(274\) 7.68796 0.464447
\(275\) 0 0
\(276\) 0.901057 0.0542372
\(277\) 31.7274i 1.90632i 0.302472 + 0.953158i \(0.402188\pi\)
−0.302472 + 0.953158i \(0.597812\pi\)
\(278\) 0.961819i 0.0576861i
\(279\) 2.04322 0.122324
\(280\) −8.18911 2.07597i −0.489393 0.124063i
\(281\) −1.93822 −0.115625 −0.0578123 0.998327i \(-0.518412\pi\)
−0.0578123 + 0.998327i \(0.518412\pi\)
\(282\) 8.65520i 0.515410i
\(283\) 4.91588i 0.292219i 0.989268 + 0.146109i \(0.0466751\pi\)
−0.989268 + 0.146109i \(0.953325\pi\)
\(284\) −10.8919 −0.646315
\(285\) 1.15331 4.54947i 0.0683162 0.269487i
\(286\) 0 0
\(287\) 23.7571i 1.40234i
\(288\) 0.381966i 0.0225076i
\(289\) 6.12835 0.360491
\(290\) −5.25904 + 20.7454i −0.308821 + 1.21821i
\(291\) 19.9956 1.17216
\(292\) 3.39616i 0.198745i
\(293\) 0.188725i 0.0110254i −0.999985 0.00551272i \(-0.998245\pi\)
0.999985 0.00551272i \(-0.00175476\pi\)
\(294\) 11.7700 0.686439
\(295\) −11.4818 2.91067i −0.668493 0.169466i
\(296\) −7.91525 −0.460065
\(297\) 0 0
\(298\) 8.79232i 0.509326i
\(299\) 1.72575 0.0998027
\(300\) 3.85410 7.11314i 0.222517 0.410677i
\(301\) 13.6694 0.787891
\(302\) 8.93783i 0.514315i
\(303\) 14.5853i 0.837902i
\(304\) −1.29722 −0.0744006
\(305\) 5.32624 + 1.35022i 0.304979 + 0.0773136i
\(306\) −1.25943 −0.0719966
\(307\) 12.3820i 0.706676i 0.935496 + 0.353338i \(0.114953\pi\)
−0.935496 + 0.353338i \(0.885047\pi\)
\(308\) 0 0
\(309\) −18.5005 −1.05246
\(310\) −2.93924 + 11.5944i −0.166937 + 0.658520i
\(311\) −21.1182 −1.19750 −0.598751 0.800935i \(-0.704336\pi\)
−0.598751 + 0.800935i \(0.704336\pi\)
\(312\) 5.01420i 0.283873i
\(313\) 16.5792i 0.937113i 0.883433 + 0.468557i \(0.155226\pi\)
−0.883433 + 0.468557i \(0.844774\pi\)
\(314\) 17.6410 0.995539
\(315\) 0.792952 3.12796i 0.0446778 0.176241i
\(316\) 16.3634 0.920513
\(317\) 19.6370i 1.10293i 0.834200 + 0.551463i \(0.185930\pi\)
−0.834200 + 0.551463i \(0.814070\pi\)
\(318\) 17.8213i 0.999371i
\(319\) 0 0
\(320\) −2.16751 0.549472i −0.121167 0.0307164i
\(321\) 24.8443 1.38667
\(322\) 2.10398i 0.117250i
\(323\) 4.27721i 0.237990i
\(324\) 7.70820 0.428234
\(325\) 7.38158 13.6235i 0.409456 0.755693i
\(326\) 0.174289 0.00965300
\(327\) 3.93008i 0.217334i
\(328\) 6.28806i 0.347200i
\(329\) 20.2100 1.11421
\(330\) 0 0
\(331\) −23.4826 −1.29072 −0.645360 0.763879i \(-0.723293\pi\)
−0.645360 + 0.763879i \(0.723293\pi\)
\(332\) 0.184079i 0.0101027i
\(333\) 3.02336i 0.165679i
\(334\) −5.48633 −0.300199
\(335\) 5.06199 19.9681i 0.276566 1.09097i
\(336\) 6.11314 0.333499
\(337\) 12.8251i 0.698627i −0.937006 0.349313i \(-0.886415\pi\)
0.937006 0.349313i \(-0.113585\pi\)
\(338\) 3.39655i 0.184748i
\(339\) −13.5613 −0.736548
\(340\) 1.81173 7.14674i 0.0982548 0.387586i
\(341\) 0 0
\(342\) 0.495493i 0.0267932i
\(343\) 1.03615i 0.0559468i
\(344\) 3.61803 0.195071
\(345\) −1.95305 0.495105i −0.105148 0.0266556i
\(346\) −23.9960 −1.29003
\(347\) 20.6936i 1.11089i −0.831553 0.555446i \(-0.812548\pi\)
0.831553 0.555446i \(-0.187452\pi\)
\(348\) 15.4863i 0.830155i
\(349\) −21.7174 −1.16250 −0.581252 0.813724i \(-0.697437\pi\)
−0.581252 + 0.813724i \(0.697437\pi\)
\(350\) 16.6093 + 8.99937i 0.887802 + 0.481037i
\(351\) 16.9578 0.905143
\(352\) 0 0
\(353\) 0.260293i 0.0138540i −0.999976 0.00692701i \(-0.997795\pi\)
0.999976 0.00692701i \(-0.00220495\pi\)
\(354\) 8.57108 0.455548
\(355\) 23.6082 + 5.98479i 1.25300 + 0.317640i
\(356\) 6.09017 0.322778
\(357\) 20.1564i 1.06679i
\(358\) 0.213099i 0.0112626i
\(359\) −8.22187 −0.433934 −0.216967 0.976179i \(-0.569616\pi\)
−0.216967 + 0.976179i \(0.569616\pi\)
\(360\) 0.209880 0.827913i 0.0110616 0.0436349i
\(361\) −17.3172 −0.911433
\(362\) 1.03818i 0.0545656i
\(363\) 0 0
\(364\) 11.7082 0.613677
\(365\) 1.86609 7.36120i 0.0976759 0.385303i
\(366\) −3.97601 −0.207830
\(367\) 7.21334i 0.376533i −0.982118 0.188267i \(-0.939713\pi\)
0.982118 0.188267i \(-0.0602869\pi\)
\(368\) 0.556884i 0.0290296i
\(369\) 2.40182 0.125034
\(370\) 17.1564 + 4.34921i 0.891916 + 0.226105i
\(371\) 41.6130 2.16044
\(372\) 8.65520i 0.448751i
\(373\) 29.9629i 1.55142i 0.631090 + 0.775709i \(0.282608\pi\)
−0.631090 + 0.775709i \(0.717392\pi\)
\(374\) 0 0
\(375\) −12.2623 + 13.3000i −0.633220 + 0.686812i
\(376\) 5.34921 0.275864
\(377\) 29.6602i 1.52758i
\(378\) 20.6744i 1.06338i
\(379\) 36.7066 1.88549 0.942745 0.333515i \(-0.108235\pi\)
0.942745 + 0.333515i \(0.108235\pi\)
\(380\) 2.81173 + 0.712785i 0.144239 + 0.0365651i
\(381\) 11.2509 0.576401
\(382\) 17.9345i 0.917608i
\(383\) 6.44815i 0.329485i −0.986337 0.164743i \(-0.947321\pi\)
0.986337 0.164743i \(-0.0526793\pi\)
\(384\) 1.61803 0.0825700
\(385\) 0 0
\(386\) −9.01986 −0.459099
\(387\) 1.38197i 0.0702493i
\(388\) 12.3580i 0.627381i
\(389\) 28.6001 1.45008 0.725041 0.688705i \(-0.241821\pi\)
0.725041 + 0.688705i \(0.241821\pi\)
\(390\) −2.75516 + 10.8683i −0.139513 + 0.550338i
\(391\) −1.83617 −0.0928590
\(392\) 7.27425i 0.367405i
\(393\) 9.08915i 0.458487i
\(394\) 3.68422 0.185608
\(395\) −35.4678 8.99123i −1.78458 0.452398i
\(396\) 0 0
\(397\) 24.5049i 1.22987i 0.788579 + 0.614934i \(0.210817\pi\)
−0.788579 + 0.614934i \(0.789183\pi\)
\(398\) 4.23544i 0.212303i
\(399\) −7.93008 −0.397000
\(400\) 4.39616 + 2.38197i 0.219808 + 0.119098i
\(401\) −30.7122 −1.53370 −0.766848 0.641829i \(-0.778176\pi\)
−0.766848 + 0.641829i \(0.778176\pi\)
\(402\) 14.9061i 0.743448i
\(403\) 16.5769i 0.825754i
\(404\) 9.01420 0.448473
\(405\) −16.7076 4.23544i −0.830206 0.210461i
\(406\) 36.1608 1.79463
\(407\) 0 0
\(408\) 5.33501i 0.264122i
\(409\) −21.8581 −1.08081 −0.540407 0.841404i \(-0.681730\pi\)
−0.540407 + 0.841404i \(0.681730\pi\)
\(410\) −3.45511 + 13.6294i −0.170636 + 0.673108i
\(411\) 12.4394 0.613589
\(412\) 11.4340i 0.563311i
\(413\) 20.0136i 0.984803i
\(414\) −0.212711 −0.0104542
\(415\) −0.101146 + 0.398993i −0.00496508 + 0.0195858i
\(416\) 3.09894 0.151938
\(417\) 1.55626i 0.0762102i
\(418\) 0 0
\(419\) −4.17764 −0.204091 −0.102046 0.994780i \(-0.532539\pi\)
−0.102046 + 0.994780i \(0.532539\pi\)
\(420\) −13.2503 3.35900i −0.646547 0.163902i
\(421\) 12.6940 0.618668 0.309334 0.950953i \(-0.399894\pi\)
0.309334 + 0.950953i \(0.399894\pi\)
\(422\) 13.6704i 0.665465i
\(423\) 2.04322i 0.0993445i
\(424\) 11.0142 0.534897
\(425\) −7.85386 + 14.4951i −0.380968 + 0.703116i
\(426\) −17.6235 −0.853859
\(427\) 9.28404i 0.449286i
\(428\) 15.3546i 0.742194i
\(429\) 0 0
\(430\) −7.84211 1.98801i −0.378180 0.0958702i
\(431\) −0.730785 −0.0352007 −0.0176003 0.999845i \(-0.505603\pi\)
−0.0176003 + 0.999845i \(0.505603\pi\)
\(432\) 5.47214i 0.263278i
\(433\) 5.64580i 0.271320i −0.990755 0.135660i \(-0.956685\pi\)
0.990755 0.135660i \(-0.0433154\pi\)
\(434\) 20.2100 0.970110
\(435\) −8.50930 + 33.5667i −0.407990 + 1.60940i
\(436\) 2.42892 0.116324
\(437\) 0.722400i 0.0345571i
\(438\) 5.49511i 0.262566i
\(439\) −13.7074 −0.654220 −0.327110 0.944986i \(-0.606075\pi\)
−0.327110 + 0.944986i \(0.606075\pi\)
\(440\) 0 0
\(441\) −2.77852 −0.132310
\(442\) 10.2179i 0.486016i
\(443\) 14.0435i 0.667225i −0.942710 0.333612i \(-0.891732\pi\)
0.942710 0.333612i \(-0.108268\pi\)
\(444\) −12.8071 −0.607800
\(445\) −13.2005 3.34638i −0.625763 0.158633i
\(446\) 23.9720 1.13511
\(447\) 14.2263i 0.672880i
\(448\) 3.77813i 0.178500i
\(449\) −9.65544 −0.455668 −0.227834 0.973700i \(-0.573164\pi\)
−0.227834 + 0.973700i \(0.573164\pi\)
\(450\) −0.909830 + 1.67918i −0.0428898 + 0.0791575i
\(451\) 0 0
\(452\) 8.38134i 0.394225i
\(453\) 14.4617i 0.679471i
\(454\) −20.7045 −0.971709
\(455\) −25.3776 6.43333i −1.18972 0.301599i
\(456\) −2.09894 −0.0982920
\(457\) 1.02878i 0.0481243i −0.999710 0.0240621i \(-0.992340\pi\)
0.999710 0.0240621i \(-0.00765996\pi\)
\(458\) 16.3407i 0.763550i
\(459\) −18.0428 −0.842167
\(460\) 0.305992 1.20705i 0.0142669 0.0562789i
\(461\) −8.05882 −0.375336 −0.187668 0.982232i \(-0.560093\pi\)
−0.187668 + 0.982232i \(0.560093\pi\)
\(462\) 0 0
\(463\) 7.46633i 0.346990i 0.984835 + 0.173495i \(0.0555060\pi\)
−0.984835 + 0.173495i \(0.944494\pi\)
\(464\) 9.57108 0.444326
\(465\) −4.75579 + 18.7602i −0.220544 + 0.869983i
\(466\) 0.480281 0.0222486
\(467\) 11.1894i 0.517782i 0.965907 + 0.258891i \(0.0833570\pi\)
−0.965907 + 0.258891i \(0.916643\pi\)
\(468\) 1.18369i 0.0547161i
\(469\) −34.8059 −1.60719
\(470\) −11.5944 2.93924i −0.534811 0.135577i
\(471\) 28.5437 1.31523
\(472\) 5.29722i 0.243824i
\(473\) 0 0
\(474\) 26.4765 1.21611
\(475\) −5.70278 3.08993i −0.261662 0.141776i
\(476\) −12.4573 −0.570980
\(477\) 4.20705i 0.192628i
\(478\) 1.12859i 0.0516206i
\(479\) −26.7696 −1.22313 −0.611567 0.791193i \(-0.709461\pi\)
−0.611567 + 0.791193i \(0.709461\pi\)
\(480\) −3.50710 0.889064i −0.160076 0.0405800i
\(481\) −24.5289 −1.11842
\(482\) 12.7220i 0.579472i
\(483\) 3.40431i 0.154901i
\(484\) 0 0
\(485\) 6.79036 26.7860i 0.308334 1.21629i
\(486\) −3.94427 −0.178916
\(487\) 18.3782i 0.832797i 0.909182 + 0.416398i \(0.136708\pi\)
−0.909182 + 0.416398i \(0.863292\pi\)
\(488\) 2.45731i 0.111237i
\(489\) 0.282006 0.0127528
\(490\) 3.99699 15.7670i 0.180566 0.712279i
\(491\) −25.9831 −1.17260 −0.586301 0.810093i \(-0.699416\pi\)
−0.586301 + 0.810093i \(0.699416\pi\)
\(492\) 10.1743i 0.458692i
\(493\) 31.5579i 1.42130i
\(494\) −4.02001 −0.180869
\(495\) 0 0
\(496\) 5.34921 0.240186
\(497\) 41.1510i 1.84587i
\(498\) 0.297846i 0.0133468i
\(499\) −16.9808 −0.760165 −0.380083 0.924953i \(-0.624104\pi\)
−0.380083 + 0.924953i \(0.624104\pi\)
\(500\) −8.21988 7.57849i −0.367604 0.338920i
\(501\) −8.87707 −0.396598
\(502\) 2.83952i 0.126734i
\(503\) 13.3916i 0.597104i 0.954393 + 0.298552i \(0.0965036\pi\)
−0.954393 + 0.298552i \(0.903496\pi\)
\(504\) −1.44312 −0.0642815
\(505\) −19.5383 4.95305i −0.869444 0.220408i
\(506\) 0 0
\(507\) 5.49573i 0.244074i
\(508\) 6.95343i 0.308509i
\(509\) 20.0301 0.887817 0.443909 0.896072i \(-0.353591\pi\)
0.443909 + 0.896072i \(0.353591\pi\)
\(510\) 2.93144 11.5637i 0.129806 0.512048i
\(511\) −12.8311 −0.567616
\(512\) 1.00000i 0.0441942i
\(513\) 7.09856i 0.313409i
\(514\) 30.8410 1.36034
\(515\) −6.28263 + 24.7832i −0.276846 + 1.09208i
\(516\) 5.85410 0.257712
\(517\) 0 0
\(518\) 29.9048i 1.31394i
\(519\) −38.8264 −1.70429
\(520\) −6.71698 1.70278i −0.294559 0.0746719i
\(521\) 2.32624 0.101914 0.0509572 0.998701i \(-0.483773\pi\)
0.0509572 + 0.998701i \(0.483773\pi\)
\(522\) 3.65583i 0.160011i
\(523\) 19.1186i 0.835996i 0.908448 + 0.417998i \(0.137268\pi\)
−0.908448 + 0.417998i \(0.862732\pi\)
\(524\) 5.61741 0.245398
\(525\) 26.8743 + 14.5613i 1.17289 + 0.635507i
\(526\) 27.7069 1.20808
\(527\) 17.6375i 0.768302i
\(528\) 0 0
\(529\) 22.6899 0.986517
\(530\) −23.8733 6.05199i −1.03699 0.262882i
\(531\) −2.02336 −0.0878062
\(532\) 4.90106i 0.212488i
\(533\) 19.4863i 0.844047i
\(534\) 9.85410 0.426429
\(535\) 8.43693 33.2812i 0.364760 1.43887i
\(536\) −9.21247 −0.397918
\(537\) 0.344801i 0.0148793i
\(538\) 12.7592i 0.550087i
\(539\) 0 0
\(540\) 3.00678 11.8609i 0.129391 0.510411i
\(541\) 29.8025 1.28131 0.640656 0.767828i \(-0.278663\pi\)
0.640656 + 0.767828i \(0.278663\pi\)
\(542\) 5.70254i 0.244945i
\(543\) 1.67981i 0.0720877i
\(544\) −3.29722 −0.141367
\(545\) −5.26470 1.33462i −0.225515 0.0571690i
\(546\) 18.9443 0.810740
\(547\) 18.9495i 0.810224i 0.914267 + 0.405112i \(0.132767\pi\)
−0.914267 + 0.405112i \(0.867233\pi\)
\(548\) 7.68796i 0.328413i
\(549\) 0.938610 0.0400589
\(550\) 0 0
\(551\) −12.4158 −0.528930
\(552\) 0.901057i 0.0383515i
\(553\) 61.8230i 2.62898i
\(554\) −31.7274 −1.34797
\(555\) 27.7596 + 7.03716i 1.17833 + 0.298711i
\(556\) 0.961819 0.0407902
\(557\) 6.68359i 0.283193i 0.989924 + 0.141596i \(0.0452235\pi\)
−0.989924 + 0.141596i \(0.954776\pi\)
\(558\) 2.04322i 0.0864962i
\(559\) 11.2121 0.474221
\(560\) 2.07597 8.18911i 0.0877259 0.346053i
\(561\) 0 0
\(562\) 1.93822i 0.0817589i
\(563\) 9.52412i 0.401394i −0.979653 0.200697i \(-0.935679\pi\)
0.979653 0.200697i \(-0.0643207\pi\)
\(564\) 8.65520 0.364450
\(565\) −4.60531 + 18.1666i −0.193747 + 0.764274i
\(566\) −4.91588 −0.206630
\(567\) 29.1226i 1.22303i
\(568\) 10.8919i 0.457014i
\(569\) −28.0616 −1.17640 −0.588201 0.808715i \(-0.700164\pi\)
−0.588201 + 0.808715i \(0.700164\pi\)
\(570\) 4.54947 + 1.15331i 0.190556 + 0.0483068i
\(571\) −1.61429 −0.0675561 −0.0337781 0.999429i \(-0.510754\pi\)
−0.0337781 + 0.999429i \(0.510754\pi\)
\(572\) 0 0
\(573\) 29.0186i 1.21227i
\(574\) 23.7571 0.991601
\(575\) −1.32648 + 2.44815i −0.0553180 + 0.102095i
\(576\) −0.381966 −0.0159153
\(577\) 3.26960i 0.136115i −0.997681 0.0680577i \(-0.978320\pi\)
0.997681 0.0680577i \(-0.0216802\pi\)
\(578\) 6.12835i 0.254906i
\(579\) −14.5944 −0.606524
\(580\) −20.7454 5.25904i −0.861405 0.218370i
\(581\) 0.695475 0.0288532
\(582\) 19.9956i 0.828846i
\(583\) 0 0
\(584\) −3.39616 −0.140534
\(585\) 0.650405 2.56566i 0.0268909 0.106077i
\(586\) 0.188725 0.00779616
\(587\) 3.50427i 0.144637i −0.997382 0.0723183i \(-0.976960\pi\)
0.997382 0.0723183i \(-0.0230397\pi\)
\(588\) 11.7700i 0.485386i
\(589\) −6.93909 −0.285920
\(590\) 2.91067 11.4818i 0.119830 0.472696i
\(591\) 5.96119 0.245211
\(592\) 7.91525i 0.325315i
\(593\) 27.6283i 1.13456i −0.823526 0.567278i \(-0.807996\pi\)
0.823526 0.567278i \(-0.192004\pi\)
\(594\) 0 0
\(595\) 27.0013 + 6.84494i 1.10695 + 0.280615i
\(596\) −8.79232 −0.360148
\(597\) 6.85309i 0.280478i
\(598\) 1.72575i 0.0705712i
\(599\) 7.95329 0.324962 0.162481 0.986712i \(-0.448050\pi\)
0.162481 + 0.986712i \(0.448050\pi\)
\(600\) 7.11314 + 3.85410i 0.290393 + 0.157343i
\(601\) 6.53391 0.266524 0.133262 0.991081i \(-0.457455\pi\)
0.133262 + 0.991081i \(0.457455\pi\)
\(602\) 13.6694i 0.557123i
\(603\) 3.51885i 0.143299i
\(604\) 8.93783 0.363675
\(605\) 0 0
\(606\) 14.5853 0.592486
\(607\) 8.37823i 0.340062i 0.985439 + 0.170031i \(0.0543867\pi\)
−0.985439 + 0.170031i \(0.945613\pi\)
\(608\) 1.29722i 0.0526092i
\(609\) 58.5093 2.37092
\(610\) −1.35022 + 5.32624i −0.0546689 + 0.215653i
\(611\) 16.5769 0.670629
\(612\) 1.25943i 0.0509093i
\(613\) 17.9125i 0.723480i −0.932279 0.361740i \(-0.882183\pi\)
0.932279 0.361740i \(-0.117817\pi\)
\(614\) −12.3820 −0.499695
\(615\) −5.59048 + 22.0528i −0.225430 + 0.889256i
\(616\) 0 0
\(617\) 21.3999i 0.861529i −0.902464 0.430765i \(-0.858244\pi\)
0.902464 0.430765i \(-0.141756\pi\)
\(618\) 18.5005i 0.744200i
\(619\) 5.92053 0.237966 0.118983 0.992896i \(-0.462037\pi\)
0.118983 + 0.992896i \(0.462037\pi\)
\(620\) −11.5944 2.93924i −0.465644 0.118043i
\(621\) −3.04734 −0.122286
\(622\) 21.1182i 0.846762i
\(623\) 23.0094i 0.921854i
\(624\) 5.01420 0.200728
\(625\) 13.6525 + 20.9430i 0.546099 + 0.837721i
\(626\) −16.5792 −0.662639
\(627\) 0 0
\(628\) 17.6410i 0.703953i
\(629\) 26.0983 1.04061
\(630\) 3.12796 + 0.792952i 0.124621 + 0.0315919i
\(631\) 18.2035 0.724672 0.362336 0.932048i \(-0.381979\pi\)
0.362336 + 0.932048i \(0.381979\pi\)
\(632\) 16.3634i 0.650901i
\(633\) 22.1192i 0.879159i
\(634\) −19.6370 −0.779886
\(635\) 3.82071 15.0716i 0.151620 0.598098i
\(636\) 17.8213 0.706662
\(637\) 22.5425i 0.893166i
\(638\) 0 0
\(639\) 4.16033 0.164580
\(640\) 0.549472 2.16751i 0.0217198 0.0856782i
\(641\) 17.6343 0.696514 0.348257 0.937399i \(-0.386774\pi\)
0.348257 + 0.937399i \(0.386774\pi\)
\(642\) 24.8443i 0.980527i
\(643\) 43.9495i 1.73320i 0.499003 + 0.866600i \(0.333700\pi\)
−0.499003 + 0.866600i \(0.666300\pi\)
\(644\) −2.10398 −0.0829083
\(645\) −12.6888 3.21666i −0.499621 0.126656i
\(646\) 4.27721 0.168285
\(647\) 0.496121i 0.0195045i 0.999952 + 0.00975227i \(0.00310429\pi\)
−0.999952 + 0.00975227i \(0.996896\pi\)
\(648\) 7.70820i 0.302807i
\(649\) 0 0
\(650\) 13.6235 + 7.38158i 0.534356 + 0.289529i
\(651\) 32.7004 1.28163
\(652\) 0.174289i 0.00682570i
\(653\) 18.1571i 0.710543i −0.934763 0.355272i \(-0.884388\pi\)
0.934763 0.355272i \(-0.115612\pi\)
\(654\) 3.93008 0.153678
\(655\) −12.1758 3.08661i −0.475746 0.120604i
\(656\) 6.28806 0.245507
\(657\) 1.29722i 0.0506093i
\(658\) 20.2100i 0.787867i
\(659\) 14.4974 0.564739 0.282370 0.959306i \(-0.408880\pi\)
0.282370 + 0.959306i \(0.408880\pi\)
\(660\) 0 0
\(661\) −11.6178 −0.451880 −0.225940 0.974141i \(-0.572545\pi\)
−0.225940 + 0.974141i \(0.572545\pi\)
\(662\) 23.4826i 0.912677i
\(663\) 16.5329i 0.642085i
\(664\) 0.184079 0.00714366
\(665\) −2.69299 + 10.6231i −0.104430 + 0.411945i
\(666\) 3.02336 0.117153
\(667\) 5.32998i 0.206378i
\(668\) 5.48633i 0.212273i
\(669\) 38.7876 1.49961
\(670\) 19.9681 + 5.06199i 0.771434 + 0.195562i
\(671\) 0 0
\(672\) 6.11314i 0.235819i
\(673\) 35.6283i 1.37337i −0.726956 0.686684i \(-0.759066\pi\)
0.726956 0.686684i \(-0.240934\pi\)
\(674\) 12.8251 0.494004
\(675\) −13.0344 + 24.0564i −0.501696 + 0.925931i
\(676\) −3.39655 −0.130637
\(677\) 24.5097i 0.941984i 0.882138 + 0.470992i \(0.156104\pi\)
−0.882138 + 0.470992i \(0.843896\pi\)
\(678\) 13.5613i 0.520818i
\(679\) −46.6900 −1.79180
\(680\) 7.14674 + 1.81173i 0.274065 + 0.0694766i
\(681\) −33.5005 −1.28374
\(682\) 0 0
\(683\) 25.5212i 0.976540i 0.872693 + 0.488270i \(0.162372\pi\)
−0.872693 + 0.488270i \(0.837628\pi\)
\(684\) 0.495493 0.0189457
\(685\) 4.22432 16.6637i 0.161403 0.636687i
\(686\) −1.03615 −0.0395603
\(687\) 26.4398i 1.00874i
\(688\) 3.61803i 0.137936i
\(689\) 34.1324 1.30034
\(690\) 0.495105 1.95305i 0.0188483 0.0743512i
\(691\) −45.4864 −1.73038 −0.865192 0.501442i \(-0.832803\pi\)
−0.865192 + 0.501442i \(0.832803\pi\)
\(692\) 23.9960i 0.912192i
\(693\) 0 0
\(694\) 20.6936 0.785519
\(695\) −2.08475 0.528492i −0.0790790 0.0200469i
\(696\) 15.4863 0.587008
\(697\) 20.7331i 0.785322i
\(698\) 21.7174i 0.822014i
\(699\) 0.777111 0.0293931
\(700\) −8.99937 + 16.6093i −0.340144 + 0.627771i
\(701\) −29.1466 −1.10085 −0.550425 0.834884i \(-0.685534\pi\)
−0.550425 + 0.834884i \(0.685534\pi\)
\(702\) 16.9578i 0.640032i
\(703\) 10.2678i 0.387258i
\(704\) 0 0
\(705\) −18.7602 4.75579i −0.706550 0.179113i
\(706\) 0.260293 0.00979627
\(707\) 34.0568i 1.28084i
\(708\) 8.57108i 0.322121i
\(709\) −30.9168 −1.16110 −0.580552 0.814223i \(-0.697163\pi\)
−0.580552 + 0.814223i \(0.697163\pi\)
\(710\) −5.98479 + 23.6082i −0.224605 + 0.886002i
\(711\) −6.25026 −0.234403
\(712\) 6.09017i 0.228239i
\(713\) 2.97889i 0.111560i
\(714\) −20.1564 −0.754333
\(715\) 0 0
\(716\) −0.213099 −0.00796388
\(717\) 1.82610i 0.0681969i
\(718\) 8.22187i 0.306838i
\(719\) 17.5471 0.654396 0.327198 0.944956i \(-0.393896\pi\)
0.327198 + 0.944956i \(0.393896\pi\)
\(720\) 0.827913 + 0.209880i 0.0308545 + 0.00782175i
\(721\) 43.1989 1.60881
\(722\) 17.3172i 0.644480i
\(723\) 20.5846i 0.765551i
\(724\) −1.03818 −0.0385837
\(725\) 42.0760 + 22.7980i 1.56266 + 0.846696i
\(726\) 0 0
\(727\) 16.7731i 0.622080i −0.950397 0.311040i \(-0.899323\pi\)
0.950397 0.311040i \(-0.100677\pi\)
\(728\) 11.7082i 0.433935i
\(729\) −29.5066 −1.09284
\(730\) 7.36120 + 1.86609i 0.272450 + 0.0690673i
\(731\) −11.9294 −0.441227
\(732\) 3.97601i 0.146958i
\(733\) 9.25089i 0.341689i 0.985298 + 0.170845i \(0.0546497\pi\)
−0.985298 + 0.170845i \(0.945350\pi\)
\(734\) 7.21334 0.266249
\(735\) 6.46727 25.5115i 0.238549 0.941006i
\(736\) −0.556884 −0.0205270
\(737\) 0 0
\(738\) 2.40182i 0.0884124i
\(739\) −7.49636 −0.275758 −0.137879 0.990449i \(-0.544029\pi\)
−0.137879 + 0.990449i \(0.544029\pi\)
\(740\) −4.34921 + 17.1564i −0.159880 + 0.630680i
\(741\) −6.50451 −0.238949
\(742\) 41.6130i 1.52766i
\(743\) 6.50325i 0.238581i 0.992859 + 0.119291i \(0.0380620\pi\)
−0.992859 + 0.119291i \(0.961938\pi\)
\(744\) 8.65520 0.317315
\(745\) 19.0574 + 4.83113i 0.698210 + 0.176999i
\(746\) −29.9629 −1.09702
\(747\) 0.0703120i 0.00257258i
\(748\) 0 0
\(749\) −58.0118 −2.11970
\(750\) −13.3000 12.2623i −0.485649 0.447754i
\(751\) 20.2922 0.740474 0.370237 0.928937i \(-0.379277\pi\)
0.370237 + 0.928937i \(0.379277\pi\)
\(752\) 5.34921i 0.195066i
\(753\) 4.59444i 0.167431i
\(754\) 29.6602 1.08016
\(755\) −19.3728 4.91109i −0.705049 0.178733i
\(756\) −20.6744 −0.751922
\(757\) 18.4509i 0.670608i 0.942110 + 0.335304i \(0.108839\pi\)
−0.942110 + 0.335304i \(0.891161\pi\)
\(758\) 36.7066i 1.33324i
\(759\) 0 0
\(760\) −0.712785 + 2.81173i −0.0258554 + 0.101992i
\(761\) −13.6441 −0.494599 −0.247299 0.968939i \(-0.579543\pi\)
−0.247299 + 0.968939i \(0.579543\pi\)
\(762\) 11.2509i 0.407577i
\(763\) 9.17677i 0.332221i
\(764\) 17.9345 0.648847
\(765\) −0.692019 + 2.72981i −0.0250200 + 0.0986965i
\(766\) 6.44815 0.232981
\(767\) 16.4158i 0.592739i
\(768\) 1.61803i 0.0583858i
\(769\) 6.77400 0.244277 0.122138 0.992513i \(-0.461025\pi\)
0.122138 + 0.992513i \(0.461025\pi\)
\(770\) 0 0
\(771\) 49.9017 1.79717
\(772\) 9.01986i 0.324632i
\(773\) 18.7748i 0.675282i −0.941275 0.337641i \(-0.890371\pi\)
0.941275 0.337641i \(-0.109629\pi\)
\(774\) −1.38197 −0.0496737
\(775\) 23.5160 + 12.7416i 0.844719 + 0.457693i
\(776\) −12.3580 −0.443626
\(777\) 48.3870i 1.73588i
\(778\) 28.6001i 1.02536i
\(779\) −8.15698 −0.292254
\(780\) −10.8683 2.75516i −0.389147 0.0986505i
\(781\) 0 0
\(782\) 1.83617i 0.0656612i
\(783\) 52.3742i 1.87170i
\(784\) −7.27425 −0.259795
\(785\) 9.69323 38.2370i 0.345966 1.36474i
\(786\) 9.08915 0.324199
\(787\) 27.4395i 0.978113i 0.872252 + 0.489057i \(0.162659\pi\)
−0.872252 + 0.489057i \(0.837341\pi\)
\(788\) 3.68422i 0.131245i
\(789\) 44.8308 1.59602
\(790\) 8.99123 35.4678i 0.319893 1.26189i
\(791\) 31.6658 1.12590
\(792\) 0 0
\(793\) 7.61507i 0.270419i
\(794\) −24.5049 −0.869648
\(795\) −38.6279 9.79232i −1.36999 0.347298i
\(796\) −4.23544 −0.150121
\(797\) 53.8746i 1.90834i −0.299270 0.954169i \(-0.596743\pi\)
0.299270 0.954169i \(-0.403257\pi\)
\(798\) 7.93008i 0.280722i
\(799\) −17.6375 −0.623970
\(800\) −2.38197 + 4.39616i −0.0842152 + 0.155428i
\(801\) −2.32624 −0.0821936
\(802\) 30.7122i 1.08449i
\(803\) 0 0
\(804\) −14.9061 −0.525697
\(805\) 4.56038 + 1.15608i 0.160732 + 0.0407463i
\(806\) 16.5769 0.583896
\(807\) 20.6448i 0.726731i
\(808\) 9.01420i 0.317118i
\(809\) −32.3371 −1.13691 −0.568456 0.822714i \(-0.692459\pi\)
−0.568456 + 0.822714i \(0.692459\pi\)
\(810\) 4.23544 16.7076i 0.148818 0.587044i
\(811\) 45.9263 1.61269 0.806346 0.591444i \(-0.201442\pi\)
0.806346 + 0.591444i \(0.201442\pi\)
\(812\) 36.1608i 1.26899i
\(813\) 9.22691i 0.323602i
\(814\) 0 0
\(815\) 0.0957671 0.377773i 0.00335458 0.0132328i
\(816\) −5.33501 −0.186763
\(817\) 4.69338i 0.164201i
\(818\) 21.8581i 0.764251i
\(819\) −4.47214 −0.156269
\(820\) −13.6294 3.45511i −0.475959 0.120658i
\(821\) 28.4350 0.992389 0.496194 0.868211i \(-0.334730\pi\)
0.496194 + 0.868211i \(0.334730\pi\)
\(822\) 12.4394i 0.433873i
\(823\) 10.3634i 0.361246i 0.983552 + 0.180623i \(0.0578113\pi\)
−0.983552 + 0.180623i \(0.942189\pi\)
\(824\) 11.4340 0.398321
\(825\) 0 0
\(826\) −20.0136 −0.696361
\(827\) 19.6082i 0.681845i 0.940091 + 0.340923i \(0.110739\pi\)
−0.940091 + 0.340923i \(0.889261\pi\)
\(828\) 0.212711i 0.00739220i
\(829\) −49.8737 −1.73219 −0.866093 0.499883i \(-0.833376\pi\)
−0.866093 + 0.499883i \(0.833376\pi\)
\(830\) −0.398993 0.101146i −0.0138492 0.00351084i
\(831\) −51.3361 −1.78083
\(832\) 3.09894i 0.107437i
\(833\) 23.9848i 0.831024i
\(834\) 1.55626 0.0538887
\(835\) −3.01458 + 11.8917i −0.104324 + 0.411528i
\(836\) 0 0
\(837\) 29.2716i 1.01177i
\(838\) 4.17764i 0.144314i
\(839\) 10.5253 0.363373 0.181687 0.983356i \(-0.441844\pi\)
0.181687 + 0.983356i \(0.441844\pi\)
\(840\) 3.35900 13.2503i 0.115896 0.457178i
\(841\) 62.6056 2.15881
\(842\) 12.6940i 0.437464i
\(843\) 3.13611i 0.108013i
\(844\) 13.6704 0.470555
\(845\) 7.36204 + 1.86631i 0.253262 + 0.0642029i
\(846\) −2.04322 −0.0702472
\(847\) 0 0
\(848\) 11.0142i 0.378229i
\(849\) −7.95406 −0.272983
\(850\) −14.4951 7.85386i −0.497178 0.269385i
\(851\) 4.40787 0.151100
\(852\) 17.6235i 0.603770i
\(853\) 15.7203i 0.538253i 0.963105 + 0.269126i \(0.0867350\pi\)
−0.963105 + 0.269126i \(0.913265\pi\)
\(854\) 9.28404 0.317693
\(855\) −1.07398 0.272260i −0.0367295 0.00931108i
\(856\) −15.3546 −0.524810
\(857\) 37.8967i 1.29453i −0.762267 0.647263i \(-0.775914\pi\)
0.762267 0.647263i \(-0.224086\pi\)
\(858\) 0 0
\(859\) −20.5913 −0.702567 −0.351283 0.936269i \(-0.614255\pi\)
−0.351283 + 0.936269i \(0.614255\pi\)
\(860\) 1.98801 7.84211i 0.0677905 0.267414i
\(861\) 38.4398 1.31002
\(862\) 0.730785i 0.0248906i
\(863\) 8.59318i 0.292515i 0.989247 + 0.146258i \(0.0467228\pi\)
−0.989247 + 0.146258i \(0.953277\pi\)
\(864\) −5.47214 −0.186166
\(865\) −13.1851 + 52.0115i −0.448308 + 1.76844i
\(866\) 5.64580 0.191852
\(867\) 9.91588i 0.336761i
\(868\) 20.2100i 0.685972i
\(869\) 0 0
\(870\) −33.5667 8.50930i −1.13802 0.288492i
\(871\) −28.5489 −0.967343
\(872\) 2.42892i 0.0822536i
\(873\) 4.72033i 0.159759i
\(874\) 0.722400 0.0244355
\(875\) 28.6325 31.0558i 0.967955 1.04988i
\(876\) −5.49511 −0.185662
\(877\) 45.1493i 1.52458i −0.647234 0.762292i \(-0.724074\pi\)
0.647234 0.762292i \(-0.275926\pi\)
\(878\) 13.7074i 0.462603i
\(879\) 0.305364 0.0102997
\(880\) 0 0
\(881\) −38.4847 −1.29658 −0.648291 0.761393i \(-0.724516\pi\)
−0.648291 + 0.761393i \(0.724516\pi\)
\(882\) 2.77852i 0.0935575i
\(883\) 39.3195i 1.32321i 0.749854 + 0.661604i \(0.230124\pi\)
−0.749854 + 0.661604i \(0.769876\pi\)
\(884\) −10.2179 −0.343665
\(885\) 4.70957 18.5779i 0.158310 0.624488i
\(886\) 14.0435 0.471799
\(887\) 7.84407i 0.263378i −0.991291 0.131689i \(-0.957960\pi\)
0.991291 0.131689i \(-0.0420400\pi\)
\(888\) 12.8071i 0.429780i
\(889\) −26.2710 −0.881100
\(890\) 3.34638 13.2005i 0.112171 0.442481i
\(891\) 0 0
\(892\) 23.9720i 0.802643i
\(893\) 6.93909i 0.232208i
\(894\) −14.2263 −0.475798
\(895\) 0.461893 + 0.117092i 0.0154394 + 0.00391395i
\(896\) −3.77813 −0.126218
\(897\) 2.79232i 0.0932330i
\(898\) 9.65544i 0.322206i
\(899\) 51.1977 1.70754
\(900\) −1.67918 0.909830i −0.0559728 0.0303277i
\(901\) −36.3162 −1.20987
\(902\) 0 0
\(903\) 22.1175i 0.736026i
\(904\) 8.38134 0.278759
\(905\) 2.25026 + 0.570451i 0.0748013 + 0.0189624i
\(906\) 14.4617 0.480458
\(907\) 44.3634i 1.47306i −0.676403 0.736532i \(-0.736462\pi\)
0.676403 0.736532i \(-0.263538\pi\)
\(908\) 20.7045i 0.687102i
\(909\) −3.44312 −0.114201
\(910\) 6.43333 25.3776i 0.213263 0.841259i
\(911\) 13.8518 0.458930 0.229465 0.973317i \(-0.426302\pi\)
0.229465 + 0.973317i \(0.426302\pi\)
\(912\) 2.09894i 0.0695030i
\(913\) 0 0
\(914\) 1.02878 0.0340290
\(915\) −2.18471 + 8.61803i −0.0722242 + 0.284903i
\(916\) −16.3407 −0.539911
\(917\) 21.2233i 0.700854i
\(918\) 18.0428i 0.595502i
\(919\) 15.2390 0.502688 0.251344 0.967898i \(-0.419127\pi\)
0.251344 + 0.967898i \(0.419127\pi\)
\(920\) 1.20705 + 0.305992i 0.0397952 + 0.0100883i
\(921\) −20.0344 −0.660157
\(922\) 8.05882i 0.265403i
\(923\) 33.7534i 1.11101i
\(924\) 0 0
\(925\) 18.8539 34.7967i 0.619911 1.14411i
\(926\) −7.46633 −0.245359
\(927\) 4.36738i 0.143444i
\(928\) 9.57108i 0.314186i
\(929\) −37.9217 −1.24417 −0.622086 0.782949i \(-0.713715\pi\)
−0.622086 + 0.782949i \(0.713715\pi\)
\(930\) −18.7602 4.75579i −0.615171 0.155948i
\(931\) 9.43629 0.309262
\(932\) 0.480281i 0.0157321i
\(933\) 34.1699i 1.11867i
\(934\) −11.1894 −0.366127
\(935\) 0 0
\(936\) −1.18369 −0.0386902
\(937\) 5.47756i 0.178944i −0.995989 0.0894720i \(-0.971482\pi\)
0.995989 0.0894720i \(-0.0285180\pi\)
\(938\) 34.8059i 1.13645i
\(939\) −26.8257 −0.875425
\(940\) 2.93924 11.5944i 0.0958674 0.378169i
\(941\) 46.4407 1.51392 0.756961 0.653460i \(-0.226683\pi\)
0.756961 + 0.653460i \(0.226683\pi\)
\(942\) 28.5437i 0.930005i
\(943\) 3.50172i 0.114032i
\(944\) −5.29722 −0.172410
\(945\) 44.8119 + 11.3600i 1.45773 + 0.369541i
\(946\) 0 0
\(947\) 22.7220i 0.738366i −0.929357 0.369183i \(-0.879638\pi\)
0.929357 0.369183i \(-0.120362\pi\)
\(948\) 26.4765i 0.859918i
\(949\) −10.5245 −0.341640
\(950\) 3.08993 5.70278i 0.100251 0.185023i
\(951\) −31.7734 −1.03032
\(952\) 12.4573i 0.403744i
\(953\) 36.0182i 1.16674i 0.812205 + 0.583372i \(0.198267\pi\)
−0.812205 + 0.583372i \(0.801733\pi\)
\(954\) −4.20705 −0.136208
\(955\) −38.8731 9.85449i −1.25790 0.318884i
\(956\) 1.12859 0.0365012
\(957\) 0 0
\(958\) 26.7696i 0.864886i
\(959\) −29.0461 −0.937947
\(960\) 0.889064 3.50710i 0.0286944 0.113191i
\(961\) −2.38598 −0.0769672
\(962\) 24.5289i 0.790844i
\(963\) 5.86495i 0.188995i
\(964\) 12.7220 0.409748
\(965\) −4.95616 + 19.5506i −0.159544 + 0.629356i
\(966\) −3.40431 −0.109532
\(967\) 23.8349i 0.766479i −0.923649 0.383240i \(-0.874808\pi\)
0.923649 0.383240i \(-0.125192\pi\)
\(968\) 0 0
\(969\) 6.92067 0.222324
\(970\) 26.7860 + 6.79036i 0.860046 + 0.218025i
\(971\) −35.3692 −1.13505 −0.567526 0.823355i \(-0.692099\pi\)
−0.567526 + 0.823355i \(0.692099\pi\)
\(972\) 3.94427i 0.126513i
\(973\) 3.63387i 0.116497i
\(974\) −18.3782 −0.588876
\(975\) 22.0432 + 11.9436i 0.705948 + 0.382503i
\(976\) 2.45731 0.0786566
\(977\) 11.2807i 0.360903i −0.983584 0.180452i \(-0.942244\pi\)
0.983584 0.180452i \(-0.0577559\pi\)
\(978\) 0.282006i 0.00901757i
\(979\) 0 0
\(980\) 15.7670 + 3.99699i 0.503658 + 0.127679i
\(981\) −0.927765 −0.0296213
\(982\) 25.9831i 0.829155i
\(983\) 8.56401i 0.273150i 0.990630 + 0.136575i \(0.0436094\pi\)
−0.990630 + 0.136575i \(0.956391\pi\)
\(984\) 10.1743 0.324345
\(985\) 2.02437 7.98556i 0.0645019 0.254441i
\(986\) −31.5579 −1.00501
\(987\) 32.7004i 1.04087i
\(988\) 4.02001i 0.127893i
\(989\) −2.01482 −0.0640677
\(990\) 0 0
\(991\) −15.9978 −0.508185 −0.254093 0.967180i \(-0.581777\pi\)
−0.254093 + 0.967180i \(0.581777\pi\)
\(992\) 5.34921i 0.169837i
\(993\) 37.9956i 1.20575i
\(994\) 41.1510 1.30523
\(995\) 9.18034 + 2.32725i 0.291036 + 0.0737789i
\(996\) 0.297846 0.00943763
\(997\) 28.4039i 0.899560i −0.893139 0.449780i \(-0.851502\pi\)
0.893139 0.449780i \(-0.148498\pi\)
\(998\) 16.9808i 0.537518i
\(999\) 43.3133 1.37037
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1210.2.b.k.969.8 8
5.2 odd 4 6050.2.a.dd.1.4 4
5.3 odd 4 6050.2.a.di.1.1 4
5.4 even 2 inner 1210.2.b.k.969.2 8
11.5 even 5 110.2.j.b.69.1 yes 16
11.9 even 5 110.2.j.b.59.3 yes 16
11.10 odd 2 1210.2.b.l.969.4 8
33.5 odd 10 990.2.ba.h.289.4 16
33.20 odd 10 990.2.ba.h.829.2 16
44.27 odd 10 880.2.cd.b.289.3 16
44.31 odd 10 880.2.cd.b.609.1 16
55.9 even 10 110.2.j.b.59.1 16
55.27 odd 20 550.2.h.n.201.2 8
55.32 even 4 6050.2.a.dl.1.3 4
55.38 odd 20 550.2.h.j.201.1 8
55.42 odd 20 550.2.h.n.301.2 8
55.43 even 4 6050.2.a.da.1.2 4
55.49 even 10 110.2.j.b.69.3 yes 16
55.53 odd 20 550.2.h.j.301.1 8
55.54 odd 2 1210.2.b.l.969.6 8
165.104 odd 10 990.2.ba.h.289.2 16
165.119 odd 10 990.2.ba.h.829.4 16
220.119 odd 10 880.2.cd.b.609.3 16
220.159 odd 10 880.2.cd.b.289.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.j.b.59.1 16 55.9 even 10
110.2.j.b.59.3 yes 16 11.9 even 5
110.2.j.b.69.1 yes 16 11.5 even 5
110.2.j.b.69.3 yes 16 55.49 even 10
550.2.h.j.201.1 8 55.38 odd 20
550.2.h.j.301.1 8 55.53 odd 20
550.2.h.n.201.2 8 55.27 odd 20
550.2.h.n.301.2 8 55.42 odd 20
880.2.cd.b.289.1 16 220.159 odd 10
880.2.cd.b.289.3 16 44.27 odd 10
880.2.cd.b.609.1 16 44.31 odd 10
880.2.cd.b.609.3 16 220.119 odd 10
990.2.ba.h.289.2 16 165.104 odd 10
990.2.ba.h.289.4 16 33.5 odd 10
990.2.ba.h.829.2 16 33.20 odd 10
990.2.ba.h.829.4 16 165.119 odd 10
1210.2.b.k.969.2 8 5.4 even 2 inner
1210.2.b.k.969.8 8 1.1 even 1 trivial
1210.2.b.l.969.4 8 11.10 odd 2
1210.2.b.l.969.6 8 55.54 odd 2
6050.2.a.da.1.2 4 55.43 even 4
6050.2.a.dd.1.4 4 5.2 odd 4
6050.2.a.di.1.1 4 5.3 odd 4
6050.2.a.dl.1.3 4 55.32 even 4