Properties

Label 1210.2.a.r.1.1
Level $1210$
Weight $2$
Character 1210.1
Self dual yes
Analytic conductor $9.662$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1210,2,Mod(1,1210)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1210, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1210.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1210 = 2 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1210.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.66189864457\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.37228\) of defining polynomial
Character \(\chi\) \(=\) 1210.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -3.37228 q^{3} +1.00000 q^{4} +1.00000 q^{5} -3.37228 q^{6} -3.37228 q^{7} +1.00000 q^{8} +8.37228 q^{9} +1.00000 q^{10} -3.37228 q^{12} -2.00000 q^{13} -3.37228 q^{14} -3.37228 q^{15} +1.00000 q^{16} -1.37228 q^{17} +8.37228 q^{18} -0.627719 q^{19} +1.00000 q^{20} +11.3723 q^{21} +2.74456 q^{23} -3.37228 q^{24} +1.00000 q^{25} -2.00000 q^{26} -18.1168 q^{27} -3.37228 q^{28} -1.37228 q^{29} -3.37228 q^{30} +3.37228 q^{31} +1.00000 q^{32} -1.37228 q^{34} -3.37228 q^{35} +8.37228 q^{36} +9.37228 q^{37} -0.627719 q^{38} +6.74456 q^{39} +1.00000 q^{40} +11.4891 q^{41} +11.3723 q^{42} +4.00000 q^{43} +8.37228 q^{45} +2.74456 q^{46} +2.74456 q^{47} -3.37228 q^{48} +4.37228 q^{49} +1.00000 q^{50} +4.62772 q^{51} -2.00000 q^{52} -4.11684 q^{53} -18.1168 q^{54} -3.37228 q^{56} +2.11684 q^{57} -1.37228 q^{58} -2.74456 q^{59} -3.37228 q^{60} +5.37228 q^{61} +3.37228 q^{62} -28.2337 q^{63} +1.00000 q^{64} -2.00000 q^{65} +8.00000 q^{67} -1.37228 q^{68} -9.25544 q^{69} -3.37228 q^{70} +10.1168 q^{71} +8.37228 q^{72} +15.4891 q^{73} +9.37228 q^{74} -3.37228 q^{75} -0.627719 q^{76} +6.74456 q^{78} +1.25544 q^{79} +1.00000 q^{80} +35.9783 q^{81} +11.4891 q^{82} +2.74456 q^{83} +11.3723 q^{84} -1.37228 q^{85} +4.00000 q^{86} +4.62772 q^{87} -1.37228 q^{89} +8.37228 q^{90} +6.74456 q^{91} +2.74456 q^{92} -11.3723 q^{93} +2.74456 q^{94} -0.627719 q^{95} -3.37228 q^{96} -12.7446 q^{97} +4.37228 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - q^{3} + 2 q^{4} + 2 q^{5} - q^{6} - q^{7} + 2 q^{8} + 11 q^{9} + 2 q^{10} - q^{12} - 4 q^{13} - q^{14} - q^{15} + 2 q^{16} + 3 q^{17} + 11 q^{18} - 7 q^{19} + 2 q^{20} + 17 q^{21}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −3.37228 −1.94699 −0.973494 0.228714i \(-0.926548\pi\)
−0.973494 + 0.228714i \(0.926548\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −3.37228 −1.37673
\(7\) −3.37228 −1.27460 −0.637301 0.770615i \(-0.719949\pi\)
−0.637301 + 0.770615i \(0.719949\pi\)
\(8\) 1.00000 0.353553
\(9\) 8.37228 2.79076
\(10\) 1.00000 0.316228
\(11\) 0 0
\(12\) −3.37228 −0.973494
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −3.37228 −0.901280
\(15\) −3.37228 −0.870719
\(16\) 1.00000 0.250000
\(17\) −1.37228 −0.332827 −0.166414 0.986056i \(-0.553219\pi\)
−0.166414 + 0.986056i \(0.553219\pi\)
\(18\) 8.37228 1.97337
\(19\) −0.627719 −0.144009 −0.0720043 0.997404i \(-0.522940\pi\)
−0.0720043 + 0.997404i \(0.522940\pi\)
\(20\) 1.00000 0.223607
\(21\) 11.3723 2.48164
\(22\) 0 0
\(23\) 2.74456 0.572281 0.286140 0.958188i \(-0.407628\pi\)
0.286140 + 0.958188i \(0.407628\pi\)
\(24\) −3.37228 −0.688364
\(25\) 1.00000 0.200000
\(26\) −2.00000 −0.392232
\(27\) −18.1168 −3.48659
\(28\) −3.37228 −0.637301
\(29\) −1.37228 −0.254826 −0.127413 0.991850i \(-0.540667\pi\)
−0.127413 + 0.991850i \(0.540667\pi\)
\(30\) −3.37228 −0.615692
\(31\) 3.37228 0.605680 0.302840 0.953041i \(-0.402065\pi\)
0.302840 + 0.953041i \(0.402065\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.37228 −0.235344
\(35\) −3.37228 −0.570020
\(36\) 8.37228 1.39538
\(37\) 9.37228 1.54079 0.770397 0.637565i \(-0.220058\pi\)
0.770397 + 0.637565i \(0.220058\pi\)
\(38\) −0.627719 −0.101829
\(39\) 6.74456 1.07999
\(40\) 1.00000 0.158114
\(41\) 11.4891 1.79430 0.897150 0.441726i \(-0.145634\pi\)
0.897150 + 0.441726i \(0.145634\pi\)
\(42\) 11.3723 1.75478
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 8.37228 1.24807
\(46\) 2.74456 0.404664
\(47\) 2.74456 0.400336 0.200168 0.979762i \(-0.435851\pi\)
0.200168 + 0.979762i \(0.435851\pi\)
\(48\) −3.37228 −0.486747
\(49\) 4.37228 0.624612
\(50\) 1.00000 0.141421
\(51\) 4.62772 0.648010
\(52\) −2.00000 −0.277350
\(53\) −4.11684 −0.565492 −0.282746 0.959195i \(-0.591245\pi\)
−0.282746 + 0.959195i \(0.591245\pi\)
\(54\) −18.1168 −2.46539
\(55\) 0 0
\(56\) −3.37228 −0.450640
\(57\) 2.11684 0.280383
\(58\) −1.37228 −0.180189
\(59\) −2.74456 −0.357312 −0.178656 0.983912i \(-0.557175\pi\)
−0.178656 + 0.983912i \(0.557175\pi\)
\(60\) −3.37228 −0.435360
\(61\) 5.37228 0.687850 0.343925 0.938997i \(-0.388243\pi\)
0.343925 + 0.938997i \(0.388243\pi\)
\(62\) 3.37228 0.428280
\(63\) −28.2337 −3.55711
\(64\) 1.00000 0.125000
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) −1.37228 −0.166414
\(69\) −9.25544 −1.11422
\(70\) −3.37228 −0.403065
\(71\) 10.1168 1.20065 0.600324 0.799757i \(-0.295038\pi\)
0.600324 + 0.799757i \(0.295038\pi\)
\(72\) 8.37228 0.986683
\(73\) 15.4891 1.81286 0.906432 0.422351i \(-0.138795\pi\)
0.906432 + 0.422351i \(0.138795\pi\)
\(74\) 9.37228 1.08951
\(75\) −3.37228 −0.389398
\(76\) −0.627719 −0.0720043
\(77\) 0 0
\(78\) 6.74456 0.763671
\(79\) 1.25544 0.141248 0.0706239 0.997503i \(-0.477501\pi\)
0.0706239 + 0.997503i \(0.477501\pi\)
\(80\) 1.00000 0.111803
\(81\) 35.9783 3.99758
\(82\) 11.4891 1.26876
\(83\) 2.74456 0.301255 0.150627 0.988591i \(-0.451871\pi\)
0.150627 + 0.988591i \(0.451871\pi\)
\(84\) 11.3723 1.24082
\(85\) −1.37228 −0.148845
\(86\) 4.00000 0.431331
\(87\) 4.62772 0.496144
\(88\) 0 0
\(89\) −1.37228 −0.145462 −0.0727308 0.997352i \(-0.523171\pi\)
−0.0727308 + 0.997352i \(0.523171\pi\)
\(90\) 8.37228 0.882516
\(91\) 6.74456 0.707022
\(92\) 2.74456 0.286140
\(93\) −11.3723 −1.17925
\(94\) 2.74456 0.283080
\(95\) −0.627719 −0.0644026
\(96\) −3.37228 −0.344182
\(97\) −12.7446 −1.29401 −0.647007 0.762484i \(-0.723980\pi\)
−0.647007 + 0.762484i \(0.723980\pi\)
\(98\) 4.37228 0.441667
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 4.62772 0.458212
\(103\) −9.48913 −0.934991 −0.467496 0.883995i \(-0.654844\pi\)
−0.467496 + 0.883995i \(0.654844\pi\)
\(104\) −2.00000 −0.196116
\(105\) 11.3723 1.10982
\(106\) −4.11684 −0.399863
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) −18.1168 −1.74329
\(109\) 15.4891 1.48359 0.741795 0.670627i \(-0.233975\pi\)
0.741795 + 0.670627i \(0.233975\pi\)
\(110\) 0 0
\(111\) −31.6060 −2.99991
\(112\) −3.37228 −0.318651
\(113\) 3.25544 0.306246 0.153123 0.988207i \(-0.451067\pi\)
0.153123 + 0.988207i \(0.451067\pi\)
\(114\) 2.11684 0.198261
\(115\) 2.74456 0.255932
\(116\) −1.37228 −0.127413
\(117\) −16.7446 −1.54804
\(118\) −2.74456 −0.252657
\(119\) 4.62772 0.424222
\(120\) −3.37228 −0.307846
\(121\) 0 0
\(122\) 5.37228 0.486383
\(123\) −38.7446 −3.49348
\(124\) 3.37228 0.302840
\(125\) 1.00000 0.0894427
\(126\) −28.2337 −2.51526
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 1.00000 0.0883883
\(129\) −13.4891 −1.18765
\(130\) −2.00000 −0.175412
\(131\) −22.1168 −1.93236 −0.966179 0.257873i \(-0.916978\pi\)
−0.966179 + 0.257873i \(0.916978\pi\)
\(132\) 0 0
\(133\) 2.11684 0.183554
\(134\) 8.00000 0.691095
\(135\) −18.1168 −1.55925
\(136\) −1.37228 −0.117672
\(137\) 8.74456 0.747098 0.373549 0.927610i \(-0.378141\pi\)
0.373549 + 0.927610i \(0.378141\pi\)
\(138\) −9.25544 −0.787875
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) −3.37228 −0.285010
\(141\) −9.25544 −0.779448
\(142\) 10.1168 0.848987
\(143\) 0 0
\(144\) 8.37228 0.697690
\(145\) −1.37228 −0.113962
\(146\) 15.4891 1.28189
\(147\) −14.7446 −1.21611
\(148\) 9.37228 0.770397
\(149\) −21.6060 −1.77003 −0.885015 0.465563i \(-0.845852\pi\)
−0.885015 + 0.465563i \(0.845852\pi\)
\(150\) −3.37228 −0.275346
\(151\) 12.2337 0.995563 0.497782 0.867302i \(-0.334148\pi\)
0.497782 + 0.867302i \(0.334148\pi\)
\(152\) −0.627719 −0.0509147
\(153\) −11.4891 −0.928841
\(154\) 0 0
\(155\) 3.37228 0.270868
\(156\) 6.74456 0.539997
\(157\) 9.37228 0.747989 0.373995 0.927431i \(-0.377988\pi\)
0.373995 + 0.927431i \(0.377988\pi\)
\(158\) 1.25544 0.0998772
\(159\) 13.8832 1.10101
\(160\) 1.00000 0.0790569
\(161\) −9.25544 −0.729431
\(162\) 35.9783 2.82672
\(163\) −5.88316 −0.460804 −0.230402 0.973095i \(-0.574004\pi\)
−0.230402 + 0.973095i \(0.574004\pi\)
\(164\) 11.4891 0.897150
\(165\) 0 0
\(166\) 2.74456 0.213019
\(167\) 4.62772 0.358104 0.179052 0.983840i \(-0.442697\pi\)
0.179052 + 0.983840i \(0.442697\pi\)
\(168\) 11.3723 0.877391
\(169\) −9.00000 −0.692308
\(170\) −1.37228 −0.105249
\(171\) −5.25544 −0.401893
\(172\) 4.00000 0.304997
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 4.62772 0.350826
\(175\) −3.37228 −0.254921
\(176\) 0 0
\(177\) 9.25544 0.695681
\(178\) −1.37228 −0.102857
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 8.37228 0.624033
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 6.74456 0.499940
\(183\) −18.1168 −1.33924
\(184\) 2.74456 0.202332
\(185\) 9.37228 0.689064
\(186\) −11.3723 −0.833856
\(187\) 0 0
\(188\) 2.74456 0.200168
\(189\) 61.0951 4.44401
\(190\) −0.627719 −0.0455395
\(191\) −5.48913 −0.397179 −0.198590 0.980083i \(-0.563636\pi\)
−0.198590 + 0.980083i \(0.563636\pi\)
\(192\) −3.37228 −0.243373
\(193\) −14.8614 −1.06975 −0.534874 0.844932i \(-0.679641\pi\)
−0.534874 + 0.844932i \(0.679641\pi\)
\(194\) −12.7446 −0.915006
\(195\) 6.74456 0.482988
\(196\) 4.37228 0.312306
\(197\) 20.7446 1.47799 0.738994 0.673712i \(-0.235301\pi\)
0.738994 + 0.673712i \(0.235301\pi\)
\(198\) 0 0
\(199\) 18.1168 1.28427 0.642135 0.766592i \(-0.278049\pi\)
0.642135 + 0.766592i \(0.278049\pi\)
\(200\) 1.00000 0.0707107
\(201\) −26.9783 −1.90290
\(202\) −6.00000 −0.422159
\(203\) 4.62772 0.324802
\(204\) 4.62772 0.324005
\(205\) 11.4891 0.802435
\(206\) −9.48913 −0.661139
\(207\) 22.9783 1.59710
\(208\) −2.00000 −0.138675
\(209\) 0 0
\(210\) 11.3723 0.784762
\(211\) −6.11684 −0.421101 −0.210550 0.977583i \(-0.567526\pi\)
−0.210550 + 0.977583i \(0.567526\pi\)
\(212\) −4.11684 −0.282746
\(213\) −34.1168 −2.33765
\(214\) 12.0000 0.820303
\(215\) 4.00000 0.272798
\(216\) −18.1168 −1.23270
\(217\) −11.3723 −0.772001
\(218\) 15.4891 1.04906
\(219\) −52.2337 −3.52963
\(220\) 0 0
\(221\) 2.74456 0.184619
\(222\) −31.6060 −2.12125
\(223\) −18.7446 −1.25523 −0.627614 0.778524i \(-0.715969\pi\)
−0.627614 + 0.778524i \(0.715969\pi\)
\(224\) −3.37228 −0.225320
\(225\) 8.37228 0.558152
\(226\) 3.25544 0.216548
\(227\) 2.74456 0.182163 0.0910815 0.995843i \(-0.470968\pi\)
0.0910815 + 0.995843i \(0.470968\pi\)
\(228\) 2.11684 0.140191
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 2.74456 0.180971
\(231\) 0 0
\(232\) −1.37228 −0.0900947
\(233\) −1.37228 −0.0899011 −0.0449506 0.998989i \(-0.514313\pi\)
−0.0449506 + 0.998989i \(0.514313\pi\)
\(234\) −16.7446 −1.09463
\(235\) 2.74456 0.179036
\(236\) −2.74456 −0.178656
\(237\) −4.23369 −0.275008
\(238\) 4.62772 0.299970
\(239\) 14.7446 0.953746 0.476873 0.878972i \(-0.341770\pi\)
0.476873 + 0.878972i \(0.341770\pi\)
\(240\) −3.37228 −0.217680
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 0 0
\(243\) −66.9783 −4.29666
\(244\) 5.37228 0.343925
\(245\) 4.37228 0.279335
\(246\) −38.7446 −2.47026
\(247\) 1.25544 0.0798816
\(248\) 3.37228 0.214140
\(249\) −9.25544 −0.586540
\(250\) 1.00000 0.0632456
\(251\) 2.74456 0.173235 0.0866176 0.996242i \(-0.472394\pi\)
0.0866176 + 0.996242i \(0.472394\pi\)
\(252\) −28.2337 −1.77856
\(253\) 0 0
\(254\) −8.00000 −0.501965
\(255\) 4.62772 0.289799
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) −13.4891 −0.839796
\(259\) −31.6060 −1.96390
\(260\) −2.00000 −0.124035
\(261\) −11.4891 −0.711159
\(262\) −22.1168 −1.36638
\(263\) 24.8614 1.53302 0.766510 0.642232i \(-0.221992\pi\)
0.766510 + 0.642232i \(0.221992\pi\)
\(264\) 0 0
\(265\) −4.11684 −0.252896
\(266\) 2.11684 0.129792
\(267\) 4.62772 0.283212
\(268\) 8.00000 0.488678
\(269\) −8.74456 −0.533165 −0.266583 0.963812i \(-0.585895\pi\)
−0.266583 + 0.963812i \(0.585895\pi\)
\(270\) −18.1168 −1.10256
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) −1.37228 −0.0832068
\(273\) −22.7446 −1.37656
\(274\) 8.74456 0.528278
\(275\) 0 0
\(276\) −9.25544 −0.557112
\(277\) 12.7446 0.765747 0.382873 0.923801i \(-0.374935\pi\)
0.382873 + 0.923801i \(0.374935\pi\)
\(278\) 4.00000 0.239904
\(279\) 28.2337 1.69031
\(280\) −3.37228 −0.201532
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) −9.25544 −0.551153
\(283\) −5.25544 −0.312403 −0.156202 0.987725i \(-0.549925\pi\)
−0.156202 + 0.987725i \(0.549925\pi\)
\(284\) 10.1168 0.600324
\(285\) 2.11684 0.125391
\(286\) 0 0
\(287\) −38.7446 −2.28702
\(288\) 8.37228 0.493341
\(289\) −15.1168 −0.889226
\(290\) −1.37228 −0.0805831
\(291\) 42.9783 2.51943
\(292\) 15.4891 0.906432
\(293\) −23.4891 −1.37225 −0.686125 0.727484i \(-0.740690\pi\)
−0.686125 + 0.727484i \(0.740690\pi\)
\(294\) −14.7446 −0.859920
\(295\) −2.74456 −0.159795
\(296\) 9.37228 0.544753
\(297\) 0 0
\(298\) −21.6060 −1.25160
\(299\) −5.48913 −0.317444
\(300\) −3.37228 −0.194699
\(301\) −13.4891 −0.777500
\(302\) 12.2337 0.703970
\(303\) 20.2337 1.16240
\(304\) −0.627719 −0.0360021
\(305\) 5.37228 0.307616
\(306\) −11.4891 −0.656790
\(307\) −5.25544 −0.299944 −0.149972 0.988690i \(-0.547918\pi\)
−0.149972 + 0.988690i \(0.547918\pi\)
\(308\) 0 0
\(309\) 32.0000 1.82042
\(310\) 3.37228 0.191533
\(311\) 19.3723 1.09850 0.549251 0.835658i \(-0.314913\pi\)
0.549251 + 0.835658i \(0.314913\pi\)
\(312\) 6.74456 0.381836
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 9.37228 0.528908
\(315\) −28.2337 −1.59079
\(316\) 1.25544 0.0706239
\(317\) −24.3505 −1.36766 −0.683831 0.729640i \(-0.739687\pi\)
−0.683831 + 0.729640i \(0.739687\pi\)
\(318\) 13.8832 0.778529
\(319\) 0 0
\(320\) 1.00000 0.0559017
\(321\) −40.4674 −2.25867
\(322\) −9.25544 −0.515785
\(323\) 0.861407 0.0479299
\(324\) 35.9783 1.99879
\(325\) −2.00000 −0.110940
\(326\) −5.88316 −0.325838
\(327\) −52.2337 −2.88853
\(328\) 11.4891 0.634381
\(329\) −9.25544 −0.510269
\(330\) 0 0
\(331\) 30.9783 1.70272 0.851359 0.524583i \(-0.175779\pi\)
0.851359 + 0.524583i \(0.175779\pi\)
\(332\) 2.74456 0.150627
\(333\) 78.4674 4.29999
\(334\) 4.62772 0.253217
\(335\) 8.00000 0.437087
\(336\) 11.3723 0.620409
\(337\) −24.1168 −1.31373 −0.656864 0.754009i \(-0.728117\pi\)
−0.656864 + 0.754009i \(0.728117\pi\)
\(338\) −9.00000 −0.489535
\(339\) −10.9783 −0.596257
\(340\) −1.37228 −0.0744224
\(341\) 0 0
\(342\) −5.25544 −0.284182
\(343\) 8.86141 0.478471
\(344\) 4.00000 0.215666
\(345\) −9.25544 −0.498296
\(346\) 6.00000 0.322562
\(347\) 32.2337 1.73040 0.865198 0.501431i \(-0.167193\pi\)
0.865198 + 0.501431i \(0.167193\pi\)
\(348\) 4.62772 0.248072
\(349\) −19.4891 −1.04323 −0.521614 0.853181i \(-0.674670\pi\)
−0.521614 + 0.853181i \(0.674670\pi\)
\(350\) −3.37228 −0.180256
\(351\) 36.2337 1.93401
\(352\) 0 0
\(353\) −0.510875 −0.0271911 −0.0135956 0.999908i \(-0.504328\pi\)
−0.0135956 + 0.999908i \(0.504328\pi\)
\(354\) 9.25544 0.491921
\(355\) 10.1168 0.536946
\(356\) −1.37228 −0.0727308
\(357\) −15.6060 −0.825955
\(358\) −12.0000 −0.634220
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 8.37228 0.441258
\(361\) −18.6060 −0.979262
\(362\) −10.0000 −0.525588
\(363\) 0 0
\(364\) 6.74456 0.353511
\(365\) 15.4891 0.810738
\(366\) −18.1168 −0.946983
\(367\) −4.00000 −0.208798 −0.104399 0.994535i \(-0.533292\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) 2.74456 0.143070
\(369\) 96.1902 5.00746
\(370\) 9.37228 0.487242
\(371\) 13.8832 0.720778
\(372\) −11.3723 −0.589625
\(373\) −31.4891 −1.63045 −0.815223 0.579148i \(-0.803385\pi\)
−0.815223 + 0.579148i \(0.803385\pi\)
\(374\) 0 0
\(375\) −3.37228 −0.174144
\(376\) 2.74456 0.141540
\(377\) 2.74456 0.141352
\(378\) 61.0951 3.14239
\(379\) −0.233688 −0.0120037 −0.00600187 0.999982i \(-0.501910\pi\)
−0.00600187 + 0.999982i \(0.501910\pi\)
\(380\) −0.627719 −0.0322013
\(381\) 26.9783 1.38214
\(382\) −5.48913 −0.280848
\(383\) 32.2337 1.64706 0.823532 0.567269i \(-0.192000\pi\)
0.823532 + 0.567269i \(0.192000\pi\)
\(384\) −3.37228 −0.172091
\(385\) 0 0
\(386\) −14.8614 −0.756426
\(387\) 33.4891 1.70235
\(388\) −12.7446 −0.647007
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 6.74456 0.341524
\(391\) −3.76631 −0.190471
\(392\) 4.37228 0.220834
\(393\) 74.5842 3.76228
\(394\) 20.7446 1.04510
\(395\) 1.25544 0.0631679
\(396\) 0 0
\(397\) 24.9783 1.25362 0.626811 0.779171i \(-0.284360\pi\)
0.626811 + 0.779171i \(0.284360\pi\)
\(398\) 18.1168 0.908115
\(399\) −7.13859 −0.357377
\(400\) 1.00000 0.0500000
\(401\) 13.3723 0.667780 0.333890 0.942612i \(-0.391639\pi\)
0.333890 + 0.942612i \(0.391639\pi\)
\(402\) −26.9783 −1.34555
\(403\) −6.74456 −0.335971
\(404\) −6.00000 −0.298511
\(405\) 35.9783 1.78777
\(406\) 4.62772 0.229670
\(407\) 0 0
\(408\) 4.62772 0.229106
\(409\) 1.76631 0.0873385 0.0436693 0.999046i \(-0.486095\pi\)
0.0436693 + 0.999046i \(0.486095\pi\)
\(410\) 11.4891 0.567407
\(411\) −29.4891 −1.45459
\(412\) −9.48913 −0.467496
\(413\) 9.25544 0.455430
\(414\) 22.9783 1.12932
\(415\) 2.74456 0.134725
\(416\) −2.00000 −0.0980581
\(417\) −13.4891 −0.660565
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 11.3723 0.554911
\(421\) 10.2337 0.498759 0.249380 0.968406i \(-0.419773\pi\)
0.249380 + 0.968406i \(0.419773\pi\)
\(422\) −6.11684 −0.297763
\(423\) 22.9783 1.11724
\(424\) −4.11684 −0.199932
\(425\) −1.37228 −0.0665654
\(426\) −34.1168 −1.65297
\(427\) −18.1168 −0.876736
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) 4.00000 0.192897
\(431\) 34.9783 1.68484 0.842422 0.538819i \(-0.181129\pi\)
0.842422 + 0.538819i \(0.181129\pi\)
\(432\) −18.1168 −0.871647
\(433\) 27.7228 1.33227 0.666137 0.745830i \(-0.267947\pi\)
0.666137 + 0.745830i \(0.267947\pi\)
\(434\) −11.3723 −0.545887
\(435\) 4.62772 0.221882
\(436\) 15.4891 0.741795
\(437\) −1.72281 −0.0824133
\(438\) −52.2337 −2.49582
\(439\) −18.9783 −0.905782 −0.452891 0.891566i \(-0.649607\pi\)
−0.452891 + 0.891566i \(0.649607\pi\)
\(440\) 0 0
\(441\) 36.6060 1.74314
\(442\) 2.74456 0.130546
\(443\) 29.4891 1.40107 0.700535 0.713618i \(-0.252945\pi\)
0.700535 + 0.713618i \(0.252945\pi\)
\(444\) −31.6060 −1.49995
\(445\) −1.37228 −0.0650524
\(446\) −18.7446 −0.887581
\(447\) 72.8614 3.44623
\(448\) −3.37228 −0.159325
\(449\) 28.9783 1.36757 0.683784 0.729684i \(-0.260333\pi\)
0.683784 + 0.729684i \(0.260333\pi\)
\(450\) 8.37228 0.394673
\(451\) 0 0
\(452\) 3.25544 0.153123
\(453\) −41.2554 −1.93835
\(454\) 2.74456 0.128809
\(455\) 6.74456 0.316190
\(456\) 2.11684 0.0991303
\(457\) 16.3505 0.764846 0.382423 0.923987i \(-0.375090\pi\)
0.382423 + 0.923987i \(0.375090\pi\)
\(458\) −10.0000 −0.467269
\(459\) 24.8614 1.16043
\(460\) 2.74456 0.127966
\(461\) −16.1168 −0.750636 −0.375318 0.926896i \(-0.622467\pi\)
−0.375318 + 0.926896i \(0.622467\pi\)
\(462\) 0 0
\(463\) −0.233688 −0.0108604 −0.00543020 0.999985i \(-0.501728\pi\)
−0.00543020 + 0.999985i \(0.501728\pi\)
\(464\) −1.37228 −0.0637066
\(465\) −11.3723 −0.527377
\(466\) −1.37228 −0.0635697
\(467\) −19.3723 −0.896442 −0.448221 0.893923i \(-0.647942\pi\)
−0.448221 + 0.893923i \(0.647942\pi\)
\(468\) −16.7446 −0.774018
\(469\) −26.9783 −1.24574
\(470\) 2.74456 0.126597
\(471\) −31.6060 −1.45633
\(472\) −2.74456 −0.126329
\(473\) 0 0
\(474\) −4.23369 −0.194460
\(475\) −0.627719 −0.0288017
\(476\) 4.62772 0.212111
\(477\) −34.4674 −1.57815
\(478\) 14.7446 0.674401
\(479\) −5.48913 −0.250805 −0.125402 0.992106i \(-0.540022\pi\)
−0.125402 + 0.992106i \(0.540022\pi\)
\(480\) −3.37228 −0.153923
\(481\) −18.7446 −0.854678
\(482\) 22.0000 1.00207
\(483\) 31.2119 1.42019
\(484\) 0 0
\(485\) −12.7446 −0.578701
\(486\) −66.9783 −3.03820
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) 5.37228 0.243192
\(489\) 19.8397 0.897180
\(490\) 4.37228 0.197520
\(491\) 7.37228 0.332706 0.166353 0.986066i \(-0.446801\pi\)
0.166353 + 0.986066i \(0.446801\pi\)
\(492\) −38.7446 −1.74674
\(493\) 1.88316 0.0848131
\(494\) 1.25544 0.0564848
\(495\) 0 0
\(496\) 3.37228 0.151420
\(497\) −34.1168 −1.53035
\(498\) −9.25544 −0.414746
\(499\) −33.4891 −1.49918 −0.749590 0.661903i \(-0.769749\pi\)
−0.749590 + 0.661903i \(0.769749\pi\)
\(500\) 1.00000 0.0447214
\(501\) −15.6060 −0.697223
\(502\) 2.74456 0.122496
\(503\) 34.9783 1.55960 0.779802 0.626027i \(-0.215320\pi\)
0.779802 + 0.626027i \(0.215320\pi\)
\(504\) −28.2337 −1.25763
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) 30.3505 1.34791
\(508\) −8.00000 −0.354943
\(509\) 9.76631 0.432884 0.216442 0.976295i \(-0.430555\pi\)
0.216442 + 0.976295i \(0.430555\pi\)
\(510\) 4.62772 0.204919
\(511\) −52.2337 −2.31068
\(512\) 1.00000 0.0441942
\(513\) 11.3723 0.502098
\(514\) 18.0000 0.793946
\(515\) −9.48913 −0.418141
\(516\) −13.4891 −0.593826
\(517\) 0 0
\(518\) −31.6060 −1.38869
\(519\) −20.2337 −0.888160
\(520\) −2.00000 −0.0877058
\(521\) 12.5109 0.548111 0.274056 0.961714i \(-0.411635\pi\)
0.274056 + 0.961714i \(0.411635\pi\)
\(522\) −11.4891 −0.502865
\(523\) −30.9783 −1.35458 −0.677292 0.735714i \(-0.736847\pi\)
−0.677292 + 0.735714i \(0.736847\pi\)
\(524\) −22.1168 −0.966179
\(525\) 11.3723 0.496327
\(526\) 24.8614 1.08401
\(527\) −4.62772 −0.201587
\(528\) 0 0
\(529\) −15.4674 −0.672495
\(530\) −4.11684 −0.178824
\(531\) −22.9783 −0.997171
\(532\) 2.11684 0.0917768
\(533\) −22.9783 −0.995299
\(534\) 4.62772 0.200261
\(535\) 12.0000 0.518805
\(536\) 8.00000 0.345547
\(537\) 40.4674 1.74630
\(538\) −8.74456 −0.377005
\(539\) 0 0
\(540\) −18.1168 −0.779625
\(541\) 20.1168 0.864891 0.432445 0.901660i \(-0.357651\pi\)
0.432445 + 0.901660i \(0.357651\pi\)
\(542\) 16.0000 0.687259
\(543\) 33.7228 1.44718
\(544\) −1.37228 −0.0588361
\(545\) 15.4891 0.663481
\(546\) −22.7446 −0.973377
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 8.74456 0.373549
\(549\) 44.9783 1.91962
\(550\) 0 0
\(551\) 0.861407 0.0366972
\(552\) −9.25544 −0.393938
\(553\) −4.23369 −0.180035
\(554\) 12.7446 0.541465
\(555\) −31.6060 −1.34160
\(556\) 4.00000 0.169638
\(557\) −4.97825 −0.210935 −0.105468 0.994423i \(-0.533634\pi\)
−0.105468 + 0.994423i \(0.533634\pi\)
\(558\) 28.2337 1.19523
\(559\) −8.00000 −0.338364
\(560\) −3.37228 −0.142505
\(561\) 0 0
\(562\) −18.0000 −0.759284
\(563\) 8.23369 0.347009 0.173504 0.984833i \(-0.444491\pi\)
0.173504 + 0.984833i \(0.444491\pi\)
\(564\) −9.25544 −0.389724
\(565\) 3.25544 0.136957
\(566\) −5.25544 −0.220903
\(567\) −121.329 −5.09533
\(568\) 10.1168 0.424493
\(569\) 15.2554 0.639541 0.319771 0.947495i \(-0.396394\pi\)
0.319771 + 0.947495i \(0.396394\pi\)
\(570\) 2.11684 0.0886648
\(571\) −15.3723 −0.643310 −0.321655 0.946857i \(-0.604239\pi\)
−0.321655 + 0.946857i \(0.604239\pi\)
\(572\) 0 0
\(573\) 18.5109 0.773303
\(574\) −38.7446 −1.61717
\(575\) 2.74456 0.114456
\(576\) 8.37228 0.348845
\(577\) 36.9783 1.53942 0.769712 0.638391i \(-0.220400\pi\)
0.769712 + 0.638391i \(0.220400\pi\)
\(578\) −15.1168 −0.628778
\(579\) 50.1168 2.08278
\(580\) −1.37228 −0.0569809
\(581\) −9.25544 −0.383980
\(582\) 42.9783 1.78151
\(583\) 0 0
\(584\) 15.4891 0.640945
\(585\) −16.7446 −0.692302
\(586\) −23.4891 −0.970327
\(587\) 24.8614 1.02614 0.513070 0.858347i \(-0.328508\pi\)
0.513070 + 0.858347i \(0.328508\pi\)
\(588\) −14.7446 −0.608056
\(589\) −2.11684 −0.0872230
\(590\) −2.74456 −0.112992
\(591\) −69.9565 −2.87763
\(592\) 9.37228 0.385198
\(593\) 12.5109 0.513760 0.256880 0.966443i \(-0.417305\pi\)
0.256880 + 0.966443i \(0.417305\pi\)
\(594\) 0 0
\(595\) 4.62772 0.189718
\(596\) −21.6060 −0.885015
\(597\) −61.0951 −2.50046
\(598\) −5.48913 −0.224467
\(599\) −39.6060 −1.61826 −0.809128 0.587632i \(-0.800060\pi\)
−0.809128 + 0.587632i \(0.800060\pi\)
\(600\) −3.37228 −0.137673
\(601\) 16.5109 0.673493 0.336746 0.941595i \(-0.390674\pi\)
0.336746 + 0.941595i \(0.390674\pi\)
\(602\) −13.4891 −0.549776
\(603\) 66.9783 2.72757
\(604\) 12.2337 0.497782
\(605\) 0 0
\(606\) 20.2337 0.821937
\(607\) 5.88316 0.238790 0.119395 0.992847i \(-0.461905\pi\)
0.119395 + 0.992847i \(0.461905\pi\)
\(608\) −0.627719 −0.0254574
\(609\) −15.6060 −0.632386
\(610\) 5.37228 0.217517
\(611\) −5.48913 −0.222066
\(612\) −11.4891 −0.464420
\(613\) −20.5109 −0.828426 −0.414213 0.910180i \(-0.635943\pi\)
−0.414213 + 0.910180i \(0.635943\pi\)
\(614\) −5.25544 −0.212092
\(615\) −38.7446 −1.56233
\(616\) 0 0
\(617\) −2.23369 −0.0899249 −0.0449624 0.998989i \(-0.514317\pi\)
−0.0449624 + 0.998989i \(0.514317\pi\)
\(618\) 32.0000 1.28723
\(619\) −44.4674 −1.78729 −0.893647 0.448770i \(-0.851862\pi\)
−0.893647 + 0.448770i \(0.851862\pi\)
\(620\) 3.37228 0.135434
\(621\) −49.7228 −1.99531
\(622\) 19.3723 0.776758
\(623\) 4.62772 0.185406
\(624\) 6.74456 0.269999
\(625\) 1.00000 0.0400000
\(626\) −22.0000 −0.879297
\(627\) 0 0
\(628\) 9.37228 0.373995
\(629\) −12.8614 −0.512818
\(630\) −28.2337 −1.12486
\(631\) 42.1168 1.67665 0.838323 0.545175i \(-0.183537\pi\)
0.838323 + 0.545175i \(0.183537\pi\)
\(632\) 1.25544 0.0499386
\(633\) 20.6277 0.819878
\(634\) −24.3505 −0.967083
\(635\) −8.00000 −0.317470
\(636\) 13.8832 0.550503
\(637\) −8.74456 −0.346472
\(638\) 0 0
\(639\) 84.7011 3.35072
\(640\) 1.00000 0.0395285
\(641\) −27.0951 −1.07019 −0.535096 0.844791i \(-0.679725\pi\)
−0.535096 + 0.844791i \(0.679725\pi\)
\(642\) −40.4674 −1.59712
\(643\) −5.88316 −0.232009 −0.116005 0.993249i \(-0.537009\pi\)
−0.116005 + 0.993249i \(0.537009\pi\)
\(644\) −9.25544 −0.364715
\(645\) −13.4891 −0.531134
\(646\) 0.861407 0.0338916
\(647\) −37.7228 −1.48304 −0.741518 0.670933i \(-0.765894\pi\)
−0.741518 + 0.670933i \(0.765894\pi\)
\(648\) 35.9783 1.41336
\(649\) 0 0
\(650\) −2.00000 −0.0784465
\(651\) 38.3505 1.50308
\(652\) −5.88316 −0.230402
\(653\) 10.6277 0.415895 0.207947 0.978140i \(-0.433322\pi\)
0.207947 + 0.978140i \(0.433322\pi\)
\(654\) −52.2337 −2.04250
\(655\) −22.1168 −0.864177
\(656\) 11.4891 0.448575
\(657\) 129.679 5.05927
\(658\) −9.25544 −0.360815
\(659\) −12.8614 −0.501009 −0.250505 0.968115i \(-0.580597\pi\)
−0.250505 + 0.968115i \(0.580597\pi\)
\(660\) 0 0
\(661\) 8.51087 0.331035 0.165517 0.986207i \(-0.447071\pi\)
0.165517 + 0.986207i \(0.447071\pi\)
\(662\) 30.9783 1.20400
\(663\) −9.25544 −0.359451
\(664\) 2.74456 0.106510
\(665\) 2.11684 0.0820877
\(666\) 78.4674 3.04055
\(667\) −3.76631 −0.145832
\(668\) 4.62772 0.179052
\(669\) 63.2119 2.44391
\(670\) 8.00000 0.309067
\(671\) 0 0
\(672\) 11.3723 0.438695
\(673\) −14.8614 −0.572865 −0.286433 0.958100i \(-0.592469\pi\)
−0.286433 + 0.958100i \(0.592469\pi\)
\(674\) −24.1168 −0.928946
\(675\) −18.1168 −0.697318
\(676\) −9.00000 −0.346154
\(677\) −3.25544 −0.125117 −0.0625583 0.998041i \(-0.519926\pi\)
−0.0625583 + 0.998041i \(0.519926\pi\)
\(678\) −10.9783 −0.421617
\(679\) 42.9783 1.64935
\(680\) −1.37228 −0.0526246
\(681\) −9.25544 −0.354669
\(682\) 0 0
\(683\) −28.6277 −1.09541 −0.547705 0.836672i \(-0.684498\pi\)
−0.547705 + 0.836672i \(0.684498\pi\)
\(684\) −5.25544 −0.200947
\(685\) 8.74456 0.334113
\(686\) 8.86141 0.338330
\(687\) 33.7228 1.28661
\(688\) 4.00000 0.152499
\(689\) 8.23369 0.313679
\(690\) −9.25544 −0.352348
\(691\) 40.2337 1.53056 0.765281 0.643697i \(-0.222600\pi\)
0.765281 + 0.643697i \(0.222600\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) 32.2337 1.22357
\(695\) 4.00000 0.151729
\(696\) 4.62772 0.175413
\(697\) −15.7663 −0.597192
\(698\) −19.4891 −0.737674
\(699\) 4.62772 0.175036
\(700\) −3.37228 −0.127460
\(701\) 37.3723 1.41153 0.705766 0.708445i \(-0.250603\pi\)
0.705766 + 0.708445i \(0.250603\pi\)
\(702\) 36.2337 1.36755
\(703\) −5.88316 −0.221887
\(704\) 0 0
\(705\) −9.25544 −0.348580
\(706\) −0.510875 −0.0192270
\(707\) 20.2337 0.760966
\(708\) 9.25544 0.347841
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 10.1168 0.379678
\(711\) 10.5109 0.394189
\(712\) −1.37228 −0.0514284
\(713\) 9.25544 0.346619
\(714\) −15.6060 −0.584039
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) −49.7228 −1.85693
\(718\) 0 0
\(719\) 13.8832 0.517754 0.258877 0.965910i \(-0.416648\pi\)
0.258877 + 0.965910i \(0.416648\pi\)
\(720\) 8.37228 0.312017
\(721\) 32.0000 1.19174
\(722\) −18.6060 −0.692442
\(723\) −74.1902 −2.75916
\(724\) −10.0000 −0.371647
\(725\) −1.37228 −0.0509652
\(726\) 0 0
\(727\) −24.2337 −0.898778 −0.449389 0.893336i \(-0.648358\pi\)
−0.449389 + 0.893336i \(0.648358\pi\)
\(728\) 6.74456 0.249970
\(729\) 117.935 4.36795
\(730\) 15.4891 0.573278
\(731\) −5.48913 −0.203023
\(732\) −18.1168 −0.669618
\(733\) −46.2337 −1.70768 −0.853840 0.520535i \(-0.825732\pi\)
−0.853840 + 0.520535i \(0.825732\pi\)
\(734\) −4.00000 −0.147643
\(735\) −14.7446 −0.543861
\(736\) 2.74456 0.101166
\(737\) 0 0
\(738\) 96.1902 3.54081
\(739\) 20.4674 0.752905 0.376452 0.926436i \(-0.377144\pi\)
0.376452 + 0.926436i \(0.377144\pi\)
\(740\) 9.37228 0.344532
\(741\) −4.23369 −0.155528
\(742\) 13.8832 0.509667
\(743\) 4.62772 0.169775 0.0848873 0.996391i \(-0.472947\pi\)
0.0848873 + 0.996391i \(0.472947\pi\)
\(744\) −11.3723 −0.416928
\(745\) −21.6060 −0.791581
\(746\) −31.4891 −1.15290
\(747\) 22.9783 0.840730
\(748\) 0 0
\(749\) −40.4674 −1.47865
\(750\) −3.37228 −0.123138
\(751\) 8.86141 0.323357 0.161679 0.986843i \(-0.448309\pi\)
0.161679 + 0.986843i \(0.448309\pi\)
\(752\) 2.74456 0.100084
\(753\) −9.25544 −0.337287
\(754\) 2.74456 0.0999511
\(755\) 12.2337 0.445229
\(756\) 61.0951 2.22201
\(757\) −20.9783 −0.762467 −0.381234 0.924479i \(-0.624501\pi\)
−0.381234 + 0.924479i \(0.624501\pi\)
\(758\) −0.233688 −0.00848793
\(759\) 0 0
\(760\) −0.627719 −0.0227697
\(761\) −4.97825 −0.180461 −0.0902307 0.995921i \(-0.528760\pi\)
−0.0902307 + 0.995921i \(0.528760\pi\)
\(762\) 26.9783 0.977319
\(763\) −52.2337 −1.89099
\(764\) −5.48913 −0.198590
\(765\) −11.4891 −0.415390
\(766\) 32.2337 1.16465
\(767\) 5.48913 0.198201
\(768\) −3.37228 −0.121687
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) −60.7011 −2.18610
\(772\) −14.8614 −0.534874
\(773\) −33.6060 −1.20872 −0.604361 0.796710i \(-0.706572\pi\)
−0.604361 + 0.796710i \(0.706572\pi\)
\(774\) 33.4891 1.20374
\(775\) 3.37228 0.121136
\(776\) −12.7446 −0.457503
\(777\) 106.584 3.82369
\(778\) 6.00000 0.215110
\(779\) −7.21194 −0.258395
\(780\) 6.74456 0.241494
\(781\) 0 0
\(782\) −3.76631 −0.134683
\(783\) 24.8614 0.888474
\(784\) 4.37228 0.156153
\(785\) 9.37228 0.334511
\(786\) 74.5842 2.66033
\(787\) 44.4674 1.58509 0.792545 0.609813i \(-0.208755\pi\)
0.792545 + 0.609813i \(0.208755\pi\)
\(788\) 20.7446 0.738994
\(789\) −83.8397 −2.98477
\(790\) 1.25544 0.0446665
\(791\) −10.9783 −0.390342
\(792\) 0 0
\(793\) −10.7446 −0.381551
\(794\) 24.9783 0.886445
\(795\) 13.8832 0.492385
\(796\) 18.1168 0.642135
\(797\) 11.4891 0.406966 0.203483 0.979079i \(-0.434774\pi\)
0.203483 + 0.979079i \(0.434774\pi\)
\(798\) −7.13859 −0.252703
\(799\) −3.76631 −0.133243
\(800\) 1.00000 0.0353553
\(801\) −11.4891 −0.405948
\(802\) 13.3723 0.472192
\(803\) 0 0
\(804\) −26.9783 −0.951450
\(805\) −9.25544 −0.326211
\(806\) −6.74456 −0.237567
\(807\) 29.4891 1.03807
\(808\) −6.00000 −0.211079
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 35.9783 1.26415
\(811\) −44.8614 −1.57530 −0.787649 0.616125i \(-0.788702\pi\)
−0.787649 + 0.616125i \(0.788702\pi\)
\(812\) 4.62772 0.162401
\(813\) −53.9565 −1.89234
\(814\) 0 0
\(815\) −5.88316 −0.206078
\(816\) 4.62772 0.162003
\(817\) −2.51087 −0.0878444
\(818\) 1.76631 0.0617577
\(819\) 56.4674 1.97313
\(820\) 11.4891 0.401218
\(821\) −11.4891 −0.400973 −0.200487 0.979696i \(-0.564252\pi\)
−0.200487 + 0.979696i \(0.564252\pi\)
\(822\) −29.4891 −1.02855
\(823\) −28.0000 −0.976019 −0.488009 0.872838i \(-0.662277\pi\)
−0.488009 + 0.872838i \(0.662277\pi\)
\(824\) −9.48913 −0.330569
\(825\) 0 0
\(826\) 9.25544 0.322038
\(827\) −46.9783 −1.63359 −0.816797 0.576925i \(-0.804252\pi\)
−0.816797 + 0.576925i \(0.804252\pi\)
\(828\) 22.9783 0.798549
\(829\) −24.7446 −0.859414 −0.429707 0.902968i \(-0.641383\pi\)
−0.429707 + 0.902968i \(0.641383\pi\)
\(830\) 2.74456 0.0952652
\(831\) −42.9783 −1.49090
\(832\) −2.00000 −0.0693375
\(833\) −6.00000 −0.207888
\(834\) −13.4891 −0.467090
\(835\) 4.62772 0.160149
\(836\) 0 0
\(837\) −61.0951 −2.11176
\(838\) −12.0000 −0.414533
\(839\) −10.9783 −0.379011 −0.189506 0.981880i \(-0.560689\pi\)
−0.189506 + 0.981880i \(0.560689\pi\)
\(840\) 11.3723 0.392381
\(841\) −27.1168 −0.935064
\(842\) 10.2337 0.352676
\(843\) 60.7011 2.09066
\(844\) −6.11684 −0.210550
\(845\) −9.00000 −0.309609
\(846\) 22.9783 0.790009
\(847\) 0 0
\(848\) −4.11684 −0.141373
\(849\) 17.7228 0.608245
\(850\) −1.37228 −0.0470689
\(851\) 25.7228 0.881767
\(852\) −34.1168 −1.16882
\(853\) 38.4674 1.31710 0.658549 0.752538i \(-0.271171\pi\)
0.658549 + 0.752538i \(0.271171\pi\)
\(854\) −18.1168 −0.619946
\(855\) −5.25544 −0.179732
\(856\) 12.0000 0.410152
\(857\) −36.3505 −1.24171 −0.620855 0.783925i \(-0.713215\pi\)
−0.620855 + 0.783925i \(0.713215\pi\)
\(858\) 0 0
\(859\) −42.7446 −1.45843 −0.729213 0.684287i \(-0.760114\pi\)
−0.729213 + 0.684287i \(0.760114\pi\)
\(860\) 4.00000 0.136399
\(861\) 130.658 4.45280
\(862\) 34.9783 1.19136
\(863\) 21.2554 0.723544 0.361772 0.932267i \(-0.382172\pi\)
0.361772 + 0.932267i \(0.382172\pi\)
\(864\) −18.1168 −0.616348
\(865\) 6.00000 0.204006
\(866\) 27.7228 0.942060
\(867\) 50.9783 1.73131
\(868\) −11.3723 −0.386000
\(869\) 0 0
\(870\) 4.62772 0.156894
\(871\) −16.0000 −0.542139
\(872\) 15.4891 0.524528
\(873\) −106.701 −3.61128
\(874\) −1.72281 −0.0582750
\(875\) −3.37228 −0.114004
\(876\) −52.2337 −1.76481
\(877\) −36.9783 −1.24867 −0.624333 0.781158i \(-0.714629\pi\)
−0.624333 + 0.781158i \(0.714629\pi\)
\(878\) −18.9783 −0.640485
\(879\) 79.2119 2.67175
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 36.6060 1.23259
\(883\) 3.37228 0.113486 0.0567432 0.998389i \(-0.481928\pi\)
0.0567432 + 0.998389i \(0.481928\pi\)
\(884\) 2.74456 0.0923096
\(885\) 9.25544 0.311118
\(886\) 29.4891 0.990707
\(887\) 10.9783 0.368614 0.184307 0.982869i \(-0.440996\pi\)
0.184307 + 0.982869i \(0.440996\pi\)
\(888\) −31.6060 −1.06063
\(889\) 26.9783 0.904821
\(890\) −1.37228 −0.0459990
\(891\) 0 0
\(892\) −18.7446 −0.627614
\(893\) −1.72281 −0.0576517
\(894\) 72.8614 2.43685
\(895\) −12.0000 −0.401116
\(896\) −3.37228 −0.112660
\(897\) 18.5109 0.618060
\(898\) 28.9783 0.967017
\(899\) −4.62772 −0.154343
\(900\) 8.37228 0.279076
\(901\) 5.64947 0.188211
\(902\) 0 0
\(903\) 45.4891 1.51378
\(904\) 3.25544 0.108274
\(905\) −10.0000 −0.332411
\(906\) −41.2554 −1.37062
\(907\) −0.394031 −0.0130836 −0.00654179 0.999979i \(-0.502082\pi\)
−0.00654179 + 0.999979i \(0.502082\pi\)
\(908\) 2.74456 0.0910815
\(909\) −50.2337 −1.66615
\(910\) 6.74456 0.223580
\(911\) −8.39403 −0.278107 −0.139053 0.990285i \(-0.544406\pi\)
−0.139053 + 0.990285i \(0.544406\pi\)
\(912\) 2.11684 0.0700957
\(913\) 0 0
\(914\) 16.3505 0.540828
\(915\) −18.1168 −0.598924
\(916\) −10.0000 −0.330409
\(917\) 74.5842 2.46299
\(918\) 24.8614 0.820549
\(919\) −18.9783 −0.626035 −0.313017 0.949747i \(-0.601340\pi\)
−0.313017 + 0.949747i \(0.601340\pi\)
\(920\) 2.74456 0.0904856
\(921\) 17.7228 0.583987
\(922\) −16.1168 −0.530780
\(923\) −20.2337 −0.666000
\(924\) 0 0
\(925\) 9.37228 0.308159
\(926\) −0.233688 −0.00767946
\(927\) −79.4456 −2.60934
\(928\) −1.37228 −0.0450473
\(929\) 24.3505 0.798915 0.399458 0.916752i \(-0.369199\pi\)
0.399458 + 0.916752i \(0.369199\pi\)
\(930\) −11.3723 −0.372912
\(931\) −2.74456 −0.0899494
\(932\) −1.37228 −0.0449506
\(933\) −65.3288 −2.13877
\(934\) −19.3723 −0.633880
\(935\) 0 0
\(936\) −16.7446 −0.547313
\(937\) 28.5109 0.931410 0.465705 0.884940i \(-0.345801\pi\)
0.465705 + 0.884940i \(0.345801\pi\)
\(938\) −26.9783 −0.880871
\(939\) 74.1902 2.42111
\(940\) 2.74456 0.0895178
\(941\) 15.0951 0.492086 0.246043 0.969259i \(-0.420870\pi\)
0.246043 + 0.969259i \(0.420870\pi\)
\(942\) −31.6060 −1.02978
\(943\) 31.5326 1.02684
\(944\) −2.74456 −0.0893279
\(945\) 61.0951 1.98742
\(946\) 0 0
\(947\) 48.8614 1.58778 0.793891 0.608060i \(-0.208052\pi\)
0.793891 + 0.608060i \(0.208052\pi\)
\(948\) −4.23369 −0.137504
\(949\) −30.9783 −1.00560
\(950\) −0.627719 −0.0203659
\(951\) 82.1168 2.66282
\(952\) 4.62772 0.149985
\(953\) −40.1168 −1.29951 −0.649756 0.760143i \(-0.725129\pi\)
−0.649756 + 0.760143i \(0.725129\pi\)
\(954\) −34.4674 −1.11592
\(955\) −5.48913 −0.177624
\(956\) 14.7446 0.476873
\(957\) 0 0
\(958\) −5.48913 −0.177346
\(959\) −29.4891 −0.952254
\(960\) −3.37228 −0.108840
\(961\) −19.6277 −0.633152
\(962\) −18.7446 −0.604349
\(963\) 100.467 3.23752
\(964\) 22.0000 0.708572
\(965\) −14.8614 −0.478406
\(966\) 31.2119 1.00423
\(967\) −47.6060 −1.53090 −0.765452 0.643493i \(-0.777485\pi\)
−0.765452 + 0.643493i \(0.777485\pi\)
\(968\) 0 0
\(969\) −2.90491 −0.0933190
\(970\) −12.7446 −0.409203
\(971\) −1.02175 −0.0327895 −0.0163947 0.999866i \(-0.505219\pi\)
−0.0163947 + 0.999866i \(0.505219\pi\)
\(972\) −66.9783 −2.14833
\(973\) −13.4891 −0.432442
\(974\) 20.0000 0.640841
\(975\) 6.74456 0.215999
\(976\) 5.37228 0.171963
\(977\) 14.2337 0.455376 0.227688 0.973734i \(-0.426883\pi\)
0.227688 + 0.973734i \(0.426883\pi\)
\(978\) 19.8397 0.634402
\(979\) 0 0
\(980\) 4.37228 0.139667
\(981\) 129.679 4.14034
\(982\) 7.37228 0.235259
\(983\) −13.7228 −0.437690 −0.218845 0.975760i \(-0.570229\pi\)
−0.218845 + 0.975760i \(0.570229\pi\)
\(984\) −38.7446 −1.23513
\(985\) 20.7446 0.660977
\(986\) 1.88316 0.0599719
\(987\) 31.2119 0.993487
\(988\) 1.25544 0.0399408
\(989\) 10.9783 0.349088
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 3.37228 0.107070
\(993\) −104.467 −3.31517
\(994\) −34.1168 −1.08212
\(995\) 18.1168 0.574343
\(996\) −9.25544 −0.293270
\(997\) −22.2337 −0.704148 −0.352074 0.935972i \(-0.614523\pi\)
−0.352074 + 0.935972i \(0.614523\pi\)
\(998\) −33.4891 −1.06008
\(999\) −169.796 −5.37211
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1210.2.a.r.1.1 2
4.3 odd 2 9680.2.a.bt.1.2 2
5.4 even 2 6050.2.a.cb.1.2 2
11.10 odd 2 110.2.a.d.1.1 2
33.32 even 2 990.2.a.m.1.2 2
44.43 even 2 880.2.a.n.1.2 2
55.32 even 4 550.2.b.f.199.2 4
55.43 even 4 550.2.b.f.199.3 4
55.54 odd 2 550.2.a.n.1.2 2
77.76 even 2 5390.2.a.bp.1.2 2
88.21 odd 2 3520.2.a.bq.1.2 2
88.43 even 2 3520.2.a.bj.1.1 2
132.131 odd 2 7920.2.a.bq.1.1 2
165.32 odd 4 4950.2.c.bc.199.4 4
165.98 odd 4 4950.2.c.bc.199.1 4
165.164 even 2 4950.2.a.bw.1.1 2
220.43 odd 4 4400.2.b.p.4049.4 4
220.87 odd 4 4400.2.b.p.4049.1 4
220.219 even 2 4400.2.a.bl.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.a.d.1.1 2 11.10 odd 2
550.2.a.n.1.2 2 55.54 odd 2
550.2.b.f.199.2 4 55.32 even 4
550.2.b.f.199.3 4 55.43 even 4
880.2.a.n.1.2 2 44.43 even 2
990.2.a.m.1.2 2 33.32 even 2
1210.2.a.r.1.1 2 1.1 even 1 trivial
3520.2.a.bj.1.1 2 88.43 even 2
3520.2.a.bq.1.2 2 88.21 odd 2
4400.2.a.bl.1.1 2 220.219 even 2
4400.2.b.p.4049.1 4 220.87 odd 4
4400.2.b.p.4049.4 4 220.43 odd 4
4950.2.a.bw.1.1 2 165.164 even 2
4950.2.c.bc.199.1 4 165.98 odd 4
4950.2.c.bc.199.4 4 165.32 odd 4
5390.2.a.bp.1.2 2 77.76 even 2
6050.2.a.cb.1.2 2 5.4 even 2
7920.2.a.bq.1.1 2 132.131 odd 2
9680.2.a.bt.1.2 2 4.3 odd 2