Properties

Label 1210.2.a.r
Level $1210$
Weight $2$
Character orbit 1210.a
Self dual yes
Analytic conductor $9.662$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1210,2,Mod(1,1210)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1210, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1210.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1210 = 2 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1210.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,-1,2,2,-1,-1,2,11,2,0,-1,-4,-1,-1,2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.66189864457\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{33})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta q^{3} + q^{4} + q^{5} - \beta q^{6} - \beta q^{7} + q^{8} + (\beta + 5) q^{9} + q^{10} - \beta q^{12} - 2 q^{13} - \beta q^{14} - \beta q^{15} + q^{16} + ( - \beta + 2) q^{17} + (\beta + 5) q^{18} + \cdots + (\beta + 1) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - q^{3} + 2 q^{4} + 2 q^{5} - q^{6} - q^{7} + 2 q^{8} + 11 q^{9} + 2 q^{10} - q^{12} - 4 q^{13} - q^{14} - q^{15} + 2 q^{16} + 3 q^{17} + 11 q^{18} - 7 q^{19} + 2 q^{20} + 17 q^{21}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.37228
−2.37228
1.00000 −3.37228 1.00000 1.00000 −3.37228 −3.37228 1.00000 8.37228 1.00000
1.2 1.00000 2.37228 1.00000 1.00000 2.37228 2.37228 1.00000 2.62772 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1210.2.a.r 2
4.b odd 2 1 9680.2.a.bt 2
5.b even 2 1 6050.2.a.cb 2
11.b odd 2 1 110.2.a.d 2
33.d even 2 1 990.2.a.m 2
44.c even 2 1 880.2.a.n 2
55.d odd 2 1 550.2.a.n 2
55.e even 4 2 550.2.b.f 4
77.b even 2 1 5390.2.a.bp 2
88.b odd 2 1 3520.2.a.bq 2
88.g even 2 1 3520.2.a.bj 2
132.d odd 2 1 7920.2.a.bq 2
165.d even 2 1 4950.2.a.bw 2
165.l odd 4 2 4950.2.c.bc 4
220.g even 2 1 4400.2.a.bl 2
220.i odd 4 2 4400.2.b.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.2.a.d 2 11.b odd 2 1
550.2.a.n 2 55.d odd 2 1
550.2.b.f 4 55.e even 4 2
880.2.a.n 2 44.c even 2 1
990.2.a.m 2 33.d even 2 1
1210.2.a.r 2 1.a even 1 1 trivial
3520.2.a.bj 2 88.g even 2 1
3520.2.a.bq 2 88.b odd 2 1
4400.2.a.bl 2 220.g even 2 1
4400.2.b.p 4 220.i odd 4 2
4950.2.a.bw 2 165.d even 2 1
4950.2.c.bc 4 165.l odd 4 2
5390.2.a.bp 2 77.b even 2 1
6050.2.a.cb 2 5.b even 2 1
7920.2.a.bq 2 132.d odd 2 1
9680.2.a.bt 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1210))\):

\( T_{3}^{2} + T_{3} - 8 \) Copy content Toggle raw display
\( T_{7}^{2} + T_{7} - 8 \) Copy content Toggle raw display
\( T_{13} + 2 \) Copy content Toggle raw display
\( T_{17}^{2} - 3T_{17} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T - 8 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + T - 8 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( (T + 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 3T - 6 \) Copy content Toggle raw display
$19$ \( T^{2} + 7T + 4 \) Copy content Toggle raw display
$23$ \( T^{2} + 6T - 24 \) Copy content Toggle raw display
$29$ \( T^{2} - 3T - 6 \) Copy content Toggle raw display
$31$ \( T^{2} - T - 8 \) Copy content Toggle raw display
$37$ \( T^{2} - 13T + 34 \) Copy content Toggle raw display
$41$ \( T^{2} - 132 \) Copy content Toggle raw display
$43$ \( (T - 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 6T - 24 \) Copy content Toggle raw display
$53$ \( T^{2} - 9T - 54 \) Copy content Toggle raw display
$59$ \( T^{2} - 6T - 24 \) Copy content Toggle raw display
$61$ \( T^{2} - 5T - 2 \) Copy content Toggle raw display
$67$ \( (T - 8)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 3T - 72 \) Copy content Toggle raw display
$73$ \( T^{2} - 8T - 116 \) Copy content Toggle raw display
$79$ \( T^{2} - 14T + 16 \) Copy content Toggle raw display
$83$ \( T^{2} + 6T - 24 \) Copy content Toggle raw display
$89$ \( T^{2} - 3T - 6 \) Copy content Toggle raw display
$97$ \( T^{2} + 14T + 16 \) Copy content Toggle raw display
show more
show less