Properties

Label 1210.2.a.q
Level $1210$
Weight $2$
Character orbit 1210.a
Self dual yes
Analytic conductor $9.662$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1210,2,Mod(1,1210)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1210, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1210.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1210 = 2 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1210.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,-3,2,-2,-3,0,2,1,-2,0,-3,-4,0,3,2,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.66189864457\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + ( - \beta - 1) q^{3} + q^{4} - q^{5} + ( - \beta - 1) q^{6} + q^{8} + (3 \beta - 1) q^{9} - q^{10} + ( - \beta - 1) q^{12} + (4 \beta - 4) q^{13} + (\beta + 1) q^{15} + q^{16} + ( - 5 \beta + 2) q^{17}+ \cdots - 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 3 q^{3} + 2 q^{4} - 2 q^{5} - 3 q^{6} + 2 q^{8} + q^{9} - 2 q^{10} - 3 q^{12} - 4 q^{13} + 3 q^{15} + 2 q^{16} - q^{17} + q^{18} - q^{19} - 2 q^{20} - 12 q^{23} - 3 q^{24} + 2 q^{25}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
1.00000 −2.61803 1.00000 −1.00000 −2.61803 0 1.00000 3.85410 −1.00000
1.2 1.00000 −0.381966 1.00000 −1.00000 −0.381966 0 1.00000 −2.85410 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1210.2.a.q 2
4.b odd 2 1 9680.2.a.bw 2
5.b even 2 1 6050.2.a.ch 2
11.b odd 2 1 1210.2.a.n 2
11.d odd 10 2 110.2.g.b 4
33.f even 10 2 990.2.n.c 4
44.c even 2 1 9680.2.a.bx 2
44.g even 10 2 880.2.bo.b 4
55.d odd 2 1 6050.2.a.cw 2
55.h odd 10 2 550.2.h.b 4
55.l even 20 4 550.2.ba.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.2.g.b 4 11.d odd 10 2
550.2.h.b 4 55.h odd 10 2
550.2.ba.b 8 55.l even 20 4
880.2.bo.b 4 44.g even 10 2
990.2.n.c 4 33.f even 10 2
1210.2.a.n 2 11.b odd 2 1
1210.2.a.q 2 1.a even 1 1 trivial
6050.2.a.ch 2 5.b even 2 1
6050.2.a.cw 2 55.d odd 2 1
9680.2.a.bw 2 4.b odd 2 1
9680.2.a.bx 2 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1210))\):

\( T_{3}^{2} + 3T_{3} + 1 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{13}^{2} + 4T_{13} - 16 \) Copy content Toggle raw display
\( T_{17}^{2} + T_{17} - 31 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3T + 1 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 16 \) Copy content Toggle raw display
$17$ \( T^{2} + T - 31 \) Copy content Toggle raw display
$19$ \( T^{2} + T - 11 \) Copy content Toggle raw display
$23$ \( (T + 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 14T + 44 \) Copy content Toggle raw display
$31$ \( T^{2} - 6T - 36 \) Copy content Toggle raw display
$37$ \( (T + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 3T - 9 \) Copy content Toggle raw display
$43$ \( T^{2} + T - 11 \) Copy content Toggle raw display
$47$ \( T^{2} + 18T + 76 \) Copy content Toggle raw display
$53$ \( T^{2} + 16T + 44 \) Copy content Toggle raw display
$59$ \( T^{2} - 3T - 99 \) Copy content Toggle raw display
$61$ \( T^{2} - 2T - 44 \) Copy content Toggle raw display
$67$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$71$ \( T^{2} + 14T + 44 \) Copy content Toggle raw display
$73$ \( T^{2} + 9T + 9 \) Copy content Toggle raw display
$79$ \( T^{2} + 10T + 20 \) Copy content Toggle raw display
$83$ \( T^{2} - 27T + 181 \) Copy content Toggle raw display
$89$ \( T^{2} - 3T - 29 \) Copy content Toggle raw display
$97$ \( T^{2} + 13T + 41 \) Copy content Toggle raw display
show more
show less