Properties

Label 1210.2.a.p
Level $1210$
Weight $2$
Character orbit 1210.a
Self dual yes
Analytic conductor $9.662$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1210,2,Mod(1,1210)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1210.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1210, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1210 = 2 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1210.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,2,2,-2,-2,-3,-2,6,2,0,2,1,3,-2,2,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.66189864457\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + 2 \beta q^{3} + q^{4} - q^{5} - 2 \beta q^{6} + ( - \beta - 1) q^{7} - q^{8} + (4 \beta + 1) q^{9} + q^{10} + 2 \beta q^{12} + \beta q^{13} + (\beta + 1) q^{14} - 2 \beta q^{15} + q^{16} + \cdots + ( - 3 \beta + 5) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - 2 q^{5} - 2 q^{6} - 3 q^{7} - 2 q^{8} + 6 q^{9} + 2 q^{10} + 2 q^{12} + q^{13} + 3 q^{14} - 2 q^{15} + 2 q^{16} + 6 q^{17} - 6 q^{18} - 3 q^{19} - 2 q^{20} - 8 q^{21}+ \cdots + 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−1.00000 −1.23607 1.00000 −1.00000 1.23607 −0.381966 −1.00000 −1.47214 1.00000
1.2 −1.00000 3.23607 1.00000 −1.00000 −3.23607 −2.61803 −1.00000 7.47214 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1210.2.a.p 2
4.b odd 2 1 9680.2.a.bi 2
5.b even 2 1 6050.2.a.cm 2
11.b odd 2 1 1210.2.a.t 2
11.d odd 10 2 110.2.g.a 4
33.f even 10 2 990.2.n.f 4
44.c even 2 1 9680.2.a.bh 2
44.g even 10 2 880.2.bo.a 4
55.d odd 2 1 6050.2.a.bu 2
55.h odd 10 2 550.2.h.f 4
55.l even 20 4 550.2.ba.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.2.g.a 4 11.d odd 10 2
550.2.h.f 4 55.h odd 10 2
550.2.ba.a 8 55.l even 20 4
880.2.bo.a 4 44.g even 10 2
990.2.n.f 4 33.f even 10 2
1210.2.a.p 2 1.a even 1 1 trivial
1210.2.a.t 2 11.b odd 2 1
6050.2.a.bu 2 55.d odd 2 1
6050.2.a.cm 2 5.b even 2 1
9680.2.a.bh 2 44.c even 2 1
9680.2.a.bi 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1210))\):

\( T_{3}^{2} - 2T_{3} - 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 3T_{7} + 1 \) Copy content Toggle raw display
\( T_{13}^{2} - T_{13} - 1 \) Copy content Toggle raw display
\( T_{17}^{2} - 6T_{17} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 3T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$17$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$19$ \( T^{2} + 3T - 29 \) Copy content Toggle raw display
$23$ \( T^{2} - 7T + 1 \) Copy content Toggle raw display
$29$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$31$ \( T^{2} + 10T + 20 \) Copy content Toggle raw display
$37$ \( T^{2} - 5T - 5 \) Copy content Toggle raw display
$41$ \( T^{2} + 3T - 9 \) Copy content Toggle raw display
$43$ \( T^{2} - 14T + 44 \) Copy content Toggle raw display
$47$ \( T^{2} - 7T - 49 \) Copy content Toggle raw display
$53$ \( T^{2} - 13T + 11 \) Copy content Toggle raw display
$59$ \( T^{2} - 7T + 11 \) Copy content Toggle raw display
$61$ \( T^{2} - 80 \) Copy content Toggle raw display
$67$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$71$ \( T^{2} - 22T + 116 \) Copy content Toggle raw display
$73$ \( T^{2} + 10T - 20 \) Copy content Toggle raw display
$79$ \( T^{2} - 12T + 16 \) Copy content Toggle raw display
$83$ \( T^{2} + 18T + 36 \) Copy content Toggle raw display
$89$ \( T^{2} - 5T - 205 \) Copy content Toggle raw display
$97$ \( (T + 12)^{2} \) Copy content Toggle raw display
show more
show less